You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "/home/litong/workspace/MyDev/Megatron-LLaMA/pretrain_llama.py", line 151, in <module>
pretrain(train_valid_test_datasets_provider, model_provider,
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/training.py", line 153, in pretrain
iteration = train(forward_step_func,
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/training.py", line 711, in train
train_step(forward_step_func,
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/training.py", line 426, in train_step
losses_reduced = forward_backward_func(
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/core/pipeline_parallel/schedules.py", line 363, in forward_backward_no_pipelining
output_tensor = forward_step(forward_step_func, data_iterator,
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/core/pipeline_parallel/schedules.py", line 218, in forward_step
output_tensor, loss_func = forward_step_func(data_iterator, model)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/pretrain_llama.py", line 93, in forward_step
output_tensor = model(tokens, position_ids, attention_mask,
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/distributed.py", line 58, in forward
return self.module(*inputs, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/module.py", line 183, in forward
outputs = self.module(*inputs, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/llama_model.py", line 114, in forward
lm_output = self.language_model(
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/language_model.py", line 520, in forward
encoder_output = self.encoder(
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/transformer.py", line 1303, in forward
hidden_states = layer(
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/transformer.py", line 789, in forward
layernorm_output = self.input_layernorm(hidden_states)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1568, in _call_impl
result = forward_call(*args, **kwargs)
File "/home/litong/workspace/MyDev/Megatron-LLaMA/megatron/model/fused_layer_norm.py", line 90, in forward
return FusedRMSNormAffineFunction.apply(input, weight, self.normalized_shape, self.eps)
File "/home/litong/.conda/envs/megatron-llama/lib/python3.9/site-packages/torch/autograd/function.py", line 539, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
TypeError: forward() missing 1 required positional argument: 'memory_efficient'
The text was updated successfully, but these errors were encountered:
您好,运行训练的script 出来以下问题,请问是哪里有问题呢?
The text was updated successfully, but these errors were encountered: