forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark.py
305 lines (251 loc) · 9.91 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python3
#
# Measure distributed training iteration time.
#
# This program performs a sweep over a) a number of model architectures, and
# b) an increasing number of processes. This produces a 1-GPU baseline,
# an 8-GPU baseline (if applicable), as well as measurements for however
# many processes can participate in training.
#
import argparse
import io
import itertools
import json
import os
import shlex
import subprocess
import sys
import time
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
import torchvision
if not torch._six.PY3:
raise RuntimeError("DDP benchmark requires Python 3")
def allgather_object(obj):
buffer = io.BytesIO()
torch.save(obj, buffer)
input_tensor = torch.ByteTensor(list(buffer.getvalue()))
input_length = torch.IntTensor([input_tensor.size(0)])
dist.all_reduce(input_length, op=dist.ReduceOp.MAX)
input_tensor.resize_(input_length[0])
output_tensors = [
torch.empty(input_tensor.size(), dtype=torch.uint8)
for _ in range(dist.get_world_size())
]
dist.all_gather(output_tensors, input_tensor)
output = []
for tensor in output_tensors:
buffer = io.BytesIO(np.asarray(tensor).tobytes())
output.append(torch.load(buffer))
return output
def allgather_run(cmd):
proc = subprocess.run(shlex.split(cmd), capture_output=True)
assert(proc.returncode == 0)
return allgather_object(proc.stdout.decode("utf-8"))
def allequal(iterator):
iterator = iter(iterator)
try:
first = next(iterator)
except StopIteration:
return True
return all(first == rest for rest in iterator)
def benchmark_process_group(pg, benchmark, use_ddp_for_single_rank=True):
torch.manual_seed(pg.rank())
torch.cuda.manual_seed(pg.rank())
model = benchmark.create_model()
data = [(benchmark.generate_inputs(), benchmark.generate_target())]
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
model.parameters(),
0.001,
momentum=0.9,
weight_decay=1e-4)
if use_ddp_for_single_rank or pg.size() > 1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
process_group=pg,
bucket_cap_mb=benchmark.bucket_size)
measurements = []
warmup_iterations = 5
measured_iterations = 10
for (inputs, target) in (data * (warmup_iterations + measured_iterations)):
start = time.time()
output = model(*inputs)
loss = criterion(output, target)
loss.backward()
optimizer.step()
torch.cuda.synchronize()
measurements.append(time.time() - start)
# Throw away measurements for warmup iterations
return measurements[warmup_iterations:]
def run_benchmark(benchmark, ranks, opts):
group = dist.new_group(ranks=ranks, backend=benchmark.distributed_backend)
measurements = []
if dist.get_rank() in set(ranks):
if not opts:
opts = dict()
measurements = benchmark_process_group(group, benchmark, **opts)
dist.destroy_process_group(group)
dist.barrier()
# Aggregate measurements for better estimation of percentiles
return list(itertools.chain(*allgather_object(measurements)))
def sweep(benchmark):
# Synthesize the set of benchmarks to run.
# This list contain tuples for ("string prefix", [rank...]).
benchmarks = []
def append_benchmark(prefix, ranks, opts=None):
prefix = "%4d GPUs -- %s" % (len(ranks), prefix)
benchmarks.append((prefix, ranks, opts))
def local_print(msg):
if dist.get_rank() == 0:
print(msg, end='', flush=True) # noqa: E999
def print_header():
local_print("\n")
local_print("%22s" % "")
for p in [50, 75, 90, 95]:
local_print("%14s%10s" % ("sec/iter", "ex/sec"))
local_print("\n")
def print_measurements(prefix, nelem, measurements):
measurements = sorted(measurements)
local_print("%8s:" % prefix)
for p in [50, 75, 90, 95]:
v = np.percentile(measurements, p)
local_print(" p%02d: %1.3fs %6d/s" % (p, v, nelem / v))
local_print("\n")
# Every process runs once by themselves to warm up (CUDA init, etc).
append_benchmark(" warmup", [dist.get_rank()], {"use_ddp_for_single_rank": False})
# Single machine baselines
append_benchmark(" no ddp", range(1), {"use_ddp_for_single_rank": False})
append_benchmark(" 1M/1G", range(1))
append_benchmark(" 1M/2G", range(2))
append_benchmark(" 1M/4G", range(4))
# Multi-machine benchmarks
for i in range(1, (dist.get_world_size() // 8) + 1):
append_benchmark(" %dM/8G" % i, range(i * 8))
# Run benchmarks in order of increasing number of GPUs
print_header()
results = []
for prefix, ranks, opts in sorted(benchmarks, key=lambda tup: len(tup[1])):
# Turn range into materialized list.
ranks = list(ranks)
measurements = run_benchmark(benchmark, ranks, opts)
if "warmup" not in prefix:
print_measurements(prefix, benchmark.batch_size, measurements)
results.append({"ranks": ranks, "measurements": measurements})
return results
class Benchmark(object):
def __init__(self, device, distributed_backend, bucket_size):
self.device = device
self.batch_size = 32
self.distributed_backend = distributed_backend
self.bucket_size = bucket_size
def __str__(self):
raise NotImplementedError
def create_model(self):
raise NotImplementedError
def generate_inputs(self):
raise NotImplementedError
def generate_target(self):
raise NotImplementedError
class TorchvisionBenchmark(Benchmark):
def __init__(self, device, distributed_backend, bucket_size, model):
super(TorchvisionBenchmark, self).__init__(
device,
distributed_backend,
bucket_size,
)
self.model = model
def __str__(self):
return "{} with batch size {}".format(self.model, self.batch_size)
def create_model(self):
return torchvision.models.__dict__[self.model]().to(self.device)
def generate_inputs(self):
return [torch.rand([self.batch_size, 3, 224, 224], device=self.device)]
def generate_target(self):
return torch.tensor([1] * self.batch_size, dtype=torch.long, device=self.device)
def main():
parser = argparse.ArgumentParser(description='PyTorch distributed benchmark suite')
parser.add_argument("--rank", type=int, default=os.environ["RANK"])
parser.add_argument("--world-size", type=int, required=True)
parser.add_argument("--distributed-backend", type=str, default="nccl")
parser.add_argument("--bucket-size", type=int, default=25)
parser.add_argument("--master-addr", type=str, required=True)
parser.add_argument("--master-port", type=str, required=True)
parser.add_argument("--model", type=str)
parser.add_argument("--json", type=str, metavar="PATH", help="Write file with benchmark results")
args = parser.parse_args()
num_gpus_per_node = torch.cuda.device_count()
assert num_gpus_per_node == 8, "Expected 8 GPUs per machine"
# The global process group used only for communicating benchmark
# metadata, like measurements. Not for benchmarking itself.
dist.init_process_group(
backend="gloo",
init_method="tcp://{}:{}".format(args.master_addr, args.master_port),
rank=args.rank,
world_size=args.world_size,
)
output = allgather_run("nvidia-smi topo -m")
if not allequal(output):
print('Output of "nvidia-smi topo -m" differs between machines')
sys.exit(1)
if args.rank == 0:
print("-----------------------------------")
print("PyTorch distributed benchmark suite")
print("-----------------------------------")
print("")
print("* PyTorch version: {}".format(torch.__version__))
print("* CUDA version: {}".format(torch.version.cuda))
print("* Distributed backend: {}".format(args.distributed_backend))
print("* Maximum bucket size: {}MB".format(args.bucket_size))
print("")
print("--- nvidia-smi topo -m ---")
print("")
print(output[0])
print("--------------------------")
print("")
torch.cuda.set_device(dist.get_rank() % 8)
device = torch.device('cuda:%d' % (dist.get_rank() % 8))
benchmarks = []
if args.model:
benchmarks.append(
TorchvisionBenchmark(
device=device,
distributed_backend=args.distributed_backend,
bucket_size=args.bucket_size,
model=args.model))
else:
for model in ["resnet50", "resnet101", "resnext50_32x4d", "resnext101_32x8d"]:
benchmarks.append(
TorchvisionBenchmark(
device=device,
distributed_backend=args.distributed_backend,
bucket_size=args.bucket_size,
model=model))
benchmark_results = []
for benchmark in benchmarks:
if args.rank == 0:
print("\nBenchmark: {}".format(str(benchmark)))
result = sweep(benchmark)
benchmark_results.append({
"model": benchmark.model,
"batch_size": benchmark.batch_size,
"result": result,
})
# Write file with benchmark results if applicable
if args.rank == 0 and args.json:
report = {
"pytorch_version": torch.__version__,
"cuda_version": torch.version.cuda,
"distributed_backend": args.distributed_backend,
"bucket_size": args.bucket_size,
"benchmark_results": benchmark_results,
}
with open(args.json, 'w') as f:
json.dump(report, f)
if __name__ == '__main__':
main()