forked from stevenwudi/3DCNN_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Step2_3DCNN_Predict.py
670 lines (627 loc) · 25.2 KB
/
Step2_3DCNN_Predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
#-------------------------------------------------------------------------------
# Name: Starting Kit for ChaLearn LAP 2014 Track3
# Purpose: Show basic functionality of provided code
#
# Author: Xavier Baro
# Author: Di Wu: stevenwudi@gmail.com
# Created: 24/03/2014
# Copyright: (c) Chalearn LAP 2014
# Licence: GPL3
#-------------------------------------------------------------------------------
import sys, os,random,numpy,zipfile
from shutil import copyfile
import matplotlib.pyplot as plt
import cv2
import time
import cPickle
import numpy
import pickle
import scipy.io as sio
from scipy.misc import imresize
from numpy import log
####################################
##################load CNN here######
sys.path.append(r'I:\Kaggle_multimodal\StartingKit_track3\Final_project\ConvNet_3DCNN')
from utils import viterbi_path, viterbi_path_log
from utils import viterbi_colab_clean
from utils import createSubmisionFile
from utils import imdisplay
from ChalearnLAPEvaluation import evalGesture,exportGT_Gesture
from ChalearnLAPSample import GestureSample
from shownet_codalab import ShowConvNet
""" Main script. Show how to perform all competition steps
Access the sample information to learn a model. """
# Data folder (Training data)
print("Extracting the training files")
data_path=os.path.join("I:\Kaggle_multimodal\Training\\")
# Get the list of training samples
samples=os.listdir(data_path)
STATE_NO = 10
##################################
### load the pre-store normalization constant
## Load Prior and transitional Matrix
dic=sio.loadmat('Transition_matrix.mat')
Transition_matrix = dic['Transition_matrix']
Prior = dic['Prior']
outPred='./ConvNet_3DCNN/training/pred/'
####################################
##################load CNN here######
import getopt as opt
from gpumodel import IGPUModel
from options import *
op = ShowConvNet.get_options_parser()
#op.options['load_file'].value=r'I:\Kaggle_multimodal\Code_for_submission\Final_project\ConvNet_3DCNN\tmp\ConvNet__2014-05-28_01.59.00'
op.options['load_file'].value=r'I:\Kaggle_multimodal\Code_for_submission\Final_project\ConvNet_3DCNN\tmp\ConvNet__2014-06-18_01.39.52'
Flag_multiview = 0
#op.options['test_batch_range'].value=1
op.options['write_features'].value ='probs'
load_dic = IGPUModel.load_checkpoint(op.options["load_file"].value)
old_op = load_dic["op"]
old_op.merge_from(op)
op = old_op
op.eval_expr_defaults()
#op, load_dic = IGPUModel.parse_options(op)
op.options['train_batch_range'].value=[1]
op.options['test_batch_range'].value=[1]
op.options['data_path'].value=r'.\ConvNet_3DCNN\storage'
model = ShowConvNet(op, load_dic)
meta = pickle.load(open(r'.\ConvNet_3DCNN\storage\batches.meta'))
data_mean = meta['data_mean']
###############################
# load prestore template
ref_depth = numpy.load('distance_median.npy')
template = cv2.imread('template.png')
template = numpy.mean(template, axis=2)
template /= template.max()
# pre-allocating the memory
IM_SZ = 90
debug_show = True
for file_count, file in enumerate(samples):
if not file_count<650:
time_tic = time.time()
print("\t Processing file " + file)
# Create the object to access the sample
smp=GestureSample(os.path.join(data_path,file))
# ###############################################
# USE Ground Truth information to learn the model
# ###############################################
# Get the list of actions for this frame
total_frame = smp.getNumFrames()
##################################################
# obtain the shift and scaling according to
shift, scale = smp.get_shift_scale(template, ref_depth, start_frame=total_frame-20, end_frame=total_frame-10, debug_show=False)
if numpy.isnan(scale):
scale = 1.0
cuboid = numpy.zeros((IM_SZ, IM_SZ, total_frame), numpy.uint8)
frame_count_temp = 0
for x in range(1, smp.getNumFrames()):
### If we do it on a frame basis, it will be very expensive
#print "frame is "+str(x)
#shift, scale, depth_user = smp.get_shift_scale(template, ref_depth, start_frame=x, end_frame=x+1)
#if numpy.isnan(scale):
# scale = 1.0
# depth_user_normalized = numpy.zeros(shape=(480,640))
depth_original = smp.getDepth(x)
mask = numpy.mean(smp.getUser(x), axis=2) > 150
depth_user = depth_original * mask
if mask.sum() < 1000:
depth_user_normalized = numpy.zeros(shape=(480,640))
else:
depth_user_normalized = depth_user * 1.0 / float(smp.data['maxDepth'])
depth_user_normalized = depth_user_normalized *255 /depth_user_normalized.max()
rows,cols = depth_user_normalized.shape
M = numpy.float32([[1,0, shift[1]],[0,1, shift[0]]])
affine_image = cv2.warpAffine(depth_user_normalized, M,(cols, rows))
resize_image = imresize(affine_image, scale)
resize_image_median = cv2.medianBlur(resize_image,5)
rows, cols = resize_image_median.shape
image_crop = resize_image_median[rows/2-160:rows/2+160, cols/2-160:cols/2+160]
cuboid[:, :, frame_count_temp] = imresize(image_crop, (IM_SZ,IM_SZ))
frame_count_temp +=1
if False: # show the segmented images here
print x
startY, startX = numpy.random.randint(0,4*2 + 1),numpy.random.randint(0,4*2 + 1)
endY, endX = startY + 82, startX + 82
pic = cuboid[startY:endY,startX:endX, frame_count_temp-1]
cv2.imshow('image', pic)
cv2.waitKey(1)
Feature_all = numpy.zeros(( IM_SZ, IM_SZ, 4, cuboid.shape[-1]-3), numpy.uint8)
for frame in range(cuboid.shape[-1]-3):
Feature_all[:,:,:,frame] = cuboid[:,:, frame:frame+4]
### now the crucial part to write feature here###########
data = numpy.array(Feature_all, dtype=numpy.single)
#(data dimensionality)x(number of cases). !!!!!!!!!!!!!!
data = numpy.transpose(data, (2,0,1,3))
data = numpy.reshape(data, (4*90*90, data.shape[-1]))
data = numpy.array(data - data_mean[:,numpy.newaxis], dtype=numpy.single)
if Flag_multiview:#self.multiview:
data = data.reshape((4,90,90, data.shape[-1]))
target = numpy.zeros((4*82*82, data.shape[-1]*5), dtype=numpy.single)
border_size = 4
start_positions = [(0,0), (0, border_size*2),
(border_size, border_size),
(border_size*2, 0), (border_size*2, border_size*2)]
end_positions = [(sy+82, sx+82) for (sy,sx) in start_positions]
for i in xrange(5):
pic = data[:,start_positions[i][0]:end_positions[i][0],start_positions[i][1]:end_positions[i][1],:]
target[:,i * data.shape[-1]:(i+1)* data.shape[-1]] = pic.reshape((4*82*82, data.shape[-1]))
data = numpy.require(target, dtype=numpy.single)
ftrs = model.do_write_features(data)
##########################
# viterbi path decoding
#####################
if Flag_multiview:
accumulate_prob = numpy.zeros((ftrs.shape[0]/5, ftrs.shape[1]))
for i in range(5):
accumulate_prob += ftrs[i*ftrs.shape[0]/5:(i+1)*ftrs.shape[0]/5,:]
accumulate_prob = accumulate_prob/5
log_observ_likelihood = log(accumulate_prob.T)
else:
log_observ_likelihood = log(ftrs.T)
log_observ_likelihood[-1, 0:5] = 0
log_observ_likelihood[-1, -5:] = 0
print("\t Viterbi path decoding " )
# do it in log space avoid numeric underflow
[path, predecessor_state_index, global_score] = viterbi_path_log(log(Prior), log(Transition_matrix), log_observ_likelihood)
#[path, predecessor_state_index, global_score] = viterbi_path(Prior, Transition_matrix, observ_likelihood)
# Some gestures are not within the vocabulary
[pred_label, begin_frame, end_frame, Individual_score, frame_length] = viterbi_colab_clean(path, global_score, threshold=-100, mini_frame=19)
#begin_frame = begin_frame + 1
end_frame = end_frame + 5 # note here 3DCNN should add 5 frames because we used 4 frames
### plot the path and prediction
if True:
im = imdisplay(global_score)
plt.clf()
plt.imshow(im, cmap='gray')
plt.plot(range(global_score.shape[-1]), path, color='c',linewidth=2.0)
plt.xlim((0, global_score.shape[-1]))
# plot ground truth
gesturesList=smp.getGestures()
for gesture in gesturesList:
# Get the gesture ID, and start and end frames for the gesture
gestureID,startFrame,endFrame=gesture
frames_count = numpy.array(range(startFrame, endFrame+1))
pred_label_temp = ((gestureID-1) *10 +5) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='r', linewidth=5.0)
# plot clean path
for i in range(len(begin_frame)):
frames_count = numpy.array(range(begin_frame[i], end_frame[i]+1))
pred_label_temp = ((pred_label[i]-1) *10 +5) * numpy.ones(len(frames_count))
plt.plot(frames_count, pred_label_temp, color='#ffff00', linewidth=2.0)
from pylab import *
if True:
save_dir=r'.\training\Depth_path'
save_path= os.path.join(save_dir,file)
savefig(save_path, bbox_inches='tight')
else:
plt.show()
### save the result
print "Elapsed time %d sec" % int(time.time() - time_tic)
save_dir=r'.\training\Depth'
save_path= os.path.join(save_dir,file)
out_file = open(save_path, 'wb')
dic = {'log_observ_likelihood':log_observ_likelihood}
cPickle.dump(dic, out_file, protocol=cPickle.HIGHEST_PROTOCOL)
out_file.close()
pred=[]
for i in range(len(begin_frame)):
pred.append([ pred_label[i], begin_frame[i], end_frame[i]] )
smp.exportPredictions(pred,outPred)
# ###############################################
## delete the sample
del smp
TruthDir='./training/gt/'
final_score = evalGesture(outPred,TruthDir)
print("The score for this prediction is " + "{:.12f}".format(final_score))
# Submision folder (output)
outSubmision='./training/submision/'
# Prepare submision file (only for validation and final evaluation data sets)
createSubmisionFile(outPred, outSubmision)
#The score for this prediction is 0.637848231042 -3DCNN ConvNet__2014-05-28_01.59.00
#Sample ID: Sample0651, score 0.699171
#Sample ID: Sample0652, score 0.707909
#Sample ID: Sample0653, score 0.915447
#Sample ID: Sample0654, score 0.566418
#Sample ID: Sample0655, score 0.756774
#Sample ID: Sample0656, score 0.698210
#Sample ID: Sample0657, score 0.802261
#Sample ID: Sample0658, score 0.707345
#Sample ID: Sample0659, score 0.684510
#Sample ID: Sample0660, score 0.513607
#Sample ID: Sample0661, score 0.799875
#Sample ID: Sample0662, score 0.392395
#Sample ID: Sample0663, score 0.891096
#Sample ID: Sample0664, score 0.943837
#Sample ID: Sample0665, score 0.403225
#Sample ID: Sample0666, score 0.529919
#Sample ID: Sample0667, score 0.587213
#Sample ID: Sample0668, score 0.767841
#Sample ID: Sample0669, score 0.863379
#Sample ID: Sample0670, score 0.538094
#Sample ID: Sample0671, score 0.201223-------------------
#Sample ID: Sample0672, score 0.348593
#Sample ID: Sample0673, score 0.400181
#Sample ID: Sample0674, score 0.602465
#Sample ID: Sample0675, score 0.092397-----------------------
#Sample ID: Sample0676, score 0.728147
#Sample ID: Sample0677, score 0.558078
#Sample ID: Sample0678, score 0.772195
#Sample ID: Sample0679, score 0.863033
#Sample ID: Sample0680, score 0.620209
#Sample ID: Sample0681, score 0.310052
#Sample ID: Sample0682, score 0.872131
#Sample ID: Sample0683, score 0.598099
#Sample ID: Sample0684, score 0.657778
#Sample ID: Sample0685, score 0.511750
#Sample ID: Sample0686, score 0.713403
#Sample ID: Sample0687, score 0.358252
#Sample ID: Sample0688, score 0.764004
#Sample ID: Sample0689, score 0.849279
#Sample ID: Sample0690, score 0.621822
#Sample ID: Sample0691, score 0.883785
#Sample ID: Sample0692, score 0.190132----------------------
#Sample ID: Sample0693, score 0.779292
#Sample ID: Sample0694, score 0.754025
#Sample ID: Sample0695, score 0.551357
#Sample ID: Sample0696, score 0.258955---------------------
#Sample ID: Sample0697, score 0.801815
#Sample ID: Sample0698, score 0.860441
#Sample ID: Sample0699, score 0.241819-----------------------
#Sample ID: Sample0700, score 0.777985
#The score for this prediction is 0.626224524197
######################################################
######CONVNET - ConvNet__2014-05-26_03.40.18
#Extracting the training files
#=========================
#Importing pyconvnet C++ module
# Processing file Sample0651
#[x, y, shift, distance, scaling]
#[160, 312, [80, 8], 2578.5999999999999, 1.3282913414303703]
# Processing file Sample0652
#[x, y, shift, distance, scaling]
#[259, 344, [-19, -24], 2136.0, 1.1002987300454785]
# Viterbi path decoding
#Elapsed time 132 sec
# Processing file Sample0653
#[x, y, shift, distance, scaling]
#[214, 335, [26, -15], 1911.0, 0.98439647617832848]
# Viterbi path decoding
#Elapsed time 120 sec
# Processing file Sample0654
#[x, y, shift, distance, scaling]
#[190, 335, [50, -15], 2786.0, 1.435127463439468]
# Viterbi path decoding
#Elapsed time 196 sec
# Processing file Sample0655
#[x, y, shift, distance, scaling]
#[204, 309, [36, 11], 2473.0, 1.2738945502820544]
# Viterbi path decoding
#Elapsed time 164 sec
# Processing file Sample0656
#[x, y, shift, distance, scaling]
#[211, 315, [29, 5], 1840.5999999999999, 0.94813194874611784]
# Viterbi path decoding
#Elapsed time 120 sec
# Processing file Sample0657
#[x, y, shift, distance, scaling]
#[223, 304, [17, 16], 1802.2, 0.92835129741945766]
# Viterbi path decoding
#Elapsed time 125 sec
# Processing file Sample0658
#[x, y, shift, distance, scaling]
#[188, 342, [52, -22], 2066.8000000000002, 1.0646523479672263]
# Viterbi path decoding
#Elapsed time 115 sec
# Processing file Sample0659
#[x, y, shift, distance, scaling]
#[226, 324, [14, -4], 2171.9000000000001, 1.1187915785513929]
# Viterbi path decoding
#Elapsed time 135 sec
# Processing file Sample0660
#[x, y, shift, distance, scaling]
#[192, 307, [48, 13], 2852.0, 1.4691254579071653]
# Viterbi path decoding
#Elapsed time 193 sec
# Processing file Sample0661
#[x, y, shift, distance, scaling]
#[218, 321, [22, -1], 1745.3, 0.89904090521927604]
# Viterbi path decoding
#Elapsed time 136 sec
# Processing file Sample0662
#[x, y, shift, distance, scaling]
#[194, 314, [46, 6], 2907.0, 1.4974571199635798]
# Viterbi path decoding
#Elapsed time 198 sec
# Processing file Sample0663
#[x, y, shift, distance, scaling]
#[235, 317, [5, 3], 1943.0, 1.0008803522838787]
# Viterbi path decoding
#Elapsed time 116 sec
# Processing file Sample0664
#[x, y, shift, distance, scaling]
#[218, 355, [22, -35], 2139.3000000000002, 1.1019986297688635]
# Viterbi path decoding
#Elapsed time 122 sec
# Processing file Sample0665
#[x, y, shift, distance, scaling]
#[198, 342, [42, -22], 3012.5999999999999, 1.5518539111118954]
# Viterbi path decoding
#Elapsed time 210 sec
# Processing file Sample0666
#[x, y, shift, distance, scaling]
#[169, 305, [71, 15], 2216.0, 1.1415084203093542]
# Viterbi path decoding
#Elapsed time 142 sec
# Processing file Sample0667
#[x, y, shift, distance, scaling]
#[198, 342, [42, -22], 3051.0, 1.5716345624385557]
# Viterbi path decoding
#Elapsed time 222 sec
# Processing file Sample0668
#[x, y, shift, distance, scaling]
#[201, 305, [39, 15], 2545.0, 1.3109832715195426]
# Viterbi path decoding
#Elapsed time 189 sec
# Processing file Sample0669
#[x, y, shift, distance, scaling]
#[240, 333, [0, -13], 1983.0, 1.0214851974158166]
# Viterbi path decoding
#Elapsed time 127 sec
# Processing file Sample0670
#[x, y, shift, distance, scaling]
#[195, 307, [45, 13], 2907.0, 1.4974571199635798]
# Viterbi path decoding
#Elapsed time 224 sec
# Processing file Sample0671
#[x, y, shift, distance, scaling]
#[197, 336, [43, -16], 2570.5999999999999, 1.3241703724039828]
# Viterbi path decoding
#Elapsed time 128 sec
# Processing file Sample0672
#[x, y, shift, distance, scaling]
#[244, 339, [-4, -19], 2980.5999999999999, 1.5353700350063453]
# Viterbi path decoding
#Elapsed time 126 sec
# Processing file Sample0673
#[x, y, shift, distance, scaling]
#[194, 314, [46, 6], 2920.6000000000004, 1.5044627673084388]
# Viterbi path decoding
#Elapsed time 218 sec
# Processing file Sample0674
#[x, y, shift, distance, scaling]
#[161, 323, [79, -3], 2081.5999999999999, 1.072276140666043]
# Viterbi path decoding
#Elapsed time 151 sec
# Processing file Sample0675
#[x, y, shift, distance, scaling]
#[205, 375, [35, -55], 2076.3000000000002, 1.0695459986860616]
# Viterbi path decoding
#Elapsed time 88 sec
# Processing file Sample0676
#[x, y, shift, distance, scaling]
#[243, 351, [-3, -31], 1847.0, 0.951428723967228]
# Viterbi path decoding
#Elapsed time 152 sec
# Processing file Sample0677
#[x, y, shift, distance, scaling]
#[225, 315, [15, 5], 1858.2, 0.95719808060417055]
# Viterbi path decoding
#Elapsed time 143 sec
# Processing file Sample0678
#[x, y, shift, distance, scaling]
#[199, 336, [41, -16], 2115.1999999999998, 1.0895842105768709]
# Viterbi path decoding
#Elapsed time 142 sec
# Processing file Sample0679
#[x, y, shift, distance, scaling]
#[204, 336, [36, -16], 2168.0, 1.1167826061510289]
# Viterbi path decoding
#Elapsed time 147 sec
# Processing file Sample0680
#[x, y, shift, distance, scaling]
#[172, 289, [68, 31], 1606.0, 0.82728453204730268]
# Viterbi path decoding
#Elapsed time 137 sec
# Processing file Sample0681
#[x, y, shift, distance, scaling]
#[234, 326, [6, -6], 2168.0, 1.1167826061510289]
# Viterbi path decoding
#Elapsed time 212 sec
# Processing file Sample0682
#[x, y, shift, distance, scaling]
#[218, 276, [22, 44], 1726.0, 0.88909906744311606]
# Viterbi path decoding
#Elapsed time 135 sec
# Processing file Sample0683
#[x, y, shift, distance, scaling]
#[212, 347, [28, -27], 1943.0, 1.0008803522838787]
# Viterbi path decoding
#Elapsed time 119 sec
# Processing file Sample0684
#[x, y, shift, distance, scaling]
#[214, 346, [26, -26], 2057.0, 1.0596041609099014]
# Viterbi path decoding
#Elapsed time 112 sec
# Processing file Sample0685
#[x, y, shift, distance, scaling]
#[222, 324, [18, -4], 2128.8000000000002, 1.0965898579217299]
# Viterbi path decoding
#Elapsed time 108 sec
# Processing file Sample0686
#[x, y, shift, distance, scaling]
#[190, 353, [50, -33], 1959.0, 1.0091222903366539]
# Viterbi path decoding
#Elapsed time 174 sec
# Processing file Sample0687
#[x, y, shift, distance, scaling]
#[167, 310, [73, 10], 1606.0, 0.82728453204730268]
# Viterbi path decoding
#Elapsed time 121 sec
# Processing file Sample0688
#[x, y, shift, distance, scaling]
#[202, 346, [38, -26], 2136.0, 1.1002987300454785]
# Viterbi path decoding
#Elapsed time 135 sec
# Processing file Sample0689
#[x, y, shift, distance, scaling]
#[192, 327, [48, -7], 2248.0, 1.1579922964149043]
# Viterbi path decoding
#Elapsed time 137 sec
# Processing file Sample0690
#[x, y, shift, distance, scaling]
#[187, 248, [53, 72], 1687.8, 0.86942144034211555]
# Viterbi path decoding
#Elapsed time 111 sec
# Processing file Sample0691
#[x, y, shift, distance, scaling]
#[218, 324, [22, -4], 2104.0, 1.0838148539399284]
# Viterbi path decoding
#Elapsed time 127 sec
# Processing file Sample0692
#[x, y, shift, distance, scaling]
#[217, 385, [23, -65], 1635.9000000000001, 0.84268665378342622]
# Viterbi path decoding
#Elapsed time 133 sec
# Processing file Sample0693
#[x, y, shift, distance, scaling]
#[206, 321, [34, -1], 2537.0, 1.3068623024931549]
# Viterbi path decoding
#Elapsed time 170 sec
# Processing file Sample0694
#[x, y, shift, distance, scaling]
#[196, 324, [44, -4], 1910.8, 0.98429345195266871]
# Viterbi path decoding
#Elapsed time 131 sec
# Processing file Sample0695
#[x, y, shift, distance, scaling]
#[202, 316, [38, 4], 2473.0, 1.2738945502820544]
# Viterbi path decoding
#Elapsed time 170 sec
# Processing file Sample0696
#[x, y, shift, distance, scaling]
#[248, 343, [-8, -23], 3170.4000000000001, 1.6331400251573902]
# Viterbi path decoding
#Elapsed time 131 sec
# Processing file Sample0697
#[x, y, shift, distance, scaling]
#[258, 342, [-18, -22], 2168.0, 1.1167826061510289]
# Viterbi path decoding
#Elapsed time 130 sec
# Processing file Sample0698
#[x, y, shift, distance, scaling]
#[198, 322, [42, -2], 1935.0, 0.99675938325749114]
# Viterbi path decoding
#Elapsed time 131 sec
# Processing file Sample0699
#[x, y, shift, distance, scaling]
#[223, 295, [17, 25], 2069.5999999999999, 1.0660946871264618]
# Viterbi path decoding
#Elapsed time 160 sec
# Processing file Sample0700
#[x, y, shift, distance, scaling]
#[168, 332, [72, -12], 2407.4000000000001, 1.2401026042656766]
# Viterbi path decoding
#Elapsed time 172 sec
#Sample ID: Sample0651, score 0.663733
#Sample ID: Sample0652, score 0.575386
#Sample ID: Sample0653, score 0.892627
#Sample ID: Sample0654, score 0.528169
#Sample ID: Sample0655, score 0.576693
#Sample ID: Sample0656, score 0.389144
#Sample ID: Sample0657, score 0.374459
#Sample ID: Sample0658, score 0.650195
#Sample ID: Sample0659, score 0.658055
#Sample ID: Sample0660, score 0.576639
#Sample ID: Sample0661, score 0.664821
#Sample ID: Sample0662, score 0.254808
#Sample ID: Sample0663, score 0.796288
#Sample ID: Sample0664, score 0.947266
#Sample ID: Sample0665, score 0.326278
#Sample ID: Sample0666, score 0.508804
#Sample ID: Sample0667, score 0.484710
#Sample ID: Sample0668, score 0.580054
#Sample ID: Sample0669, score 0.849987
#Sample ID: Sample0670, score 0.397313
#Sample ID: Sample0671, score 0.203398
#Sample ID: Sample0672, score 0.391556
#Sample ID: Sample0673, score 0.378563
#Sample ID: Sample0674, score 0.635954
#Sample ID: Sample0675, score 0.045522
#Sample ID: Sample0676, score 0.438792
#Sample ID: Sample0677, score 0.419724
#Sample ID: Sample0678, score 0.655333
#Sample ID: Sample0679, score 0.854239
#Sample ID: Sample0680, score 0.714220
#Sample ID: Sample0681, score 0.272786
#Sample ID: Sample0682, score 0.053125
#Sample ID: Sample0683, score 0.734950
#Sample ID: Sample0684, score 0.615251
#Sample ID: Sample0685, score 0.510606
#Sample ID: Sample0686, score 0.597038
#Sample ID: Sample0687, score 0.664701
#Sample ID: Sample0688, score 0.804543
#Sample ID: Sample0689, score 0.872862
#Sample ID: Sample0690, score 0.577523
#Sample ID: Sample0691, score 0.792732
#Sample ID: Sample0692, score 0.153347
#Sample ID: Sample0693, score 0.635430
#Sample ID: Sample0694, score 0.634161
#Sample ID: Sample0695, score 0.502847
#Sample ID: Sample0696, score 0.293253
#Sample ID: Sample0697, score 0.703240
#Sample ID: Sample0698, score 0.850709
#Sample ID: Sample0699, score 0.244085
#Sample ID: Sample0700, score 0.750470
#The score for this prediction is 0.553927838114
#########local (bad, bad, bad): I:\Kaggle_multimodal\Code_for_submission\Final_project\ConvNet_3DCNN\tmp\ConvNet__2014-06-09_00.33.03:
#The score for this prediction is 0.553927838114 0.49
#Sample0651, score 0.645744
#Sample ID: Sample0652, score 0.559796
#Sample ID: Sample0653, score 0.533064
#Sample ID: Sample0654, score 0.485505
#Sample ID: Sample0655, score 0.890764
#Sample ID: Sample0656, score 0.369051
#Sample ID: Sample0657, score 0.049603
#Sample ID: Sample0658, score 0.555414
#Sample ID: Sample0659, score 0.613854
#Sample ID: Sample0660, score 0.311432
#Sample ID: Sample0661, score 0.535761
#Sample ID: Sample0662, score 0.265325
#Sample ID: Sample0663, score 0.920095
#Sample ID: Sample0664, score 0.935104
#Sample ID: Sample0665, score 0.378939
#Sample ID: Sample0666, score 0.461569
#Sample ID: Sample0667, score 0.458477
#Sample ID: Sample0668, score 0.415858
#Sample ID: Sample0669, score 0.849286
#Sample ID: Sample0670, score 0.261954
#Sample ID: Sample0671, score 0.222867
#Sample ID: Sample0672, score 0.247778
#Sample ID: Sample0673, score 0.410968
#Sample ID: Sample0674, score 0.498387
#Sample ID: Sample0675, score 0.048387
#Sample ID: Sample0676, score 0.235188
#Sample ID: Sample0677, score 0.531585
#Sample ID: Sample0678, score 0.403813
#Sample ID: Sample0679, score 0.773155
#Sample ID: Sample0680, score 0.629767
#Sample ID: Sample0681, score 0.309476
#Sample ID: Sample0682, score 0.093147
#Sample ID: Sample0683, score 0.571337
#Sample ID: Sample0684, score 0.596494
#Sample ID: Sample0685, score 0.700286
#Sample ID: Sample0686, score 0.626915
#Sample ID: Sample0687, score 0.336185
#Sample ID: Sample0688, score 0.695073
#Sample ID: Sample0689, score 0.817379
#Sample ID: Sample0690, score 0.617178
#Sample ID: Sample0691, score 0.664088
#Sample ID: Sample0692, score 0.136878
#Sample ID: Sample0693, score 0.602969
#Sample ID: Sample0694, score 0.658753
#Sample ID: Sample0695, score 0.584923
#Sample ID: Sample0696, score 0.124848
#Sample ID: Sample0697, score 0.623503
#Sample ID: Sample0698, score 0.697686
#Sample ID: Sample0699, score 0.245174
#Sample ID: Sample0700, score 0.667301