You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[2024-07-22 19:57:06,333][root][INFO] - Workspace: D:\deeplearning\LLM-as-HH\outputs\main\2024-07-22_19-57-06
[2024-07-22 19:57:06,333][root][INFO] - Project Root: D:\deeplearning\LLM-as-HH
[2024-07-22 19:57:06,333][root][INFO] - Using LLM: llama3-70b
[2024-07-22 19:57:06,333][root][INFO] - Using Algorithm: reevo
[2024-07-22 19:57:07,393][root][INFO] - Problem: tsp_aco
[2024-07-22 19:57:07,393][root][INFO] - Problem description: Solving Traveling Salesman Problem (TSP) via stochastic solution sampling following "heuristics". TSP requires finding the shortest path that visits all given nodes and returns to the starting node.
[2024-07-22 19:57:07,393][root][INFO] - Function name: heuristics
[2024-07-22 19:57:07,394][root][INFO] - Evaluating seed function...
[2024-07-22 19:57:07,395][root][INFO] - Seed function code:
import numpy as np
def heuristics_v2(distance_matrix: np.ndarray) -> np.ndarray:
return 1 / distance_matrix
[2024-07-22 19:57:07,395][root][INFO] - Iteration 0: Running Code 0
[2024-07-22 19:57:09,359][root][INFO] - Iteration 0: Code Run 0 successful!
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0, response_id 0: Objective value: 6.469335357675092
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0: Elitist: 6.469335357675092
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0 finished...
[2024-07-22 19:57:16,735][root][INFO] - Best obj: 6.469335357675092, Best Code Path: problem_iter0_code0.py
[2024-07-22 19:57:16,735][root][INFO] - Function Evals: 1
[2024-07-22 19:57:16,735][root][INFO] - Initial Population Prompt:
System Prompt:
You are an expert in the domain of optimization heuristics. Your task is to design heuristics that can effectively solve optimization problems.
Your response outputs Python code and nothing else. Format your code as a Python code string: "python ... ".
User Prompt:
Write a heuristics function for Solving Traveling Salesman Problem (TSP) via stochastic solution sampling following "heuristics". TSP requires finding the shortest path that visits all given nodes and returns to the starting node.
The heuristics function takes as input a distance matrix, and returns prior indicators of how promising it is to include each edge in a solution. The return is of the same shape as the input.
Refer to the format of a trivial design above. Be very creative and give heuristics_v2. Output code only and enclose your code with Python code block: python ... .
Try combining various factors to determine how promising it is to select an edge.
Try sparsifying the matrix by setting unpromising elements to zero.
[2024-07-22 19:57:23,014][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:24,906][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:24,912][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,154][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,890][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,937][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,944][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,956][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,468][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,642][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,867][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,995][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,010][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,103][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,382][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,957][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,960][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,043][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,156][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,326][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,465][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,524][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,927][openai._base_client][INFO] - Retrying request to /chat/completions in 0.782544 seconds
[2024-07-22 19:57:30,286][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:30,678][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:32,469][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:33,093][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:02,649][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:05,625][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:05,737][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:07,129][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:07,143][root][INFO] - Iteration 1: Running Code 13
[2024-07-22 19:58:08,875][root][INFO] - Iteration 1: Code Run 13 execution error!
Error executing job with overrides: []
Traceback (most recent call last):
File "D:\deeplearning\LLM-as-HH\main.py", line 59, in
main()
File "E:\conda\envs\gnn310\lib\site-packages\hydra\main.py", line 94, in decorated_main
_run_hydra(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 394, in _run_hydra
_run_app(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 457, in _run_app
run_and_report(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 223, in run_and_report
raise ex
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 220, in run_and_report
return func()
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 458, in
lambda: hydra.run(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\hydra.py", line 132, in run
_ = ret.return_value
File "E:\conda\envs\gnn310\lib\site-packages\hydra\core\utils.py", line 260, in return_value
raise self._return_value
File "E:\conda\envs\gnn310\lib\site-packages\hydra\core\utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "D:\deeplearning\LLM-as-HH\main.py", line 38, in main
best_code_overall, best_code_path_overall = lhh.evolve()
File "D:\deeplearning\LLM-as-HH\reevo.py", line 443, in evolve
raise RuntimeError(f"All individuals are invalid. Please check the stdout files in {os.getcwd()}.")
RuntimeError: All individuals are invalid. Please check the stdout files in D:\deeplearning\LLM-as-HH\outputs\main\2024-07-22_19-57-06.
[2024-07-22 19:58:09,050][root][INFO] - Iteration 1, response_id 13: Objective value: inf
[2024-07-22 19:58:09,050][root][INFO] - Iteration 1 finished...
[2024-07-22 19:58:09,050][root][INFO] - Best obj: 6.469335357675092, Best Code Path: problem_iter0_code0.py
[2024-07-22 19:58:09,050][root][INFO] - Function Evals: 31
How to solve the problem?
The text was updated successfully, but these errors were encountered:
[2024-07-22 19:57:06,333][root][INFO] - Workspace: D:\deeplearning\LLM-as-HH\outputs\main\2024-07-22_19-57-06
[2024-07-22 19:57:06,333][root][INFO] - Project Root: D:\deeplearning\LLM-as-HH
[2024-07-22 19:57:06,333][root][INFO] - Using LLM: llama3-70b
[2024-07-22 19:57:06,333][root][INFO] - Using Algorithm: reevo
[2024-07-22 19:57:07,393][root][INFO] - Problem: tsp_aco
[2024-07-22 19:57:07,393][root][INFO] - Problem description: Solving Traveling Salesman Problem (TSP) via stochastic solution sampling following "heuristics". TSP requires finding the shortest path that visits all given nodes and returns to the starting node.
[2024-07-22 19:57:07,393][root][INFO] - Function name: heuristics
[2024-07-22 19:57:07,394][root][INFO] - Evaluating seed function...
[2024-07-22 19:57:07,395][root][INFO] - Seed function code:
import numpy as np
def heuristics_v2(distance_matrix: np.ndarray) -> np.ndarray:
return 1 / distance_matrix
[2024-07-22 19:57:07,395][root][INFO] - Iteration 0: Running Code 0
[2024-07-22 19:57:09,359][root][INFO] - Iteration 0: Code Run 0 successful!
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0, response_id 0: Objective value: 6.469335357675092
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0: Elitist: 6.469335357675092
[2024-07-22 19:57:16,735][root][INFO] - Iteration 0 finished...
[2024-07-22 19:57:16,735][root][INFO] - Best obj: 6.469335357675092, Best Code Path: problem_iter0_code0.py
[2024-07-22 19:57:16,735][root][INFO] - Function Evals: 1
[2024-07-22 19:57:16,735][root][INFO] - Initial Population Prompt:
System Prompt:
You are an expert in the domain of optimization heuristics. Your task is to design heuristics that can effectively solve optimization problems.
Your response outputs Python code and nothing else. Format your code as a Python code string: "
python ...
".User Prompt:
Write a heuristics function for Solving Traveling Salesman Problem (TSP) via stochastic solution sampling following "heuristics". TSP requires finding the shortest path that visits all given nodes and returns to the starting node.
The
heuristics
function takes as input a distance matrix, and returns prior indicators of how promising it is to include each edge in a solution. The return is of the same shape as the input.def heuristics_v1(distance_matrix: np.ndarray) -> np.ndarray:
return 1 / distance_matrix
Refer to the format of a trivial design above. Be very creative and give
heuristics_v2
. Output code only and enclose your code with Python code block:python ...
.[2024-07-22 19:57:23,014][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:24,906][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:24,912][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,154][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,890][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,937][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,944][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:25,956][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,468][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,642][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,867][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:27,995][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,010][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,103][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,382][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,957][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:28,960][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,043][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,156][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,326][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,465][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,524][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:29,927][openai._base_client][INFO] - Retrying request to /chat/completions in 0.782544 seconds
[2024-07-22 19:57:30,286][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:30,678][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:32,469][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:57:33,093][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:02,649][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:05,625][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:05,737][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:07,129][httpx][INFO] - HTTP Request: POST https://api.llama-api.com/chat/completions "HTTP/1.1 200 OK"
[2024-07-22 19:58:07,143][root][INFO] - Iteration 1: Running Code 13
[2024-07-22 19:58:08,875][root][INFO] - Iteration 1: Code Run 13 execution error!
Error executing job with overrides: []
Traceback (most recent call last):
File "D:\deeplearning\LLM-as-HH\main.py", line 59, in
main()
File "E:\conda\envs\gnn310\lib\site-packages\hydra\main.py", line 94, in decorated_main
_run_hydra(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 394, in _run_hydra
_run_app(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 457, in _run_app
run_and_report(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 223, in run_and_report
raise ex
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 220, in run_and_report
return func()
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\utils.py", line 458, in
lambda: hydra.run(
File "E:\conda\envs\gnn310\lib\site-packages\hydra_internal\hydra.py", line 132, in run
_ = ret.return_value
File "E:\conda\envs\gnn310\lib\site-packages\hydra\core\utils.py", line 260, in return_value
raise self._return_value
File "E:\conda\envs\gnn310\lib\site-packages\hydra\core\utils.py", line 186, in run_job
ret.return_value = task_function(task_cfg)
File "D:\deeplearning\LLM-as-HH\main.py", line 38, in main
best_code_overall, best_code_path_overall = lhh.evolve()
File "D:\deeplearning\LLM-as-HH\reevo.py", line 443, in evolve
raise RuntimeError(f"All individuals are invalid. Please check the stdout files in {os.getcwd()}.")
RuntimeError: All individuals are invalid. Please check the stdout files in D:\deeplearning\LLM-as-HH\outputs\main\2024-07-22_19-57-06.
[2024-07-22 19:58:09,050][root][INFO] - Iteration 1, response_id 13: Objective value: inf
[2024-07-22 19:58:09,050][root][INFO] - Iteration 1 finished...
[2024-07-22 19:58:09,050][root][INFO] - Best obj: 6.469335357675092, Best Code Path: problem_iter0_code0.py
[2024-07-22 19:58:09,050][root][INFO] - Function Evals: 31
How to solve the problem?
The text was updated successfully, but these errors were encountered: