forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ray_train_multirun.py
271 lines (245 loc) · 9.64 KB
/
ray_train_multirun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Start local ray cluster
(robodiff)$ export CUDA_VISIBLE_DEVICES=0,1,2 # select GPUs to be managed by the ray cluster
(robodiff)$ ray start --head --num-gpus=3
Training:
python ray_train_multirun.py --config-name=train_diffusion_unet_lowdim_workspace --seeds=42,43,44 --monitor_key=test/mean_score -- logger.mode=online training.eval_first=True
"""
import os
import ray
import click
import hydra
import yaml
import wandb
import pathlib
import collections
from pprint import pprint
from omegaconf import OmegaConf
from ray_exec import worker_fn
from ray.util.placement_group import (
placement_group,
)
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
OmegaConf.register_new_resolver("eval", eval, replace=True)
@click.command()
@click.option('--config-name', '-cn', required=True, type=str)
@click.option('--config-dir', '-cd', default=None, type=str)
@click.option('--seeds', '-s', default='42,43,44', type=str)
@click.option('--monitor_key', '-k', multiple=True, default=['test/mean_score'])
@click.option('--ray_address', '-ra', default='auto')
@click.option('--num_cpus', '-nc', default=7, type=float)
@click.option('--num_gpus', '-ng', default=1, type=float)
@click.option('--max_retries', '-mr', default=0, type=int)
@click.option('--monitor_max_retires', default=3, type=int)
@click.option('--data_src', '-d', default='./data', type=str)
@click.option('--unbuffer_python', '-u', is_flag=True, default=False)
@click.option('--single_node', '-sn', is_flag=True, default=False, help='run all experiments on a single machine')
@click.argument('command_args', nargs=-1, type=str)
def main(config_name, config_dir, seeds, monitor_key, ray_address,
num_cpus, num_gpus, max_retries, monitor_max_retires,
data_src, unbuffer_python,
single_node, command_args):
# parse args
seeds = [int(x) for x in seeds.split(',')]
# expand path
if data_src is not None:
data_src = os.path.abspath(os.path.expanduser(data_src))
# initialize hydra
if config_dir is None:
config_path_abs = pathlib.Path(__file__).parent.joinpath(
'diffusion_policy','config')
config_path_rel = str(config_path_abs.relative_to(pathlib.Path.cwd()))
else:
config_path_rel = config_dir
run_command_args = list()
monitor_command_args = list()
with hydra.initialize(
version_base=None,
config_path=config_path_rel):
# generate raw config
cfg = hydra.compose(
config_name=config_name,
overrides=command_args)
OmegaConf.resolve(cfg)
# manually create output dir
output_dir = pathlib.Path(cfg.multi_run.run_dir)
output_dir.mkdir(parents=True, exist_ok=False)
config_path = output_dir.joinpath('config.yaml')
print(output_dir)
# save current config
yaml.dump(OmegaConf.to_container(cfg, resolve=True),
config_path.open('w'), default_flow_style=False)
# wandb
wandb_group_id = wandb.util.generate_id()
name_base = cfg.multi_run.wandb_name_base
# create monitor command args
monitor_command_args = [
'python',
'multirun_metrics.py',
'--input', str(output_dir),
'--use_wandb',
'--project', 'diffusion_policy_metrics',
'--group', wandb_group_id
]
for k in monitor_key:
monitor_command_args.extend([
'--key', k
])
# generate command args
run_command_args = list()
for i, seed in enumerate(seeds):
test_start_seed = (seed + 1) * 100000
this_output_dir = output_dir.joinpath(f'train_{i}')
this_output_dir.mkdir()
wandb_name = name_base + f'_train_{i}'
wandb_run_id = wandb_group_id + f'_train_{i}'
this_command_args = [
'python',
'train.py',
'--config-name='+config_name,
'--config-dir='+config_path_rel
]
this_command_args.extend(command_args)
this_command_args.extend([
f'training.seed={seed}',
f'task.env_runner.test_start_seed={test_start_seed}',
f'logging.name={wandb_name}',
f'logging.id={wandb_run_id}',
f'logging.group={wandb_group_id}',
f'hydra.run.dir={this_output_dir}'
])
run_command_args.append(this_command_args)
# init ray
root_dir = os.path.dirname(__file__)
runtime_env = {
'working_dir': root_dir,
'excludes': ['.git'],
'pip': ['dm-control==1.0.9']
}
ray.init(
address=ray_address,
runtime_env=runtime_env
)
# create resources for train
train_resources = dict()
train_bundle = dict(train_resources)
train_bundle['CPU'] = num_cpus
train_bundle['GPU'] = num_gpus
# create resources for monitor
monitor_resources = dict()
monitor_resources['CPU'] = 1
monitor_bundle = dict(monitor_resources)
# aggregate bundle
bundle = collections.defaultdict(lambda:0)
n_train_bundles = 1
if single_node:
n_train_bundles = len(seeds)
for _ in range(n_train_bundles):
for k, v in train_bundle.items():
bundle[k] += v
for k, v in monitor_bundle.items():
bundle[k] += v
bundle = dict(bundle)
# create placement group
print("Creating placement group with resources:")
pprint(bundle)
pg = placement_group([bundle])
# run
task_name_map = dict()
task_refs = list()
for i, this_command_args in enumerate(run_command_args):
if single_node or i == (len(run_command_args) - 1):
print(f'Training worker {i} with placement group.')
ray.get(pg.ready())
print("Placement Group created!")
worker_ray = ray.remote(worker_fn).options(
num_cpus=num_cpus,
num_gpus=num_gpus,
max_retries=max_retries,
resources=train_resources,
retry_exceptions=True,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg)
)
else:
print(f'Training worker {i} without placement group.')
worker_ray = ray.remote(worker_fn).options(
num_cpus=num_cpus,
num_gpus=num_gpus,
max_retries=max_retries,
resources=train_resources,
retry_exceptions=True,
)
task_ref = worker_ray.remote(
this_command_args, data_src, unbuffer_python)
task_refs.append(task_ref)
task_name_map[task_ref] = f'train_{i}'
# monitor worker is always packed on the same node
# as training worker 0
ray.get(pg.ready())
monitor_worker_ray = ray.remote(worker_fn).options(
num_cpus=1,
num_gpus=0,
max_retries=monitor_max_retires,
# resources=monitor_resources,
retry_exceptions=True,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg)
)
monitor_ref = monitor_worker_ray.remote(
monitor_command_args, data_src, unbuffer_python)
task_name_map[monitor_ref] = 'metrics'
try:
# normal case
ready_refs = list()
rest_refs = task_refs
while len(ready_refs) < len(task_refs):
this_ready_refs, rest_refs = ray.wait(rest_refs,
num_returns=1, timeout=None, fetch_local=True)
cancel_other_tasks = False
for ref in this_ready_refs:
task_name = task_name_map[ref]
try:
result = ray.get(ref)
print(f"Task {task_name} finished with result: {result}")
except KeyboardInterrupt as e:
# skip to outer try catch
raise KeyboardInterrupt
except Exception as e:
print(f"Task {task_name} raised exception: {e}")
this_cancel_other_tasks = True
if isinstance(e, ray.exceptions.RayTaskError):
if isinstance(e.cause, ray.exceptions.TaskCancelledError):
this_cancel_other_tasks = False
cancel_other_tasks = cancel_other_tasks or this_cancel_other_tasks
ready_refs.append(ref)
if cancel_other_tasks:
print('Exception! Cancelling all other tasks.')
# cancel all other refs
for _ref in rest_refs:
ray.cancel(_ref, force=False)
print("Training tasks done.")
ray.cancel(monitor_ref, force=False)
except KeyboardInterrupt:
print('KeyboardInterrupt received in the driver.')
# a KeyboardInterrupt will be raised in worker
_ = [ray.cancel(x, force=False) for x in task_refs + [monitor_ref]]
print('KeyboardInterrupt sent to workers.')
except Exception as e:
# worker will be terminated
_ = [ray.cancel(x, force=True) for x in task_refs + [monitor_ref]]
raise e
for ref in task_refs + [monitor_ref]:
task_name = task_name_map[ref]
try:
result = ray.get(ref)
print(f"Task {task_name} finished with result: {result}")
except KeyboardInterrupt as e:
# force kill everything.
print("Force killing all workers")
_ = [ray.cancel(x, force=True) for x in task_refs]
ray.cancel(monitor_ref, force=True)
except Exception as e:
print(f"Task {task_name} raised exception: {e}")
if __name__ == "__main__":
main()