-
Notifications
You must be signed in to change notification settings - Fork 446
/
op_executor.py
809 lines (747 loc) · 34.2 KB
/
op_executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import datetime
import json
import logging
import os
import pickle
import random
import zipfile
from concurrent import futures
from io import BytesIO
import grpc
from graphscope.framework import utils
from graphscope.framework.dag_utils import create_graph
from graphscope.framework.dag_utils import create_loader
from graphscope.framework.errors import AnalyticalEngineInternalError
from graphscope.framework.graph_utils import normalize_parameter_edges
from graphscope.framework.graph_utils import normalize_parameter_vertices
from graphscope.framework.loader import Loader
from graphscope.framework.utils import find_java
from graphscope.framework.utils import get_tempdir
from graphscope.framework.utils import normalize_data_type_str
from graphscope.proto import attr_value_pb2
from graphscope.proto import engine_service_pb2_grpc
from graphscope.proto import graph_def_pb2
from graphscope.proto import message_pb2
from graphscope.proto import op_def_pb2
from graphscope.proto import types_pb2
from graphscope.proto.error_codes_pb2 import OK
from gscoordinator.monitor import Monitor
from gscoordinator.object_manager import GraphMeta
from gscoordinator.object_manager import GremlinResultSet
from gscoordinator.object_manager import LibMeta
from gscoordinator.utils import ANALYTICAL_BUILTIN_SPACE
from gscoordinator.utils import ANALYTICAL_ENGINE_JAVA_INIT_CLASS_PATH
from gscoordinator.utils import ANALYTICAL_ENGINE_JAVA_JVM_OPTS
from gscoordinator.utils import GS_GRPC_MAX_MESSAGE_LENGTH
from gscoordinator.utils import INTERACTIVE_ENGINE_THREADS_PER_WORKER
from gscoordinator.utils import RESOURCE_DIR_NAME
from gscoordinator.utils import WORKSPACE
from gscoordinator.utils import compile_app
from gscoordinator.utils import compile_graph_frame
from gscoordinator.utils import create_single_op_dag
from gscoordinator.utils import dump_string
from gscoordinator.utils import get_app_sha256
from gscoordinator.utils import get_graph_sha256
from gscoordinator.utils import get_lib_path
from gscoordinator.utils import op_pre_process
from gscoordinator.utils import to_maxgraph_schema
logger = logging.getLogger("graphscope")
class OperationExecutor:
def __init__(self, session_id: str, launcher, object_manager):
self._session_id = session_id
self._launcher = launcher
self._object_manager = object_manager
self._key_to_op = {}
# dict of op_def_pb2.OpResult
self._op_result_pool = {}
# Analytical engine attributes
# ============================
self._analytical_grpc_stub = None
# java class path should contain
# 1) java runtime path
# 2) uploaded resources, the recent uploaded resource will be placed first.
self._java_class_path = ANALYTICAL_ENGINE_JAVA_INIT_CLASS_PATH
self._jvm_opts = ANALYTICAL_ENGINE_JAVA_JVM_OPTS
# runtime workspace, consisting of some libraries, logs, etc.
self._builtin_workspace = os.path.join(WORKSPACE, "builtin")
# udf app workspace and resource directory should be bound to a specific session when client connect.
self._udf_app_workspace = os.path.join(
WORKSPACE, launcher.instance_id, session_id
)
self._resource_dir = os.path.join(
WORKSPACE, launcher.instance_id, session_id, RESOURCE_DIR_NAME
)
def run_step(self, dag_def, dag_bodies):
def _generate_runstep_request(session_id, dag_def, dag_bodies):
runstep_requests = [
message_pb2.RunStepRequest(
head=message_pb2.RunStepRequestHead(
session_id=session_id, dag_def=dag_def
)
)
]
# head
runstep_requests.extend(dag_bodies)
for item in runstep_requests:
yield item
requests = _generate_runstep_request(self._session_id, dag_def, dag_bodies)
# response
response_head, response_bodies = None, []
try:
responses = self.analytical_grpc_stub.RunStep(requests)
for response in responses:
if response.HasField("head"):
response_head = response
else:
response_bodies.append(response)
return response_head, response_bodies
except grpc.RpcError as e:
if e.code() == grpc.StatusCode.INTERNAL:
# TODO: make the stacktrace separated from normal error messages
# Too verbose.
if len(e.details()) > 3072: # 3k bytes
msg = f"{e.details()[:30]} ... [truncated]"
else:
msg = e.details()
raise AnalyticalEngineInternalError(msg)
else:
raise
def pre_process(self, dag_def, dag_bodies, loader_op_bodies):
for op in dag_def.op:
self._key_to_op[op.key] = op
op_pre_process(
op,
self._op_result_pool,
self._key_to_op,
engine_hosts=self._launcher.hosts,
engine_java_class_path=self._java_class_path, # may be needed in CREATE_GRAPH or RUN_APP
engine_jvm_opts=self._jvm_opts,
)
# Handle op that depends on loader (data source)
if op.op == types_pb2.CREATE_GRAPH or op.op == types_pb2.ADD_LABELS:
for key_of_parent_op in op.parents:
parent_op = self._key_to_op[key_of_parent_op]
if parent_op.op == types_pb2.DATA_SOURCE:
# handle bodies of loader op
if parent_op.key in loader_op_bodies:
dag_bodies.extend(loader_op_bodies[parent_op.key])
# Compile app or not.
if op.op == types_pb2.BIND_APP:
op, _, _ = self._maybe_compile_app(op)
# Compile graph or not
# arrow property graph and project graph need to compile
# If engine crashed, we will get a SocketClosed grpc Exception.
# In that case, we should notify client the engine is dead.
if (
(
op.op == types_pb2.CREATE_GRAPH
and op.attr[types_pb2.GRAPH_TYPE].i == graph_def_pb2.ARROW_PROPERTY
)
or op.op == types_pb2.TRANSFORM_GRAPH
or op.op == types_pb2.PROJECT_TO_SIMPLE
or op.op == types_pb2.ADD_LABELS
):
op = self._maybe_register_graph(op)
return dag_def, dag_bodies
@Monitor.runOnAnalyticalEngine
def run_on_analytical_engine(
self, dag_def, dag_bodies, loader_op_bodies
): # noqa: C901
# preprocess of op before run on analytical engine
dag_def, dag_bodies = self.pre_process(dag_def, dag_bodies, loader_op_bodies)
# generate runstep requests, and run on analytical engine
response_head, response_bodies = self.run_step(dag_def, dag_bodies)
response_head, response_bodies = self.post_process(
response_head, response_bodies
)
return response_head, response_bodies
def post_process(self, response_head, response_bodies):
# handle result from response stream
if response_head is None:
raise AnalyticalEngineInternalError(
"Missing head from the response stream."
)
for op_result in response_head.head.results:
# record result in coordinator, which doesn't contain large data
self._op_result_pool[op_result.key] = op_result
# get the op corresponding to the result
op = self._key_to_op[op_result.key]
# register graph and dump graph schema
if op.op in (
types_pb2.CREATE_GRAPH,
types_pb2.PROJECT_GRAPH,
types_pb2.PROJECT_TO_SIMPLE,
types_pb2.TRANSFORM_GRAPH,
types_pb2.ADD_LABELS,
types_pb2.ADD_COLUMN,
):
schema_path = os.path.join(
get_tempdir(), op_result.graph_def.key + ".json"
)
vy_info = graph_def_pb2.VineyardInfoPb()
op_result.graph_def.extension.Unpack(vy_info)
self._object_manager.put(
op_result.graph_def.key,
GraphMeta(
op_result.graph_def.key,
vy_info.vineyard_id,
op_result.graph_def,
schema_path,
),
)
if op_result.graph_def.graph_type == graph_def_pb2.ARROW_PROPERTY:
dump_string(
to_maxgraph_schema(vy_info.property_schema_json),
schema_path,
)
vy_info.schema_path = schema_path
op_result.graph_def.extension.Pack(vy_info)
# register app
elif op.op == types_pb2.BIND_APP:
_, app_sig, app_lib_path = self._maybe_compile_app(op)
self._object_manager.put(
app_sig,
LibMeta(op_result.result.decode("utf-8"), "app", app_lib_path),
)
# unregister graph
elif op.op == types_pb2.UNLOAD_GRAPH:
self._object_manager.pop(op.attr[types_pb2.GRAPH_NAME].s.decode())
# unregister app
elif op.op == types_pb2.UNLOAD_APP:
self._object_manager.pop(op.attr[types_pb2.APP_NAME].s.decode())
return response_head, response_bodies
# Analytical engine related operations
# ====================================
def _maybe_compile_app(self, op):
app_sig = get_app_sha256(op.attr, self._java_class_path)
# try to get compiled file from GRAPHSCOPE_HOME/precompiled
app_lib_path = get_lib_path(
os.path.join(ANALYTICAL_BUILTIN_SPACE, app_sig), app_sig
)
if not os.path.isfile(app_lib_path):
algo_name = op.attr[types_pb2.APP_ALGO].s.decode("utf-8")
if (
types_pb2.GAR in op.attr
or algo_name.startswith("giraph:")
or algo_name.startswith("java_pie:")
):
space = self._udf_app_workspace
else:
space = self._builtin_workspace
# try to get compiled file from workspace
app_lib_path = get_lib_path(os.path.join(space, app_sig), app_sig)
if not os.path.isfile(app_lib_path):
# compile and distribute
compiled_path = self._compile_lib_and_distribute(
compile_app, app_sig, op
)
if app_lib_path != compiled_path:
msg = f"Computed app library path != compiled path, {app_lib_path} versus {compiled_path}"
raise RuntimeError(msg)
op.attr[types_pb2.APP_LIBRARY_PATH].CopyFrom(
attr_value_pb2.AttrValue(s=app_lib_path.encode("utf-8"))
)
return op, app_sig, app_lib_path
def _maybe_register_graph(self, op):
graph_sig = get_graph_sha256(op.attr)
# try to get compiled file from GRAPHSCOPE_HOME/precompiled/builtin
graph_lib_path = get_lib_path(
os.path.join(ANALYTICAL_BUILTIN_SPACE, graph_sig), graph_sig
)
if not os.path.isfile(graph_lib_path):
space = self._builtin_workspace
# try to get compiled file from workspace
graph_lib_path = get_lib_path(os.path.join(space, graph_sig), graph_sig)
if not os.path.isfile(graph_lib_path):
# compile and distribute
compiled_path = self._compile_lib_and_distribute(
compile_graph_frame, graph_sig, op
)
if graph_lib_path != compiled_path:
raise RuntimeError(
f"Computed graph library path not equal to compiled path, {graph_lib_path} versus {compiled_path}"
)
if graph_sig not in self._object_manager:
dag_def = create_single_op_dag(
types_pb2.REGISTER_GRAPH_TYPE,
config={
types_pb2.GRAPH_LIBRARY_PATH: attr_value_pb2.AttrValue(
s=graph_lib_path.encode("utf-8")
),
types_pb2.TYPE_SIGNATURE: attr_value_pb2.AttrValue(
s=graph_sig.encode("utf-8")
),
types_pb2.GRAPH_TYPE: attr_value_pb2.AttrValue(
i=op.attr[types_pb2.GRAPH_TYPE].i
),
},
)
try:
response_head, _ = self.run_on_analytical_engine(dag_def, [], {})
except grpc.RpcError as e:
logger.error(
"Register graph failed, code: %s, details: %s",
e.code().name,
e.details(),
)
if e.code() == grpc.StatusCode.INTERNAL:
raise AnalyticalEngineInternalError(e.details())
else:
raise
self._object_manager.put(
graph_sig,
LibMeta(
response_head.head.results[0].result,
"graph_frame",
graph_lib_path,
),
)
op.attr[types_pb2.TYPE_SIGNATURE].CopyFrom(
attr_value_pb2.AttrValue(s=graph_sig.encode("utf-8"))
)
return op
def _create_analytical_grpc_stub(self):
options = [
("grpc.max_send_message_length", GS_GRPC_MAX_MESSAGE_LENGTH),
("grpc.max_receive_message_length", GS_GRPC_MAX_MESSAGE_LENGTH),
("grpc.max_metadata_size", GS_GRPC_MAX_MESSAGE_LENGTH),
]
channel = grpc.insecure_channel(
self._launcher.analytical_engine_endpoint, options=options
)
return engine_service_pb2_grpc.EngineServiceStub(channel)
@property
def analytical_grpc_stub(self):
if self._launcher.analytical_engine_endpoint is None:
raise RuntimeError("Analytical engine endpoint not set.")
if self._analytical_grpc_stub is None:
self._analytical_grpc_stub = self._create_analytical_grpc_stub()
return self._analytical_grpc_stub
def get_analytical_engine_config(self) -> {}:
dag_def = create_single_op_dag(types_pb2.GET_ENGINE_CONFIG)
response_head, _ = self.run_on_analytical_engine(dag_def, [], {})
config = json.loads(response_head.head.results[0].result.decode("utf-8"))
config["engine_hosts"] = self._launcher.hosts
# Disable ENABLE_JAVA_SDK when java is not installed on coordinator
if config["enable_java_sdk"] == "ON":
try:
find_java()
except RuntimeError:
logger.warning(
"Disable java sdk support since java is not installed on coordinator"
)
config["enable_java_sdk"] = "OFF"
return config
def _compile_lib_and_distribute(self, compile_func, lib_name, op):
algo_name = op.attr[types_pb2.APP_ALGO].s.decode("utf-8")
if (
types_pb2.GAR in op.attr
or algo_name.startswith("giraph:")
or algo_name.startswith("java_pie:")
):
space = self._udf_app_workspace
else:
space = self._builtin_workspace
app_lib_path, java_jar_path, java_ffi_path, app_type = compile_func(
space,
lib_name,
op.attr,
self.get_analytical_engine_config(),
self._java_class_path,
)
# for java app compilation, we need to distribute the jar and ffi generated
if app_type == "java_pie":
self._launcher.distribute_file(java_jar_path)
self._launcher.distribute_file(java_ffi_path)
self._launcher.distribute_file(app_lib_path)
return app_lib_path
def heart_beat(self, request):
return self.analytical_grpc_stub.HeartBeat(request)
def add_lib(self, request):
os.makedirs(self._resource_dir, exist_ok=True)
fp = BytesIO(request.gar)
with zipfile.ZipFile(fp, "r") as zip_ref:
zip_ref.extractall(self._resource_dir)
logger.info(
"Coordinator received add lib request with file: %s", zip_ref.namelist()
)
if len(zip_ref.namelist()) != 1:
raise RuntimeError("Expect only one resource in one gar")
filename = zip_ref.namelist()[0]
filename = os.path.join(self._resource_dir, filename)
self._launcher.distribute_file(filename)
logger.info("Successfully distributed %s", filename)
if filename.endswith(".jar"):
logger.info("adding lib to java class path since it ends with .jar")
self._java_class_path = filename + ":" + self._java_class_path
logger.info("current java class path: %s", self._java_class_path)
# Interactive engine related operations
# =====================================
@Monitor.runOnInteractiveEngine
def run_on_interactive_engine(self, dag_def: op_def_pb2.DagDef):
response_head = message_pb2.RunStepResponseHead()
for op in dag_def.op:
self._key_to_op[op.key] = op
op_pre_process(op, self._op_result_pool, self._key_to_op)
if op.op == types_pb2.GREMLIN_QUERY:
op_result = self._execute_gremlin_query(op)
elif op.op == types_pb2.FETCH_GREMLIN_RESULT:
op_result = self._fetch_gremlin_result(op)
elif op.op == types_pb2.SUBGRAPH:
op_result = self._gremlin_to_subgraph(op)
else:
raise RuntimeError("Unsupported op type: " + str(op.op))
response_head.results.append(op_result)
# record op result
self._op_result_pool[op.key] = op_result
return message_pb2.RunStepResponse(head=response_head), []
def _execute_gremlin_query(self, op: op_def_pb2.OpDef):
logger.info("execute gremlin query")
message = op.attr[types_pb2.GIE_GREMLIN_QUERY_MESSAGE].s.decode()
request_options = None
if types_pb2.GIE_GREMLIN_REQUEST_OPTIONS in op.attr:
request_options = json.loads(
op.attr[types_pb2.GIE_GREMLIN_REQUEST_OPTIONS].s.decode()
)
object_id = op.attr[types_pb2.VINEYARD_ID].i
gremlin_client = self._object_manager.get(object_id)
rlt = gremlin_client.submit(message, request_options=request_options)
logger.info("put %s, client %s", op.key, gremlin_client)
self._object_manager.put(op.key, GremlinResultSet(op.key, rlt))
return op_def_pb2.OpResult(code=OK, key=op.key)
def _fetch_gremlin_result(self, op: op_def_pb2.OpDef):
fetch_result_type = op.attr[types_pb2.GIE_GREMLIN_FETCH_RESULT_TYPE].s.decode()
key_of_parent_op = op.parents[0]
result_set = self._object_manager.get(key_of_parent_op).result_set
if fetch_result_type == "one":
rlt = result_set.one()
elif fetch_result_type == "all":
rlt = result_set.all().result()
else:
raise RuntimeError("Not supported fetch result type: " + fetch_result_type)
# Large data should be fetched use gremlin pagination
# meta = op_def_pb2.OpResult.Meta(has_large_result=True)
return op_def_pb2.OpResult(
code=OK,
key=op.key,
result=pickle.dumps(rlt),
)
def _gremlin_to_subgraph(self, op: op_def_pb2.OpDef):
gremlin_script = op.attr[types_pb2.GIE_GREMLIN_QUERY_MESSAGE].s.decode()
oid_type = op.attr[types_pb2.OID_TYPE].s.decode()
request_options = None
if types_pb2.GIE_GREMLIN_REQUEST_OPTIONS in op.attr:
request_options = json.loads(
op.attr[types_pb2.GIE_GREMLIN_REQUEST_OPTIONS].s.decode()
)
object_id = op.attr[types_pb2.VINEYARD_ID].i
gremlin_client = self._object_manager.get(object_id)
def create_global_graph_builder(
graph_name, num_workers, threads_per_executor, vineyard_rpc_endpoint
):
import vineyard
vineyard_client = vineyard.connect(*vineyard_rpc_endpoint.split(":"))
instances = [key for key in vineyard_client.meta]
# duplicate each instances for each thread per worker.
chunk_instances = [
key for key in instances for _ in range(threads_per_executor)
]
# build the vineyard::GlobalPGStream
metadata = vineyard.ObjectMeta()
metadata.set_global(True)
metadata["typename"] = "vineyard::htap::GlobalPGStream"
metadata["local_stream_chunks"] = threads_per_executor
metadata["total_stream_chunks"] = len(chunk_instances)
# build the parallel stream for edge
edge_metadata = vineyard.ObjectMeta()
edge_metadata.set_global(True)
edge_metadata["typename"] = "vineyard::ParallelStream"
edge_metadata["__streams_-size"] = len(chunk_instances)
# build the parallel stream for vertex
vertex_metadata = vineyard.ObjectMeta()
vertex_metadata.set_global(True)
vertex_metadata["typename"] = "vineyard::ParallelStream"
vertex_metadata["__streams_-size"] = len(chunk_instances)
# NB: we don't respect `num_workers`, instead, we create a substream
# on each vineyard instance.
#
# Such a choice is to handle cases where that etcd instance still contains
# information about dead instances.
#
# It should be ok, as each engine work will get its own local stream. But,
# generally it should be equal to `num_workers`.
for worker, instance_id in enumerate(chunk_instances):
edge_stream = vineyard.ObjectMeta()
edge_stream["typename"] = "vineyard::RecordBatchStream"
edge_stream["nbytes"] = 0
edge_stream["params_"] = json.dumps(
{
"graph_name": graph_name,
"kind": "edge",
}
)
edge = vineyard_client.create_metadata(edge_stream, instance_id)
vineyard_client.persist(edge.id)
edge_metadata.add_member("__streams_-%d" % worker, edge)
vertex_stream = vineyard.ObjectMeta()
vertex_stream["typename"] = "vineyard::RecordBatchStream"
vertex_stream["nbytes"] = 0
vertex_stream["params_"] = json.dumps(
{
"graph_name": graph_name,
"kind": "vertex",
}
)
vertex = vineyard_client.create_metadata(vertex_stream, instance_id)
vineyard_client.persist(vertex.id)
vertex_metadata.add_member("__streams_-%d" % worker, vertex)
chunk_stream = vineyard.ObjectMeta()
chunk_stream["typename"] = "vineyard::htap::PropertyGraphOutStream"
chunk_stream["graph_name"] = graph_name
chunk_stream["graph_schema"] = "{}"
chunk_stream["nbytes"] = 0
chunk_stream["stream_index"] = worker
chunk_stream.add_member("edge_stream", edge)
chunk_stream.add_member("vertex_stream", vertex)
chunk = vineyard_client.create_metadata(chunk_stream, instance_id)
vineyard_client.persist(chunk.id)
metadata.add_member("stream_chunk_%d" % worker, chunk)
# build the vineyard::GlobalPGStream
graph = vineyard_client.create_metadata(metadata)
vineyard_client.persist(graph.id)
vineyard_client.put_name(graph.id, graph_name)
# build the parallel stream for edge
edge = vineyard_client.create_metadata(edge_metadata)
vineyard_client.persist(edge.id)
vineyard_client.put_name(edge.id, "__%s_edge_stream" % graph_name)
# build the parallel stream for vertex
vertex = vineyard_client.create_metadata(vertex_metadata)
vineyard_client.persist(vertex.id)
vineyard_client.put_name(vertex.id, "__%s_vertex_stream" % graph_name)
return repr(graph.id), repr(edge.id), repr(vertex.id)
def load_subgraph(
graph_name,
total_builder_chunks,
oid_type,
edge_stream_id,
vertex_stream_id,
vineyard_rpc_endpoint,
):
import vineyard
# wait all flags been created, see also
#
# `PropertyGraphOutStream::Initialize(Schema schema)`
vineyard_client = vineyard.connect(*vineyard_rpc_endpoint.split(":"))
# wait for all stream been created by GAIA executor in FFI
for worker in range(total_builder_chunks):
name = "__%s_%d_streamed" % (graph_name, worker)
vineyard_client.get_name(name, wait=True)
vertices = [Loader(vineyard.ObjectID(vertex_stream_id))]
edges = [Loader(vineyard.ObjectID(edge_stream_id))]
oid_type = normalize_data_type_str(oid_type)
v_labels = normalize_parameter_vertices(vertices, oid_type)
e_labels = normalize_parameter_edges(edges, oid_type)
loader_op = create_loader(v_labels + e_labels)
config = {
types_pb2.DIRECTED: utils.b_to_attr(True),
types_pb2.OID_TYPE: utils.s_to_attr(oid_type),
types_pb2.GENERATE_EID: utils.b_to_attr(False),
types_pb2.VID_TYPE: utils.s_to_attr("uint64_t"),
types_pb2.IS_FROM_VINEYARD_ID: utils.b_to_attr(False),
}
new_op = create_graph(
self._session_id,
graph_def_pb2.ARROW_PROPERTY,
inputs=[loader_op],
attrs=config,
)
# spawn a vineyard stream loader on coordinator
loader_op_def = loader_op.as_op_def()
coordinator_dag = op_def_pb2.DagDef()
coordinator_dag.op.extend([loader_op_def])
# set the same key from subgraph to new op
new_op_def = new_op.as_op_def()
new_op_def.key = op.key
dag = op_def_pb2.DagDef()
dag.op.extend([new_op_def])
self.run_on_coordinator(coordinator_dag, [], {})
response_head, _ = self.run_on_analytical_engine(dag, [], {})
logger.info("subgraph has been loaded")
return response_head.head.results[-1]
# generate a random graph name
now_time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
random_num = random.randint(0, 10000000)
graph_name = "subgraph-%s-%s" % (str(now_time), str(random_num))
threads_per_worker = int(
os.environ.get("THREADS_PER_WORKER", INTERACTIVE_ENGINE_THREADS_PER_WORKER)
)
if self._launcher.type() == types_pb2.HOSTS:
# only 1 GIE executor on local cluster
executor_workers_num = 1
threads_per_executor = self._launcher.num_workers * threads_per_worker
else:
executor_workers_num = self._launcher.num_workers
threads_per_executor = threads_per_worker
total_builder_chunks = executor_workers_num * threads_per_executor
engine_config = self.get_analytical_engine_config()
vineyard_rpc_endpoint = engine_config["vineyard_rpc_endpoint"]
(
_graph_builder_id,
edge_stream_id,
vertex_stream_id,
) = create_global_graph_builder(
graph_name,
executor_workers_num,
threads_per_executor,
vineyard_rpc_endpoint,
)
# start a thread to launch the graph
pool = futures.ThreadPoolExecutor()
subgraph_task = pool.submit(
load_subgraph,
graph_name,
total_builder_chunks,
oid_type,
edge_stream_id,
vertex_stream_id,
vineyard_rpc_endpoint,
)
# add subgraph vertices and edges
subgraph_script = "{0}.subgraph('{1}')".format(
gremlin_script,
graph_name,
)
gremlin_client.submit(
subgraph_script, request_options=request_options
).all().result()
return subgraph_task.result()
# Learning engine related operations
# ==================================
def run_on_learning_engine(self, dag_def: op_def_pb2.DagDef):
raise NotImplementedError("Learning engine is not implemented yet")
# Coordinator related operations
# ==============================
def run_on_coordinator(self, dag_def, dag_bodies, loader_op_bodies):
response_head = message_pb2.RunStepResponseHead()
for op in dag_def.op:
self._key_to_op[op.key] = op
op_pre_process(op, self._op_result_pool, self._key_to_op)
if op.op == types_pb2.DATA_SOURCE:
op_result = self._process_data_source(op, dag_bodies, loader_op_bodies)
elif op.op == types_pb2.DATA_SINK:
op_result = self._process_data_sink(op)
else:
raise RuntimeError("Unsupported op type: " + str(op.op))
response_head.results.append(op_result)
self._op_result_pool[op.key] = op_result
return message_pb2.RunStepResponse(head=response_head), []
def _process_data_sink(self, op: op_def_pb2.OpDef):
import vineyard
import vineyard.io
storage_options = json.loads(op.attr[types_pb2.STORAGE_OPTIONS].s.decode())
fd = op.attr[types_pb2.FD].s.decode()
df = op.attr[types_pb2.VINEYARD_ID].s.decode()
engine_config = self.get_analytical_engine_config()
vineyard_endpoint = engine_config["vineyard_rpc_endpoint"]
vineyard_ipc_socket = engine_config["vineyard_socket"]
deployment, hosts = self._launcher.get_vineyard_stream_info()
dfstream = vineyard.io.open(
"vineyard://" + str(df),
mode="r",
vineyard_ipc_socket=vineyard_ipc_socket,
vineyard_endpoint=vineyard_endpoint,
deployment=deployment,
hosts=hosts,
)
vineyard.io.open(
fd,
dfstream,
mode="w",
vineyard_ipc_socket=vineyard_ipc_socket,
vineyard_endpoint=vineyard_endpoint,
storage_options=storage_options,
deployment=deployment,
hosts=hosts,
)
return op_def_pb2.OpResult(code=OK, key=op.key)
def _process_data_source(
self, op: op_def_pb2.OpDef, dag_bodies, loader_op_bodies: dict
):
def _spawn_vineyard_io_stream(
source,
storage_options,
read_options,
vineyard_endpoint,
vineyard_ipc_socket,
):
import vineyard
import vineyard.io
deployment, hosts = self._launcher.get_vineyard_stream_info()
num_workers = self._launcher.num_workers
stream_id = repr(
vineyard.io.open(
source,
mode="r",
vineyard_endpoint=vineyard_endpoint,
vineyard_ipc_socket=vineyard_ipc_socket,
hosts=hosts,
num_workers=num_workers,
deployment=deployment,
read_options=read_options,
storage_options=storage_options,
)
)
return "vineyard", stream_id
def _process_loader_func(loader, vineyard_endpoint, vineyard_ipc_socket):
# loader is type of attr_value_pb2.Chunk
protocol = loader.attr[types_pb2.PROTOCOL].s.decode()
source = loader.attr[types_pb2.SOURCE].s.decode()
if (
protocol in ("hdfs", "hive", "oss", "s3")
or protocol == "file"
and (
source.endswith(".orc")
or source.endswith(".parquet")
or source.endswith(".pq")
)
):
storage_options = json.loads(
loader.attr[types_pb2.STORAGE_OPTIONS].s.decode()
)
read_options = json.loads(
loader.attr[types_pb2.READ_OPTIONS].s.decode()
)
new_protocol, new_source = _spawn_vineyard_io_stream(
source,
storage_options,
read_options,
vineyard_endpoint,
vineyard_ipc_socket,
)
logger.debug(
"new_protocol = %s, new_source = %s", new_protocol, new_source
)
loader.attr[types_pb2.PROTOCOL].CopyFrom(utils.s_to_attr(new_protocol))
loader.attr[types_pb2.SOURCE].CopyFrom(utils.s_to_attr(new_source))
engine_config = self.get_analytical_engine_config()
vineyard_endpoint = engine_config["vineyard_rpc_endpoint"]
vineyard_ipc_socket = engine_config["vineyard_socket"]
for loader in op.large_attr.chunk_meta_list.items:
# handle vertex or edge loader
if loader.attr[types_pb2.CHUNK_TYPE].s.decode() == "loader":
# set op bodies, this is for loading graph from numpy/pandas
op_bodies = []
for bodies in dag_bodies:
if bodies.body.op_key == op.key:
op_bodies.append(bodies)
loader_op_bodies[op.key] = op_bodies
try:
_process_loader_func(loader, vineyard_endpoint, vineyard_ipc_socket)
except: # noqa: E722
logger.exception(
"Failed to process loader function for %s:%s",
loader.attr[types_pb2.PROTOCOL].s.decode(),
loader.attr[types_pb2.SOURCE].s.decode(),
)
raise
return op_def_pb2.OpResult(code=OK, key=op.key)