-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
59 lines (48 loc) · 2.31 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.nn as nn
import torchvision.models as models
from torch.nn.utils.rnn import pack_padded_sequence
class EncoderCNN(nn.Module):
def __init__(self, embed_size):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-1]
self.resnet = nn.Sequential(*modules)
self.embed = nn.Linear(resnet.fc.in_features, embed_size)
def forward(self, images):
features = self.resnet(images)
features = features.view(features.size(0), -1)
features = self.embed(features)
return features
class DecoderRNN(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, dropout=0.3, num_layers=2):
super(DecoderRNN, self).__init__()
self.hidden_dim = hidden_size
self.embed = nn.Embedding(vocab_size, embed_size)
self.dropout = dropout
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True, dropout=dropout)
self.linear = nn.Linear(hidden_size, vocab_size)
self.dropout_layer = nn.Dropout(p=dropout)
self.hidden = (torch.zeros(1, 1, hidden_size),torch.zeros(1, 1, hidden_size))
def forward(self, features, captions):
"""Decode image feature vectors and generates captions."""
embeddings = self.embed(captions[:,:-1])
embeddings = torch.cat((features.unsqueeze(1), embeddings), 1)
print(embeddings.shape)
lstm_out, self.hidden = self.lstm(embeddings)
outputs = self.linear(lstm_out)
print(outputs.shape)
return outputs
def sample(self, inputs,states=None, max_seg_len=20):
" accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) "
sampled_ids = []
for i in range(max_seg_len):
hiddens, states = self.lstm(inputs, states)
outputs = self.linear(hiddens.squeeze(1))
_, predicted = outputs.max(1)
sampled_ids.append(predicted.item())
inputs = self.embed(predicted)
inputs = inputs.unsqueeze(1)
return sampled_ids