You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I had an issue while building a function that only predicts a sentence without passing a dataloader instance
Theses are the steps I followed:
sentence= 'put a sentence'
bert_tokens = []
tok_map = []
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
# label2idx = {"[PAD]": pad_idx, '[CLS]': 1, '[SEP]': 2, "X": 3}
# idx2label = ["[PAD]", '[CLS]', '[SEP]', "X"]
orig_tokens = sentence.split()
orig_tokens = ["[CLS]"] + orig_tokens + ["[SEP]"]
for origin_token in orig_tokens:
cur_tokens = tokenizer.tokenize(origin_token)
bert_tokens.extend(cur_tokens)
tok_map.append(len(bert_tokens))
input_ids = tokenizer.convert_tokens_to_ids(bert_tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < 424:
input_mask.append(0)
tok_map.append(-1)
input_ids.append(0)
input_type_ids = [0] * len(input_ids)
The problem is I couldn't figure out what batch is in order to predict using model.forward(batch)
I tried this:
batch=[[0],[0],[0]]
batch[0]=input_ids
batch[1]=input_type_ids
batch[2]=input_mask
learner.model.forward(batch)
and this is what I got:
~/.local/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~/ner-bert-master-last-version/ner-bert-master-last-version/modules/layers/embedders.py in forward(self, batch)
59 token_type_ids=batch[2],
60 attention_mask=batch[1],
---> 61 output_all_encoded_layers=self.config["mode"] == "weighted")
62 if self.config["mode"] == "weighted":
63 encoded_layers = torch.stack([a * b for a, b in zip(encoded_layers, self.bert_weights)])
~/.local/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~/.local/lib/python3.7/site-packages/pytorch_pretrained_bert/modeling.py in forward(self, input_ids, token_type_ids, attention_mask, output_all_encoded_layers)
718 # this attention mask is more simple than the triangular masking of causal attention
719 # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
--> 720 extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
721
722 # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
AttributeError: 'list' object has no attribute 'unsqueeze'
can you please help!
The text was updated successfully, but these errors were encountered:
I had an issue while building a function that only predicts a sentence without passing a dataloader instance
Theses are the steps I followed:
sentence= 'put a sentence'
bert_tokens = []
tok_map = []
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
# label2idx = {"[PAD]": pad_idx, '[CLS]': 1, '[SEP]': 2, "X": 3}
# idx2label = ["[PAD]", '[CLS]', '[SEP]', "X"]
orig_tokens = sentence.split()
orig_tokens = ["[CLS]"] + orig_tokens + ["[SEP]"]
for origin_token in orig_tokens:
cur_tokens = tokenizer.tokenize(origin_token)
bert_tokens.extend(cur_tokens)
tok_map.append(len(bert_tokens))
input_ids = tokenizer.convert_tokens_to_ids(bert_tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < 424:
input_mask.append(0)
tok_map.append(-1)
input_ids.append(0)
input_type_ids = [0] * len(input_ids)
The problem is I couldn't figure out what batch is in order to predict using model.forward(batch)
I tried this:
batch=[[0],[0],[0]]
batch[0]=input_ids
batch[1]=input_type_ids
batch[2]=input_mask
learner.model.forward(batch)
and this is what I got:
~/ner-bert-master-last-version/ner-bert-master-last-version/modules/models/bert_models.py in forward(self, batch)
46 def forward(self, batch):
47 input_, labels_mask, input_type_ids = batch[:3]
---> 48 input_embeddings = self.embeddings(batch)
49 output, _ = self.lstm.forward(batch)
50 output, _ = self.attn(output, output, output, None)
~/.local/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~/ner-bert-master-last-version/ner-bert-master-last-version/modules/layers/embedders.py in forward(self, batch)
59 token_type_ids=batch[2],
60 attention_mask=batch[1],
---> 61 output_all_encoded_layers=self.config["mode"] == "weighted")
62 if self.config["mode"] == "weighted":
63 encoded_layers = torch.stack([a * b for a, b in zip(encoded_layers, self.bert_weights)])
~/.local/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
725 result = self._slow_forward(*input, **kwargs)
726 else:
--> 727 result = self.forward(*input, **kwargs)
728 for hook in itertools.chain(
729 _global_forward_hooks.values(),
~/.local/lib/python3.7/site-packages/pytorch_pretrained_bert/modeling.py in forward(self, input_ids, token_type_ids, attention_mask, output_all_encoded_layers)
718 # this attention mask is more simple than the triangular masking of causal attention
719 # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
--> 720 extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
721
722 # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
AttributeError: 'list' object has no attribute 'unsqueeze'
can you please help!
The text was updated successfully, but these errors were encountered: