-
Notifications
You must be signed in to change notification settings - Fork 479
/
singlew_lstm.py
292 lines (245 loc) · 10.5 KB
/
singlew_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# coding=utf-8
import random
import string
import zipfile
import numpy as np
import tensorflow as tf
from not_mnist.img_pickle import save_obj, load_pickle
from not_mnist.load_data import maybe_download
def read_data(filename):
f = zipfile.ZipFile(filename)
for name in f.namelist():
return tf.compat.as_str(f.read(name))
f.close()
data_set = load_pickle('text8_text.pickle')
if data_set is None:
# load data
url = 'http://mattmahoney.net/dc/'
filename = maybe_download('text8.zip', 31344016, url=url)
# read data
text = read_data(filename)
print('Data size %d' % len(text))
save_obj('text8_text.pickle', text)
else:
text = data_set
# Create a small validation set.
valid_size = 1000
valid_text = text[:valid_size]
train_text = text[valid_size:]
train_size = len(train_text)
print(train_size, train_text[:64])
print(valid_size, valid_text[:64])
# Utility functions to map characters to vocabulary IDs and back.
vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' '
# ascii code for character
first_letter = ord(string.ascii_lowercase[0])
def char2id(char):
if char in string.ascii_lowercase:
return ord(char) - first_letter + 1
elif char == ' ':
return 0
else:
print('Unexpected character: %s' % char)
return 0
def id2char(dictid):
if dictid > 0:
return chr(dictid + first_letter - 1)
else:
return ' '
print(char2id('a'), char2id('z'), char2id(' '), char2id('ï'))
print(id2char(1), id2char(26), id2char(0))
# Function to generate a training batch for the LSTM model.
batch_size = 64
num_unrollings = 10
class BatchGenerator(object):
def __init__(self, text, batch_size, num_unrollings):
self._text = text
self._text_size = len(text)
self._batch_size = batch_size
self._num_unrollings = num_unrollings
segment = self._text_size // batch_size
self._cursor = [offset * segment for offset in range(batch_size)]
self._last_batch = self._next_batch()
def _next_batch(self):
"""Generate a single batch from the current cursor position in the data."""
# take character from text on cursor[b]
# set to 1 for the taken character
# so we have a matrix of 1/0 as input, an one hot encoding
batch = np.zeros(shape=(self._batch_size, vocabulary_size), dtype=np.float)
for b in range(self._batch_size):
# same id, same index of second dimension
batch[b, char2id(self._text[self._cursor[b]])] = 1.0
self._cursor[b] = (self._cursor[b] + 1) % self._text_size
return batch
def next(self):
"""Generate the next array of batches from the data. The array consists of
the last batch of the previous array, followed by num_unrollings new ones.
"""
batches = [self._last_batch]
for step in range(self._num_unrollings):
batches.append(self._next_batch())
self._last_batch = batches[-1]
return batches
def characters(probabilities):
"""Turn a 1-hot encoding or a probability distribution over the possible
characters back into its (most likely) character representation."""
# argmax for the most likely character
return [id2char(c) for c in np.argmax(probabilities, 1)]
def batches2string(batches):
"""Convert a sequence of batches back into their (most likely) string
representation."""
s = [''] * batches[0].shape[0]
for b in batches:
s = [''.join(x) for x in zip(s, characters(b))]
return s
train_batches = BatchGenerator(train_text, batch_size, num_unrollings)
valid_batches = BatchGenerator(valid_text, 1, 1)
print(batches2string(train_batches.next()))
print(batches2string(train_batches.next()))
print(batches2string(valid_batches.next()))
print(batches2string(valid_batches.next()))
def logprob(predictions, labels):
# prevent negative probability
"""Log-probability of the true labels in a predicted batch."""
predictions[predictions < 1e-10] = 1e-10
return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0]
def sample_distribution(distribution):
"""Sample one element from a distribution assumed to be an array of normalized
probabilities.
"""
# 取一部分数据用于评估,所取数据比例随机
r = random.uniform(0, 1)
s = 0
for i in range(len(distribution)):
s += distribution[i]
if s >= r:
return i
return len(distribution) - 1
def sample(prediction):
"""Turn a (column) prediction into 1-hot encoded samples."""
p = np.zeros(shape=[1, vocabulary_size], dtype=np.float)
p[0, sample_distribution(prediction[0])] = 1.0
return p
def random_distribution():
"""Generate a random column of probabilities."""
b = np.random.uniform(0.0, 1.0, size=[1, vocabulary_size])
return b / np.sum(b, 1)[:, None]
# Simple LSTM Model.
num_nodes = 64
graph = tf.Graph()
with graph.as_default():
gate_count = 4
# Parameters:
# Gates: input, previous output, and bias.
input_weights = tf.Variable(tf.truncated_normal([vocabulary_size, num_nodes * gate_count], -0.1, 0.1))
output_weights = tf.Variable(tf.truncated_normal([num_nodes, num_nodes * gate_count], -0.1, 0.1))
bias = tf.Variable(tf.zeros([1, num_nodes * gate_count]))
# Variables saving state across unrollings.
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
# Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, vocabulary_size], -0.1, 0.1))
b = tf.Variable(tf.zeros([vocabulary_size]))
# Definition of the cell computation.
def lstm_cell(i, o, state):
"""Create a LSTM cell. See e.g.: http://arxiv.org/pdf/1402.1128v1.pdf
Note that in this formulation, we omit the various connections between the
previous state and the gates."""
# large weight, 1/4 parameters for each gate, matrix multiply once, take 1/4 output results as a gate
values = tf.split(tf.matmul(i, input_weights) + tf.matmul(o, output_weights) + bias, gate_count, 1)
input_gate = tf.sigmoid(values[0])
forget_gate = tf.sigmoid(values[1])
update = values[2]
state = forget_gate * state + input_gate * tf.tanh(update)
output_gate = tf.sigmoid(values[3])
return output_gate * tf.tanh(state), state
# Input data.
train_data = list()
for _ in range(num_unrollings + 1):
train_data.append(
tf.placeholder(tf.float32, shape=[batch_size, vocabulary_size]))
train_inputs = train_data[:num_unrollings]
train_labels = train_data[1:] # labels are inputs shifted by one time step.
# Unrolled LSTM loop.
outputs = list()
output = saved_output
state = saved_state
for i in train_inputs:
output, state = lstm_cell(i, output, state)
outputs.append(output)
# State saving across unrollings.
with tf.control_dependencies([saved_output.assign(output),
saved_state.assign(state)]):
# Classifier.
logits = tf.nn.xw_plus_b(tf.concat(outputs, 0), w, b)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.concat(train_labels, 0)))
# Optimizer.
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
10.0, global_step, 5000, 0.1, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
optimizer = optimizer.apply_gradients(
zip(gradients, v), global_step=global_step)
# Predictions.
train_prediction = tf.nn.softmax(logits)
# Sampling and validation eval: batch 1, no unrolling.
sample_input = tf.placeholder(tf.float32, shape=[1, vocabulary_size])
saved_sample_output = tf.Variable(tf.zeros([1, num_nodes]))
saved_sample_state = tf.Variable(tf.zeros([1, num_nodes]))
reset_sample_state = tf.group(
saved_sample_output.assign(tf.zeros([1, num_nodes])),
saved_sample_state.assign(tf.zeros([1, num_nodes])))
sample_output, sample_state = lstm_cell(
sample_input, saved_sample_output, saved_sample_state)
with tf.control_dependencies([saved_sample_output.assign(sample_output),
saved_sample_state.assign(sample_state)]):
sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b))
num_steps = 7001
summary_frequency = 100
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
mean_loss = 0
for step in range(num_steps):
batches = train_batches.next()
feed_dict = dict()
for i in range(num_unrollings + 1):
feed_dict[train_data[i]] = batches[i]
_, l, predictions, lr = session.run(
[optimizer, loss, train_prediction, learning_rate], feed_dict=feed_dict)
mean_loss += l
if step % summary_frequency == 0:
if step > 0:
mean_loss /= summary_frequency
# The mean loss is an estimate of the loss over the last few batches.
print(
'Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))
mean_loss = 0
labels = np.concatenate(list(batches)[1:])
print('Minibatch perplexity: %.2f' % float(
np.exp(logprob(predictions, labels))))
if step % (summary_frequency * 10) == 0:
# Generate some samples.
print('=' * 80)
for _ in range(5):
feed = sample(random_distribution())
sentence = characters(feed)[0]
reset_sample_state.run()
for _ in range(79):
prediction = sample_prediction.eval({sample_input: feed})
feed = sample(prediction)
sentence += characters(feed)[0]
print(sentence)
print('=' * 80)
# Measure validation set perplexity.
reset_sample_state.run()
valid_logprob = 0
for _ in range(valid_size):
b = valid_batches.next()
predictions = sample_prediction.eval({sample_input: b[0]})
valid_logprob = valid_logprob + logprob(predictions, b[1])
print('Validation set perplexity: %.2f' % float(np.exp(
valid_logprob / valid_size)))