forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functional.py
1051 lines (889 loc) · 43.8 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn.functional as F
from ._lowrank import svd_lowrank, pca_lowrank
from ._overrides import has_torch_function, handle_torch_function
from ._jit_internal import boolean_dispatch, List
from ._jit_internal import _overload as overload
from torch._six import PY2
Tensor = torch.Tensor
from torch import _VF
__all__ = [
'align_tensors',
'broadcast_tensors',
'cartesian_prod',
'cdist',
'chain_matmul',
'einsum',
'lu',
'lu_unpack',
'norm',
'meshgrid',
'pca_lowrank',
'split',
'stft',
'svd_lowrank',
'tensordot',
'unique',
'unique_consecutive',
]
def broadcast_tensors(*tensors):
r"""broadcast_tensors(*tensors) -> List of Tensors
Broadcasts the given tensors according to :ref:`broadcasting-semantics`.
Args:
*tensors: any number of tensors of the same type
.. warning::
More than one element of a broadcasted tensor may refer to a single
memory location. As a result, in-place operations (especially ones that
are vectorized) may result in incorrect behavior. If you need to write
to the tensors, please clone them first.
Example::
>>> x = torch.arange(3).view(1, 3)
>>> y = torch.arange(2).view(2, 1)
>>> a, b = torch.broadcast_tensors(x, y)
>>> a.size()
torch.Size([2, 3])
>>> a
tensor([[0, 1, 2],
[0, 1, 2]])
"""
if not torch.jit.is_scripting():
if any(type(t) is not Tensor for t in tensors) and has_torch_function(tensors):
return handle_torch_function(broadcast_tensors, tensors, *tensors)
return _VF.broadcast_tensors(tensors)
def split(tensor, split_size_or_sections, dim=0):
r"""Splits the tensor into chunks. Each chunk is a view of the original tensor.
If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will
be split into equally sized chunks (if possible). Last chunk will be smaller if
the tensor size along the given dimension :attr:`dim` is not divisible by
:attr:`split_size`.
If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split
into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according
to :attr:`split_size_or_sections`.
Arguments:
tensor (Tensor): tensor to split.
split_size_or_sections (int) or (list(int)): size of a single chunk or
list of sizes for each chunk
dim (int): dimension along which to split the tensor.
"""
if not torch.jit.is_scripting():
if type(tensor) is not Tensor and has_torch_function((tensor,)):
return handle_torch_function(split, (tensor,), tensor, split_size_or_sections,
dim=dim)
# Overwriting reason:
# This dispatches to two ATen functions depending on the type of
# split_size_or_sections. The branching code is in tensor.py, which we
# call here.
return tensor.split(split_size_or_sections, dim)
# equivalent to itertools.product(indices)
def _indices_product(indices):
# type: (List[int]) -> (List[List[int]])
empty_list = torch.jit.annotate(List[int], [])
result = [empty_list]
for idx in indices:
result_temp = torch.jit.annotate(List[List[int]], [])
for res in result:
for i in range(idx):
result_temp.append(res + [i])
result = result_temp
return result
def _index_tensor_with_indices_list(tensor, indices):
# type: (Tensor, List[int]) -> Tensor
out = tensor
for index in indices:
out = out[index]
return out
def lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
# type: (Tensor, Tensor, bool, bool) -> (Tuple[Optional[Tensor], Optional[Tensor], Optional[Tensor]])
r"""Unpacks the data and pivots from a LU factorization of a tensor.
Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``.
Arguments:
LU_data (Tensor): the packed LU factorization data
LU_pivots (Tensor): the packed LU factorization pivots
unpack_data (bool): flag indicating if the data should be unpacked
unpack_pivots (bool): flag indicating if the pivots should be unpacked
Examples::
>>> A = torch.randn(2, 3, 3)
>>> A_LU, pivots = A.lu()
>>> P, A_L, A_U = torch.lu_unpack(A_LU, pivots)
>>>
>>> # can recover A from factorization
>>> A_ = torch.bmm(P, torch.bmm(A_L, A_U))
>>> # LU factorization of a rectangular matrix:
>>> A = torch.randn(2, 3, 2)
>>> A_LU, pivots = A.lu()
>>> P, A_L, A_U = torch.lu_unpack(A_LU, pivots)
>>> P
tensor([[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]],
[[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]]])
>>> A_L
tensor([[[ 1.0000, 0.0000],
[ 0.4763, 1.0000],
[ 0.3683, 0.1135]],
[[ 1.0000, 0.0000],
[ 0.2957, 1.0000],
[-0.9668, -0.3335]]])
>>> A_U
tensor([[[ 2.1962, 1.0881],
[ 0.0000, -0.8681]],
[[-1.0947, 0.3736],
[ 0.0000, 0.5718]]])
>>> A_ = torch.bmm(P, torch.bmm(A_L, A_U))
>>> torch.norm(A_ - A)
tensor(2.9802e-08)
"""
if not torch.jit.is_scripting():
tens_ops = (LU_data, LU_pivots)
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
return handle_torch_function(
lu_unpack, tens_ops, LU_data, LU_pivots, unpack_data=unpack_data,
unpack_pivots=unpack_pivots)
shape = LU_data.shape
# In generalized LU factorization, the following shape relations hold:
# A.shape[-2:] == (m, n)
# P.shape[-2:] == (m, m)
# L.shape[-2:] == (m, k)
# U.shape[-2:] == (k, n)
# where k = min(m, n)
m, n = shape[-2:]
k = min(m, n)
if unpack_data:
U = LU_data.triu()
if m != k:
U = U.narrow(-2, 0, k)
L = LU_data.tril()
if k != n:
L = L.narrow(-1, 0, k)
L.diagonal(dim1=-2, dim2=-1).fill_(1)
else:
L = U = None
if unpack_pivots:
LU_pivots_zero_idx = LU_pivots - 1
if LU_data.dim() > 2:
P = torch.eye(m, device=LU_data.device, dtype=LU_data.dtype) \
.expand(shape[:-1] + (m,)) \
.clone(memory_format=torch.contiguous_format)
# TODO: rewrite when TorchScript supports product and map as
# product(*map(lambda x: list(range(x)), shape[:-2])) when issue 33781 is fixed
indices = _indices_product(shape[:-2])
for idx in indices:
final_order = [i for i in range(m)] # noqa: C416 TODO: rewrite as list(range(m))
for k, j in enumerate(_index_tensor_with_indices_list(LU_pivots_zero_idx, idx)):
final_order[k], final_order[j] = final_order[j], final_order[k]
# TODO: remove _index_tensor_with_indices_list when TorchScript supports indexing Tensor with list
p_idx = _index_tensor_with_indices_list(P, idx)
p_idx.copy_(p_idx.index_select(1, torch.as_tensor(final_order, device=LU_pivots.device)))
else:
P = torch.eye(m, device=LU_data.device, dtype=LU_data.dtype)
final_order = [i for i in range(m)] # noqa: C416 TODO: rewrite as list(range(m))
for k, j, in enumerate(LU_pivots_zero_idx):
final_order[k], final_order[j] = final_order[j], final_order[k]
P = P.index_select(1, torch.as_tensor(final_order, device=LU_pivots.device))
else:
P = None
return P, L, U
def einsum(equation, *operands):
r"""einsum(equation, *operands) -> Tensor
This function provides a way of computing multilinear expressions (i.e. sums of products) using the
Einstein summation convention.
Args:
equation (string): The equation is given in terms of lower case letters (indices) to be associated
with each dimension of the operands and result. The left hand side lists the operands
dimensions, separated by commas. There should be one index letter per tensor dimension.
The right hand side follows after `->` and gives the indices for the output.
If the `->` and right hand side are omitted, it implicitly defined as the alphabetically
sorted list of all indices appearing exactly once in the left hand side.
The indices not apprearing in the output are summed over after multiplying the operands
entries.
If an index appears several times for the same operand, a diagonal is taken.
Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred,
the ellipsis dimensions are at the beginning of the output.
operands (Tensor): The operands to compute the Einstein sum of.
Examples::
>>> x = torch.randn(5)
>>> y = torch.randn(4)
>>> torch.einsum('i,j->ij', x, y) # outer product
tensor([[-0.0570, -0.0286, -0.0231, 0.0197],
[ 1.2616, 0.6335, 0.5113, -0.4351],
[ 1.4452, 0.7257, 0.5857, -0.4984],
[-0.4647, -0.2333, -0.1883, 0.1603],
[-1.1130, -0.5588, -0.4510, 0.3838]])
>>> A = torch.randn(3,5,4)
>>> l = torch.randn(2,5)
>>> r = torch.randn(2,4)
>>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear
tensor([[-0.3430, -5.2405, 0.4494],
[ 0.3311, 5.5201, -3.0356]])
>>> As = torch.randn(3,2,5)
>>> Bs = torch.randn(3,5,4)
>>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],
[-1.6706, -0.8097, -0.8025, -2.1183]],
[[ 4.2239, 0.3107, -0.5756, -0.2354],
[-1.4558, -0.3460, 1.5087, -0.8530]],
[[ 2.8153, 1.8787, -4.3839, -1.2112],
[ 0.3728, -2.1131, 0.0921, 0.8305]]])
>>> A = torch.randn(3, 3)
>>> torch.einsum('ii->i', A) # diagonal
tensor([-0.7825, 0.8291, -0.1936])
>>> A = torch.randn(4, 3, 3)
>>> torch.einsum('...ii->...i', A) # batch diagonal
tensor([[-1.0864, 0.7292, 0.0569],
[-0.9725, -1.0270, 0.6493],
[ 0.5832, -1.1716, -1.5084],
[ 0.4041, -1.1690, 0.8570]])
>>> A = torch.randn(2, 3, 4, 5)
>>> torch.einsum('...ij->...ji', A).shape # batch permute
torch.Size([2, 3, 5, 4])
"""
if not torch.jit.is_scripting():
if any(type(t) is not Tensor for t in operands) and has_torch_function(operands):
return handle_torch_function(einsum, operands, *operands)
if len(operands) == 1 and isinstance(operands[0], (list, tuple)):
# the old interface of passing the operands as one list argument
operands = operands[0]
return _VF.einsum(equation, operands)
def meshgrid(*tensors):
r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional
vector, and create :math:`N` N-dimensional grids, where the :math:`i` :sup:`th` grid is defined by
expanding the :math:`i` :sup:`th` input over dimensions defined by other inputs.
Args:
tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be
treated as tensors of size :math:`(1,)` automatically
Returns:
seq (sequence of Tensors): If the input has :math:`k` tensors of size
:math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also have :math:`k` tensors,
where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`.
Example::
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([4, 5, 6])
>>> grid_x, grid_y = torch.meshgrid(x, y)
>>> grid_x
tensor([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> grid_y
tensor([[4, 5, 6],
[4, 5, 6],
[4, 5, 6]])
"""
if not torch.jit.is_scripting():
if any(type(t) is not Tensor for t in tensors) and has_torch_function(tensors):
return handle_torch_function(meshgrid, tensors, *tensors)
if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
# the old interface of passing the operands as one list argument
tensors = tensors[0]
return _VF.meshgrid(tensors)
def stft(input, n_fft, hop_length=None, win_length=None, window=None,
center=True, pad_mode='reflect', normalized=False, onesided=True):
# type: (Tensor, int, Optional[int], Optional[int], Optional[Tensor], bool, str, bool, bool) -> Tensor
r"""Short-time Fourier transform (STFT).
Ignoring the optional batch dimension, this method computes the following
expression:
.. math::
X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}%
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %
\exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right),
where :math:`m` is the index of the sliding window, and :math:`\omega` is
the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When
:attr:`onesided` is the default value ``True``,
* :attr:`input` must be either a 1-D time sequence or a 2-D batch of time
sequences.
* If :attr:`hop_length` is ``None`` (default), it is treated as equal to
``floor(n_fft / 4)``.
* If :attr:`win_length` is ``None`` (default), it is treated as equal to
:attr:`n_fft`.
* :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from
:meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is
treated as if having :math:`1` everywhere in the window. If
:math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on
both sides to length :attr:`n_fft` before being applied.
* If :attr:`center` is ``True`` (default), :attr:`input` will be padded on
both sides so that the :math:`t`-th frame is centered at time
:math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame
begins at time :math:`t \times \text{hop\_length}`.
* :attr:`pad_mode` determines the padding method used on :attr:`input` when
:attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for
all available options. Default is ``"reflect"``.
* If :attr:`onesided` is ``True`` (default), only values for :math:`\omega`
in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]`
are returned because the real-to-complex Fourier transform satisfies the
conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`.
* If :attr:`normalized` is ``True`` (default is ``False``), the function
returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`.
Returns the real and the imaginary parts together as one tensor of size
:math:`(* \times N \times T \times 2)`, where :math:`*` is the optional
batch size of :attr:`input`, :math:`N` is the number of frequencies where
STFT is applied, :math:`T` is the total number of frames used, and each pair
in the last dimension represents a complex number as the real part and the
imaginary part.
.. warning::
This function changed signature at version 0.4.1. Calling with the
previous signature may cause error or return incorrect result.
Arguments:
input (Tensor): the input tensor
n_fft (int): size of Fourier transform
hop_length (int, optional): the distance between neighboring sliding window
frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``)
win_length (int, optional): the size of window frame and STFT filter.
Default: ``None`` (treated as equal to :attr:`n_fft`)
window (Tensor, optional): the optional window function.
Default: ``None`` (treated as window of all :math:`1` s)
center (bool, optional): whether to pad :attr:`input` on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
Default: ``True``
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. Default: ``"reflect"``
normalized (bool, optional): controls whether to return the normalized STFT results
Default: ``False``
onesided (bool, optional): controls whether to return half of results to
avoid redundancy Default: ``True``
Returns:
Tensor: A tensor containing the STFT result with shape described above
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
stft, (input,), input, n_fft, hop_length=hop_length, win_length=win_length,
window=window, center=center, pad_mode=pad_mode, normalized=normalized,
onesided=onesided)
# TODO: after having proper ways to map Python strings to ATen Enum, move
# this and F.pad to ATen.
if center:
signal_dim = input.dim()
extended_shape = [1] * (3 - signal_dim) + list(input.size())
pad = int(n_fft // 2)
input = F.pad(input.view(extended_shape), (pad, pad), pad_mode)
input = input.view(input.shape[-signal_dim:])
return _VF.stft(input, n_fft, hop_length, win_length, window, normalized, onesided)
del torch.unique_dim
def unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None):
r"""Returns the unique elements of the input tensor.
.. note:: This function is different from :func:`torch.unique_consecutive` in the sense that
this function also eliminates non-consecutive duplicate values.
.. note:: Currently in the CUDA implementation and the CPU implementation when dim is specified,
`torch.unique` always sort the tensor at the beginning regardless of the `sort` argument.
Sorting could be slow, so if your input tensor is already sorted, it is recommended to use
:func:`torch.unique_consecutive` which avoids the sorting.
Arguments:
input (Tensor): the input tensor
sorted (bool): Whether to sort the unique elements in ascending order
before returning as output.
return_inverse (bool): Whether to also return the indices for where
elements in the original input ended up in the returned unique list.
return_counts (bool): Whether to also return the counts for each unique
element.
dim (int): the dimension to apply unique. If ``None``, the unique of the
flattened input is returned. default: ``None``
Returns:
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing
- **output** (*Tensor*): the output list of unique scalar elements.
- **inverse_indices** (*Tensor*): (optional) if
:attr:`return_inverse` is True, there will be an additional
returned tensor (same shape as input) representing the indices
for where elements in the original input map to in the output;
otherwise, this function will only return a single tensor.
- **counts** (*Tensor*): (optional) if
:attr:`return_counts` is True, there will be an additional
returned tensor (same shape as output or output.size(dim),
if dim was specified) representing the number of occurrences
for each unique value or tensor.
Example::
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))
>>> output
tensor([ 2, 3, 1])
>>> output, inverse_indices = torch.unique(
torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True)
>>> output
tensor([ 1, 2, 3])
>>> inverse_indices
tensor([ 0, 2, 1, 2])
>>> output, inverse_indices = torch.unique(
torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True)
>>> output
tensor([ 1, 2, 3])
>>> inverse_indices
tensor([[ 0, 2],
[ 1, 2]])
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
unique, (input,), input, sorted=sorted, return_inverse=return_inverse,
return_counts=return_counts, dim=dim)
if dim is not None:
output, inverse_indices, counts = _VF.unique_dim(
input,
dim,
sorted=sorted,
return_inverse=return_inverse,
return_counts=return_counts,
)
else:
output, inverse_indices, counts = torch._unique2(
input,
sorted=sorted,
return_inverse=return_inverse,
return_counts=return_counts,
)
if return_inverse and return_counts:
return output, inverse_indices, counts
elif return_inverse:
return output, inverse_indices
elif return_counts:
return output, counts
else:
return output
def unique_consecutive(input, return_inverse=False, return_counts=False, dim=None):
r"""Eliminates all but the first element from every consecutive group of equivalent elements.
.. note:: This function is different from :func:`torch.unique` in the sense that this function
only eliminates consecutive duplicate values. This semantics is similar to `std::unique`
in C++.
Arguments:
input (Tensor): the input tensor
return_inverse (bool): Whether to also return the indices for where
elements in the original input ended up in the returned unique list.
return_counts (bool): Whether to also return the counts for each unique
element.
dim (int): the dimension to apply unique. If ``None``, the unique of the
flattened input is returned. default: ``None``
Returns:
(Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing
- **output** (*Tensor*): the output list of unique scalar elements.
- **inverse_indices** (*Tensor*): (optional) if
:attr:`return_inverse` is True, there will be an additional
returned tensor (same shape as input) representing the indices
for where elements in the original input map to in the output;
otherwise, this function will only return a single tensor.
- **counts** (*Tensor*): (optional) if
:attr:`return_counts` is True, there will be an additional
returned tensor (same shape as output or output.size(dim),
if dim was specified) representing the number of occurrences
for each unique value or tensor.
Example::
>>> x = torch.tensor([1, 1, 2, 2, 3, 1, 1, 2])
>>> output = torch.unique_consecutive(x)
>>> output
tensor([1, 2, 3, 1, 2])
>>> output, inverse_indices = torch.unique_consecutive(x, return_inverse=True)
>>> output
tensor([1, 2, 3, 1, 2])
>>> inverse_indices
tensor([0, 0, 1, 1, 2, 3, 3, 4])
>>> output, counts = torch.unique_consecutive(x, return_counts=True)
>>> output
tensor([1, 2, 3, 1, 2])
>>> counts
tensor([2, 2, 1, 2, 1])
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
unique_consecutive, (input,), input, return_inverse=return_inverse,
return_counts=return_counts, dim=dim)
output, inverse_indices, counts = _VF.unique_consecutive(
input, return_inverse=return_inverse, return_counts=return_counts, dim=dim)
if return_inverse and return_counts:
return output, inverse_indices, counts
if return_inverse:
return output, inverse_indices
if return_counts:
return output, counts
return output
def tensordot(a, b, dims=2):
r"""Returns a contraction of a and b over multiple dimensions.
:attr:`tensordot` implements a generalized matrix product.
Args:
a (Tensor): Left tensor to contract
b (Tensor): Right tensor to contract
dims (int or tuple of two lists of integers): number of dimensions to
contract or explicit lists of dimensions for :attr:`a` and
:attr:`b` respectively
When called with a non-negative integer argument :attr:`dims` = :math:`d`, and
the number of dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`,
respectively, :func:`~torch.tensordot` computes
.. math::
r_{i_0,...,i_{m-d}, i_d,...,i_n}
= \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}.
When called with :attr:`dims` of the list form, the given dimensions will be contracted
in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes
in these dimensions must match, but :func:`~torch.tensordot` will deal with broadcasted
dimensions.
Examples::
>>> a = torch.arange(60.).reshape(3, 4, 5)
>>> b = torch.arange(24.).reshape(4, 3, 2)
>>> torch.tensordot(a, b, dims=([1, 0], [0, 1]))
tensor([[4400., 4730.],
[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])
>>> a = torch.randn(3, 4, 5, device='cuda')
>>> b = torch.randn(4, 5, 6, device='cuda')
>>> c = torch.tensordot(a, b, dims=2).cpu()
tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741],
[ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744],
[ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]])
"""
if not torch.jit.is_scripting():
if (type(a) is not Tensor or type(b) is not Tensor) and has_torch_function((a, b)):
return handle_torch_function(tensordot, (a, b), a, b, dims=dims)
if isinstance(dims, (list, tuple)) or \
(isinstance(dims, torch.Tensor) and dims.numel() > 1):
dims_a, dims_b = dims
else:
if isinstance(dims, torch.Tensor):
dims = dims.item()
if dims < 0:
raise RuntimeError("tensordot expects dims >= 0, but got dims={}".format(dims))
dims_a = list(range(-dims, 0))
dims_b = list(range(dims))
return _VF.tensordot(a, b, dims_a, dims_b)
def cartesian_prod(*tensors):
"""Do cartesian product of the given sequence of tensors. The behavior is similar to
python's `itertools.product`.
Arguments:
*tensors: any number of 1 dimensional tensors.
Returns:
Tensor: A tensor equivalent to converting all the input tensors into lists,
do `itertools.product` on these lists, and finally convert the resulting list
into tensor.
Example::
>>> a = [1, 2, 3]
>>> b = [4, 5]
>>> list(itertools.product(a, b))
[(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]
>>> tensor_a = torch.tensor(a)
>>> tensor_b = torch.tensor(b)
>>> torch.cartesian_prod(tensor_a, tensor_b)
tensor([[1, 4],
[1, 5],
[2, 4],
[2, 5],
[3, 4],
[3, 5]])
"""
if not torch.jit.is_scripting():
if any(type(t) is not Tensor for t in tensors) and has_torch_function(tensors):
return handle_torch_function(cartesian_prod, tensors, *tensors)
return _VF.cartesian_prod(tensors)
def cdist(x1, x2, p=2., compute_mode='use_mm_for_euclid_dist_if_necessary'):
# type: (Tensor, Tensor, float, str) -> (Tensor)
r"""Computes batched the p-norm distance between each pair of the two collections of row vectors.
Args:
x1 (Tensor): input tensor of shape :math:`B \times P \times M`.
x2 (Tensor): input tensor of shape :math:`B \times R \times M`.
p: p value for the p-norm distance to calculate between each vector pair
:math:`\in [0, \infty]`.
compute_mode:
'use_mm_for_euclid_dist_if_necessary' - will use matrix multiplication approach to calculate
euclidean distance (p = 2) if P > 25 or R > 25
'use_mm_for_euclid_dist' - will always use matrix multiplication approach to calculate
euclidean distance (p = 2)
'donot_use_mm_for_euclid_dist' - will never use matrix multiplication approach to calculate
euclidean distance (p = 2)
Default: use_mm_for_euclid_dist_if_necessary.
If x1 has shape :math:`B \times P \times M` and x2 has shape :math:`B \times R \times M` then the
output will have shape :math:`B \times P \times R`.
This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)`
if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to
`scipy.spatial.distance.cdist(input, 'hamming') * M`. When :math:`p = \infty`, the closest
scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`.
Example:
>>> a = torch.tensor([[0.9041, 0.0196], [-0.3108, -2.4423], [-0.4821, 1.059]])
>>> a
tensor([[ 0.9041, 0.0196],
[-0.3108, -2.4423],
[-0.4821, 1.0590]])
>>> b = torch.tensor([[-2.1763, -0.4713], [-0.6986, 1.3702]])
>>> b
tensor([[-2.1763, -0.4713],
[-0.6986, 1.3702]])
>>> torch.cdist(a, b, p=2)
tensor([[3.1193, 2.0959],
[2.7138, 3.8322],
[2.2830, 0.3791]])
"""
if not torch.jit.is_scripting():
if (type(x1) is not Tensor or type(x2) is not Tensor) and has_torch_function((x1, x2)):
return handle_torch_function(
cdist, (x1, x2), x1, x2, p=p, compute_mode=compute_mode)
if compute_mode == 'use_mm_for_euclid_dist_if_necessary':
return _VF.cdist(x1, x2, p, None)
elif compute_mode == 'use_mm_for_euclid_dist':
return _VF.cdist(x1, x2, p, 1)
elif compute_mode == 'donot_use_mm_for_euclid_dist':
return _VF.cdist(x1, x2, p, 2)
else:
raise ValueError("{} is not a valid value for compute_mode".format(compute_mode))
# TODO: type dim as BroadcastingList when https://github.com/pytorch/pytorch/issues/33782 is fixed
@overload # noqa: 749
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: 749
# type: (Tensor, str, Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor
pass
@overload # noqa: 749
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: 749
# type: (Tensor, Optional[number], Optional[List[int]], bool, Optional[Tensor], Optional[int]) -> Tensor
pass
@overload # noqa: 749
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: 749
# type: (Tensor, Optional[number], Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor
pass
@overload # noqa: 749
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: 749
# type: (Tensor, str, Optional[int], bool, Optional[Tensor], Optional[int]) -> Tensor
pass
def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): # noqa: 749
r"""Returns the matrix norm or vector norm of a given tensor.
Args:
input (Tensor): the input tensor
p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'``
The following norms can be calculated:
===== ============================ ==========================
ord matrix norm vector norm
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm --
'nuc' nuclear norm --
Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int,
vector norm will be calculated, if it is 2-tuple of ints, matrix norm
will be calculated. If the value is None, matrix norm will be calculated
when the input tensor only has two dimensions, vector norm will be
calculated when the input tensor only has one dimension. If the input
tensor has more than two dimensions, the vector norm will be applied to
last dimension.
keepdim (bool, optional): whether the output tensors have :attr:`dim`
retained or not. Ignored if :attr:`dim` = ``None`` and
:attr:`out` = ``None``. Default: ``False``
out (Tensor, optional): the output tensor. Ignored if
:attr:`dim` = ``None`` and :attr:`out` = ``None``.
dtype (:class:`torch.dtype`, optional): the desired data type of
returned tensor. If specified, the input tensor is casted to
:attr:'dtype' while performing the operation. Default: None.
Example::
>>> import torch
>>> a = torch.arange(9, dtype= torch.float) - 4
>>> b = a.reshape((3, 3))
>>> torch.norm(a)
tensor(7.7460)
>>> torch.norm(b)
tensor(7.7460)
>>> torch.norm(a, float('inf'))
tensor(4.)
>>> torch.norm(b, float('inf'))
tensor(4.)
>>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float)
>>> torch.norm(c, dim=0)
tensor([1.4142, 2.2361, 5.0000])
>>> torch.norm(c, dim=1)
tensor([3.7417, 4.2426])
>>> torch.norm(c, p=1, dim=1)
tensor([6., 6.])
>>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2)
>>> torch.norm(d, dim=(1,2))
tensor([ 3.7417, 11.2250])
>>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :])
(tensor(3.7417), tensor(11.2250))
"""
if not torch.jit.is_scripting():
if type(input) is not Tensor and has_torch_function((input,)):
return handle_torch_function(
norm, (input,), input, p=p, dim=dim, keepdim=keepdim, out=out, dtype=dtype)
# py2 considers isinstance(unicodestr, str) == False
if PY2 and isinstance(p, unicode):
p = str(p)
ndim = input.dim()
# catch default case
if dim is None and out is None and dtype is None and p is not None:
if isinstance(p, str):
if p == "fro":
return _VF.frobenius_norm(input)
if not isinstance(p, str):
return _VF.norm(input, p)
# TODO: when https://github.com/pytorch/pytorch/issues/33782 is fixed
# remove the overloads where dim is an int and replace with BraodcastingList1
# and remove next four lines, replace _dim with dim
if dim is not None:
if isinstance(dim, int):
_dim = [dim]
else:
_dim = dim
else:
_dim = None
if isinstance(p, str):
if p == "fro":
if dtype is not None:
raise ValueError("dtype argument is not supported in frobenius norm")
if _dim is None:
_dim = [i for i in range(ndim)] # noqa: C416 TODO: rewrite as list(range(m))
if out is None:
return _VF.frobenius_norm(input, _dim, keepdim=keepdim)
else:
return _VF.frobenius_norm(input, _dim, keepdim=keepdim, out=out)
elif p == "nuc":
if dtype is not None:
raise ValueError("dtype argument is not supported in nuclear norm")
if _dim is None:
if out is None:
return _VF.nuclear_norm(input, keepdim=keepdim)
else:
return _VF.nuclear_norm(input, keepdim=keepdim, out=out)
else:
if out is None:
return _VF.nuclear_norm(input, _dim, keepdim=keepdim)
else:
return _VF.nuclear_norm(input, _dim, keepdim=keepdim, out=out)
raise RuntimeError("only valid string values are 'fro' and 'nuc', found {}".format(p))
else:
if _dim is None:
_dim = [i for i in range(ndim)] # noqa: C416 TODO: rewrite as list(range(m))
if out is None:
if dtype is None:
return _VF.norm(input, p, _dim, keepdim=keepdim)
else:
return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype)
else:
if dtype is None:
return _VF.norm(input, p, _dim, keepdim=keepdim, out=out)
else:
return _VF.norm(input, p, _dim, keepdim=keepdim, dtype=dtype, out=out)
def chain_matmul(*matrices):
r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed
using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms
of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N`
needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned.
If :math:`N` is 1, then this is a no-op - the original matrix is returned as is.
Args:
matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined.
Returns:
Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product
would be of dimensions :math:`p_{1} \times p_{N + 1}`.
Example::
>>> a = torch.randn(3, 4)
>>> b = torch.randn(4, 5)
>>> c = torch.randn(5, 6)
>>> d = torch.randn(6, 7)
>>> torch.chain_matmul(a, b, c, d)
tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614],
[ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163],
[ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
.. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition
"""
if not torch.jit.is_scripting():
if any(type(t) is not Tensor for t in matrices) and has_torch_function(matrices):
return handle_torch_function(chain_matmul, matrices, *matrices)
return _VF.chain_matmul(matrices)
def _lu_impl(A, pivot=True, get_infos=False, out=None):
# type: (Tensor, bool, bool, Any) -> Tuple[Tensor, Tensor, Tensor]
r"""Computes the LU factorization of a matrix or batches of matrices
:attr:`A`. Returns a tuple containing the LU factorization and
pivots of :attr:`A`. Pivoting is done if :attr:`pivot` is set to
``True``.
.. note::
The pivots returned by the function are 1-indexed. If :attr:`pivot` is ``False``,
then the returned pivots is a tensor filled with zeros of the appropriate size.
.. note::
LU factorization with :attr:`pivot` = ``False`` is not available for CPU, and attempting
to do so will throw an error. However, LU factorization with :attr:`pivot` = ``False`` is
available for CUDA.
.. note::
This function does not check if the factorization was successful or not if
:attr:`get_infos` is ``True`` since the status of the factorization is present in the
third element of the return tuple.
.. note::
In the case of batches of square matrices with size less or
equal to 32 on a CUDA device, the LU factorization is repeated
for singular matrices due to the bug in the MAGMA library (see
magma issue 13).
Arguments:
A (Tensor): the tensor to factor of size :math:`(*, m, n)`
pivot (bool, optional): controls whether pivoting is done. Default: ``True``
get_infos (bool, optional): if set to ``True``, returns an info IntTensor.
Default: ``False``
out (tuple, optional): optional output tuple. If :attr:`get_infos` is ``True``,
then the elements in the tuple are Tensor, IntTensor,
and IntTensor. If :attr:`get_infos` is ``False``, then the
elements in the tuple are Tensor, IntTensor. Default: ``None``
Returns:
(Tensor, IntTensor, IntTensor (optional)): A tuple of tensors containing
- **factorization** (*Tensor*): the factorization of size :math:`(*, m, n)`
- **pivots** (*IntTensor*): the pivots of size :math:`(*, m)`
- **infos** (*IntTensor*, *optional*): if :attr:`get_infos` is ``True``, this is a tensor of
size :math:`(*)` where non-zero values indicate whether factorization for the matrix or
each minibatch has succeeded or failed
Example::
>>> A = torch.randn(2, 3, 3)
>>> A_LU, pivots = torch.lu(A)
>>> A_LU
tensor([[[ 1.3506, 2.5558, -0.0816],
[ 0.1684, 1.1551, 0.1940],
[ 0.1193, 0.6189, -0.5497]],
[[ 0.4526, 1.2526, -0.3285],
[-0.7988, 0.7175, -0.9701],
[ 0.2634, -0.9255, -0.3459]]])
>>> pivots
tensor([[ 3, 3, 3],
[ 3, 3, 3]], dtype=torch.int32)
>>> A_LU, pivots, info = torch.lu(A, get_infos=True)
>>> if info.nonzero().size(0) == 0:
... print('LU factorization succeeded for all samples!')
LU factorization succeeded for all samples!
"""
# If get_infos is True, then we don't need to check for errors and vice versa
return torch._lu_with_info(A, pivot=pivot, check_errors=(not get_infos))
def _check_list_size(out_len, get_infos, out):
# type: (int, bool, List[Tensor]) -> None
get_infos_int = 1 if get_infos else 0
if out_len - get_infos_int != 2: