forked from hyperledger/fabric
-
Notifications
You must be signed in to change notification settings - Fork 1
/
chain.go
1181 lines (1017 loc) · 45.2 KB
/
chain.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright IBM Corp. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
*/
package kafka
import (
"context"
"fmt"
"strconv"
"sync"
"time"
"github.com/Shopify/sarama"
"github.com/golang/protobuf/proto"
cb "github.com/hyperledger/fabric-protos-go/common"
ab "github.com/hyperledger/fabric-protos-go/orderer"
"github.com/hyperledger/fabric/orderer/common/localconfig"
"github.com/hyperledger/fabric/orderer/common/msgprocessor"
"github.com/hyperledger/fabric/orderer/consensus"
"github.com/hyperledger/fabric/protoutil"
"github.com/pkg/errors"
)
// Used for capturing metrics -- see processMessagesToBlocks
const (
indexRecvError = iota
indexUnmarshalError
indexRecvPass
indexProcessConnectPass
indexProcessTimeToCutError
indexProcessTimeToCutPass
indexProcessRegularError
indexProcessRegularPass
indexSendTimeToCutError
indexSendTimeToCutPass
indexExitChanPass
)
func newChain(
consenter commonConsenter,
support consensus.ConsenterSupport,
lastOffsetPersisted int64,
lastOriginalOffsetProcessed int64,
lastResubmittedConfigOffset int64,
) (*chainImpl, error) {
lastCutBlockNumber := getLastCutBlockNumber(support.Height())
logger.Infof("[channel: %s] Starting chain with last persisted offset %d and last recorded block [%d]",
support.ChannelID(), lastOffsetPersisted, lastCutBlockNumber)
doneReprocessingMsgInFlight := make(chan struct{})
// In either one of following cases, we should unblock ingress messages:
// - lastResubmittedConfigOffset == 0, where we've never resubmitted any config messages
// - lastResubmittedConfigOffset == lastOriginalOffsetProcessed, where the latest config message we resubmitted
// has been processed already
// - lastResubmittedConfigOffset < lastOriginalOffsetProcessed, where we've processed one or more resubmitted
// normal messages after the latest resubmitted config message. (we advance `lastResubmittedConfigOffset` for
// config messages, but not normal messages)
if lastResubmittedConfigOffset == 0 || lastResubmittedConfigOffset <= lastOriginalOffsetProcessed {
// If we've already caught up with the reprocessing resubmitted messages, close the channel to unblock broadcast
close(doneReprocessingMsgInFlight)
}
consenter.Metrics().LastOffsetPersisted.With("channel", support.ChannelID()).Set(float64(lastOffsetPersisted))
return &chainImpl{
consenter: consenter,
ConsenterSupport: support,
channel: newChannel(support.ChannelID(), defaultPartition),
lastOffsetPersisted: lastOffsetPersisted,
lastOriginalOffsetProcessed: lastOriginalOffsetProcessed,
lastResubmittedConfigOffset: lastResubmittedConfigOffset,
lastCutBlockNumber: lastCutBlockNumber,
haltChan: make(chan struct{}),
startChan: make(chan struct{}),
doneReprocessingMsgInFlight: doneReprocessingMsgInFlight,
}, nil
}
//go:generate counterfeiter -o mock/sync_producer.go --fake-name SyncProducer . syncProducer
type syncProducer interface {
SendMessage(msg *sarama.ProducerMessage) (partition int32, offset int64, err error)
SendMessages(msgs []*sarama.ProducerMessage) error
Close() error
}
type chainImpl struct {
consenter commonConsenter
consensus.ConsenterSupport
channel channel
lastOffsetPersisted int64
lastOriginalOffsetProcessed int64
lastResubmittedConfigOffset int64
lastCutBlockNumber uint64
producer syncProducer
parentConsumer sarama.Consumer
channelConsumer sarama.PartitionConsumer
// mutex used when changing the doneReprocessingMsgInFlight
doneReprocessingMutex sync.Mutex
// notification that there are in-flight messages need to wait for
doneReprocessingMsgInFlight chan struct{}
// When the partition consumer errors, close the channel. Otherwise, make
// this an open, unbuffered channel.
errorChan chan struct{}
// When a Halt() request comes, close the channel. Unlike errorChan, this
// channel never re-opens when closed. Its closing triggers the exit of the
// processMessagesToBlock loop.
haltChan chan struct{}
// notification that the chain has stopped processing messages into blocks
doneProcessingMessagesToBlocks chan struct{}
// Close when the retriable steps in Start have completed.
startChan chan struct{}
// timer controls the batch timeout of cutting pending messages into block
timer <-chan time.Time
replicaIDs []int32
}
// Errored returns a channel which will close when a partition consumer error
// has occurred. Checked by Deliver().
func (chain *chainImpl) Errored() <-chan struct{} {
select {
case <-chain.startChan:
return chain.errorChan
default:
// While the consenter is starting, always return an error
dummyError := make(chan struct{})
close(dummyError)
return dummyError
}
}
// Start allocates the necessary resources for staying up to date with this
// Chain. Implements the consensus.Chain interface. Called by
// consensus.NewManagerImpl() which is invoked when the ordering process is
// launched, before the call to NewServer(). Launches a goroutine so as not to
// block the consensus.Manager.
func (chain *chainImpl) Start() {
go startThread(chain)
}
// Halt frees the resources which were allocated for this Chain. Implements the
// consensus.Chain interface.
func (chain *chainImpl) Halt() {
select {
case <-chain.startChan:
// chain finished starting, so we can halt it
select {
case <-chain.haltChan:
// This construct is useful because it allows Halt() to be called
// multiple times (by a single thread) w/o panicking. Recall that a
// receive from a closed channel returns (the zero value) immediately.
logger.Warningf("[channel: %s] Halting of chain requested again", chain.ChannelID())
default:
logger.Criticalf("[channel: %s] Halting of chain requested", chain.ChannelID())
// stat shutdown of chain
close(chain.haltChan)
// wait for processing of messages to blocks to finish shutting down
<-chain.doneProcessingMessagesToBlocks
// close the kafka producer and the consumer
chain.closeKafkaObjects()
logger.Debugf("[channel: %s] Closed the haltChan", chain.ChannelID())
}
default:
logger.Warningf("[channel: %s] Waiting for chain to finish starting before halting", chain.ChannelID())
<-chain.startChan
chain.Halt()
}
}
func (chain *chainImpl) WaitReady() error {
select {
case <-chain.startChan: // The Start phase has completed
select {
case <-chain.haltChan: // The chain has been halted, stop here
return fmt.Errorf("consenter for this channel has been halted")
case <-chain.doneReprocessing(): // Block waiting for all re-submitted messages to be reprocessed
return nil
}
default: // Not ready yet
return fmt.Errorf("backing Kafka cluster has not completed booting; try again later")
}
}
func (chain *chainImpl) doneReprocessing() <-chan struct{} {
chain.doneReprocessingMutex.Lock()
defer chain.doneReprocessingMutex.Unlock()
return chain.doneReprocessingMsgInFlight
}
func (chain *chainImpl) reprocessConfigComplete() {
chain.doneReprocessingMutex.Lock()
defer chain.doneReprocessingMutex.Unlock()
close(chain.doneReprocessingMsgInFlight)
}
func (chain *chainImpl) reprocessConfigPending() {
chain.doneReprocessingMutex.Lock()
defer chain.doneReprocessingMutex.Unlock()
chain.doneReprocessingMsgInFlight = make(chan struct{})
}
// Implements the consensus.Chain interface. Called by Broadcast().
func (chain *chainImpl) Order(env *cb.Envelope, configSeq uint64) error {
return chain.order(env, configSeq, int64(0))
}
func (chain *chainImpl) order(env *cb.Envelope, configSeq uint64, originalOffset int64) error {
marshaledEnv, err := protoutil.Marshal(env)
if err != nil {
return errors.Errorf("cannot enqueue, unable to marshal envelope: %s", err)
}
if !chain.enqueue(newNormalMessage(marshaledEnv, configSeq, originalOffset)) {
return errors.Errorf("cannot enqueue")
}
return nil
}
// Implements the consensus.Chain interface. Called by Broadcast().
func (chain *chainImpl) Configure(config *cb.Envelope, configSeq uint64) error {
return chain.configure(config, configSeq, int64(0))
}
func (chain *chainImpl) configure(config *cb.Envelope, configSeq uint64, originalOffset int64) error {
marshaledConfig, err := protoutil.Marshal(config)
if err != nil {
return fmt.Errorf("cannot enqueue, unable to marshal config because %s", err)
}
if !chain.enqueue(newConfigMessage(marshaledConfig, configSeq, originalOffset)) {
return fmt.Errorf("cannot enqueue")
}
return nil
}
// enqueue accepts a message and returns true on acceptance, or false otherwise.
func (chain *chainImpl) enqueue(kafkaMsg *ab.KafkaMessage) bool {
logger.Debugf("[channel: %s] Enqueueing envelope...", chain.ChannelID())
select {
case <-chain.startChan: // The Start phase has completed
select {
case <-chain.haltChan: // The chain has been halted, stop here
logger.Warningf("[channel: %s] consenter for this channel has been halted", chain.ChannelID())
return false
default: // The post path
payload, err := protoutil.Marshal(kafkaMsg)
if err != nil {
logger.Errorf("[channel: %s] unable to marshal Kafka message because = %s", chain.ChannelID(), err)
return false
}
message := newProducerMessage(chain.channel, payload)
if _, _, err = chain.producer.SendMessage(message); err != nil {
logger.Errorf("[channel: %s] cannot enqueue envelope because = %s", chain.ChannelID(), err)
return false
}
logger.Debugf("[channel: %s] Envelope enqueued successfully", chain.ChannelID())
return true
}
default: // Not ready yet
logger.Warningf("[channel: %s] Will not enqueue, consenter for this channel hasn't started yet", chain.ChannelID())
return false
}
}
func (chain *chainImpl) HealthCheck(ctx context.Context) error {
var err error
payload := protoutil.MarshalOrPanic(newConnectMessage())
message := newProducerMessage(chain.channel, payload)
_, _, err = chain.producer.SendMessage(message)
if err != nil {
logger.Warnf("[channel %s] Cannot post CONNECT message = %s", chain.channel.topic(), err)
if err == sarama.ErrNotEnoughReplicas {
errMsg := fmt.Sprintf("[replica ids: %d]", chain.replicaIDs)
return errors.WithMessage(err, errMsg)
}
}
return nil
}
// Called by Start().
func startThread(chain *chainImpl) {
var err error
// Create topic if it does not exist (requires Kafka v0.10.1.0)
err = setupTopicForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.consenter.topicDetail(), chain.channel)
if err != nil {
// log for now and fallback to auto create topics setting for broker
logger.Infof("[channel: %s]: failed to create Kafka topic = %s", chain.channel.topic(), err)
}
// Set up the producer
chain.producer, err = setupProducerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.channel)
if err != nil {
logger.Panicf("[channel: %s] Cannot set up producer = %s", chain.channel.topic(), err)
}
logger.Infof("[channel: %s] Producer set up successfully", chain.ChannelID())
// Have the producer post the CONNECT message
if err = sendConnectMessage(chain.consenter.retryOptions(), chain.haltChan, chain.producer, chain.channel); err != nil {
logger.Panicf("[channel: %s] Cannot post CONNECT message = %s", chain.channel.topic(), err)
}
logger.Infof("[channel: %s] CONNECT message posted successfully", chain.channel.topic())
// Set up the parent consumer
chain.parentConsumer, err = setupParentConsumerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.channel)
if err != nil {
logger.Panicf("[channel: %s] Cannot set up parent consumer = %s", chain.channel.topic(), err)
}
logger.Infof("[channel: %s] Parent consumer set up successfully", chain.channel.topic())
// Set up the channel consumer
chain.channelConsumer, err = setupChannelConsumerForChannel(chain.consenter.retryOptions(), chain.haltChan, chain.parentConsumer, chain.channel, chain.lastOffsetPersisted+1)
if err != nil {
logger.Panicf("[channel: %s] Cannot set up channel consumer = %s", chain.channel.topic(), err)
}
logger.Infof("[channel: %s] Channel consumer set up successfully", chain.channel.topic())
chain.replicaIDs, err = getHealthyClusterReplicaInfo(chain.consenter.retryOptions(), chain.haltChan, chain.SharedConfig().KafkaBrokers(), chain.consenter.brokerConfig(), chain.channel)
if err != nil {
logger.Panicf("[channel: %s] failed to get replica IDs = %s", chain.channel.topic(), err)
}
chain.doneProcessingMessagesToBlocks = make(chan struct{})
chain.errorChan = make(chan struct{}) // Deliver requests will also go through
close(chain.startChan) // Broadcast requests will now go through
logger.Infof("[channel: %s] Start phase completed successfully", chain.channel.topic())
chain.processMessagesToBlocks() // Keep up to date with the channel
}
// processMessagesToBlocks drains the Kafka consumer for the given channel, and
// takes care of converting the stream of ordered messages into blocks for the
// channel's ledger.
func (chain *chainImpl) processMessagesToBlocks() ([]uint64, error) {
counts := make([]uint64, 11) // For metrics and tests
msg := new(ab.KafkaMessage)
defer func() {
// notify that we are not processing messages to blocks
close(chain.doneProcessingMessagesToBlocks)
}()
defer func() { // When Halt() is called
select {
case <-chain.errorChan: // If already closed, don't do anything
default:
close(chain.errorChan)
}
}()
subscription := fmt.Sprintf("added subscription to %s/%d", chain.channel.topic(), chain.channel.partition())
var topicPartitionSubscriptionResumed <-chan string
var deliverSessionTimer *time.Timer
var deliverSessionTimedOut <-chan time.Time
for {
select {
case <-chain.haltChan:
logger.Warningf("[channel: %s] Consenter for channel exiting", chain.ChannelID())
counts[indexExitChanPass]++
return counts, nil
case kafkaErr := <-chain.channelConsumer.Errors():
logger.Errorf("[channel: %s] Error during consumption: %s", chain.ChannelID(), kafkaErr)
counts[indexRecvError]++
select {
case <-chain.errorChan: // If already closed, don't do anything
default:
switch kafkaErr.Err {
case sarama.ErrOffsetOutOfRange:
// the kafka consumer will auto retry for all errors except for ErrOffsetOutOfRange
logger.Errorf("[channel: %s] Unrecoverable error during consumption: %s", chain.ChannelID(), kafkaErr)
close(chain.errorChan)
default:
if topicPartitionSubscriptionResumed == nil {
// register listener
topicPartitionSubscriptionResumed = saramaLogger.NewListener(subscription)
// start session timout timer
deliverSessionTimer = time.NewTimer(chain.consenter.retryOptions().NetworkTimeouts.ReadTimeout)
deliverSessionTimedOut = deliverSessionTimer.C
}
}
}
select {
case <-chain.errorChan: // we are not ignoring the error
logger.Warningf("[channel: %s] Closed the errorChan", chain.ChannelID())
// This covers the edge case where (1) a consumption error has
// closed the errorChan and thus rendered the chain unavailable to
// deliver clients, (2) we're already at the newest offset, and (3)
// there are no new Broadcast requests coming in. In this case,
// there is no trigger that can recreate the errorChan again and
// mark the chain as available, so we have to force that trigger via
// the emission of a CONNECT message. TODO Consider rate limiting
go sendConnectMessage(chain.consenter.retryOptions(), chain.haltChan, chain.producer, chain.channel)
default: // we are ignoring the error
logger.Warningf("[channel: %s] Deliver sessions will be dropped if consumption errors continue.", chain.ChannelID())
}
case <-topicPartitionSubscriptionResumed:
// stop listening for subscription message
saramaLogger.RemoveListener(subscription, topicPartitionSubscriptionResumed)
// disable subscription event chan
topicPartitionSubscriptionResumed = nil
// stop timeout timer
if !deliverSessionTimer.Stop() {
<-deliverSessionTimer.C
}
logger.Warningf("[channel: %s] Consumption will resume.", chain.ChannelID())
case <-deliverSessionTimedOut:
// stop listening for subscription message
saramaLogger.RemoveListener(subscription, topicPartitionSubscriptionResumed)
// disable subscription event chan
topicPartitionSubscriptionResumed = nil
close(chain.errorChan)
logger.Warningf("[channel: %s] Closed the errorChan", chain.ChannelID())
// make chain available again via CONNECT message trigger
go sendConnectMessage(chain.consenter.retryOptions(), chain.haltChan, chain.producer, chain.channel)
case in, ok := <-chain.channelConsumer.Messages():
if !ok {
logger.Criticalf("[channel: %s] Kafka consumer closed.", chain.ChannelID())
return counts, nil
}
// catch the possibility that we missed a topic subscription event before
// we registered the event listener
if topicPartitionSubscriptionResumed != nil {
// stop listening for subscription message
saramaLogger.RemoveListener(subscription, topicPartitionSubscriptionResumed)
// disable subscription event chan
topicPartitionSubscriptionResumed = nil
// stop timeout timer
if !deliverSessionTimer.Stop() {
<-deliverSessionTimer.C
}
}
select {
case <-chain.errorChan: // If this channel was closed...
chain.errorChan = make(chan struct{}) // ...make a new one.
logger.Infof("[channel: %s] Marked consenter as available again", chain.ChannelID())
default:
}
if err := proto.Unmarshal(in.Value, msg); err != nil {
// This shouldn't happen, it should be filtered at ingress
logger.Criticalf("[channel: %s] Unable to unmarshal consumed message = %s", chain.ChannelID(), err)
counts[indexUnmarshalError]++
continue
} else {
logger.Debugf("[channel: %s] Successfully unmarshalled consumed message, offset is %d. Inspecting type...", chain.ChannelID(), in.Offset)
counts[indexRecvPass]++
}
switch msg.Type.(type) {
case *ab.KafkaMessage_Connect:
_ = chain.processConnect(chain.ChannelID())
counts[indexProcessConnectPass]++
case *ab.KafkaMessage_TimeToCut:
if err := chain.processTimeToCut(msg.GetTimeToCut(), in.Offset); err != nil {
logger.Warningf("[channel: %s] %s", chain.ChannelID(), err)
logger.Criticalf("[channel: %s] Consenter for channel exiting", chain.ChannelID())
counts[indexProcessTimeToCutError]++
return counts, err // TODO Revisit whether we should indeed stop processing the chain at this point
}
counts[indexProcessTimeToCutPass]++
case *ab.KafkaMessage_Regular:
if err := chain.processRegular(msg.GetRegular(), in.Offset); err != nil {
logger.Warningf("[channel: %s] Error when processing incoming message of type REGULAR = %s", chain.ChannelID(), err)
counts[indexProcessRegularError]++
} else {
counts[indexProcessRegularPass]++
}
}
case <-chain.timer:
if err := sendTimeToCut(chain.producer, chain.channel, chain.lastCutBlockNumber+1, &chain.timer); err != nil {
logger.Errorf("[channel: %s] cannot post time-to-cut message = %s", chain.ChannelID(), err)
// Do not return though
counts[indexSendTimeToCutError]++
} else {
counts[indexSendTimeToCutPass]++
}
}
}
}
func (chain *chainImpl) closeKafkaObjects() []error {
var errs []error
err := chain.channelConsumer.Close()
if err != nil {
logger.Errorf("[channel: %s] could not close channelConsumer cleanly = %s", chain.ChannelID(), err)
errs = append(errs, err)
} else {
logger.Debugf("[channel: %s] Closed the channel consumer", chain.ChannelID())
}
err = chain.parentConsumer.Close()
if err != nil {
logger.Errorf("[channel: %s] could not close parentConsumer cleanly = %s", chain.ChannelID(), err)
errs = append(errs, err)
} else {
logger.Debugf("[channel: %s] Closed the parent consumer", chain.ChannelID())
}
err = chain.producer.Close()
if err != nil {
logger.Errorf("[channel: %s] could not close producer cleanly = %s", chain.ChannelID(), err)
errs = append(errs, err)
} else {
logger.Debugf("[channel: %s] Closed the producer", chain.ChannelID())
}
return errs
}
// Helper functions
func getLastCutBlockNumber(blockchainHeight uint64) uint64 {
return blockchainHeight - 1
}
func getOffsets(metadataValue []byte, chainID string) (persisted int64, processed int64, resubmitted int64) {
if metadataValue != nil {
// Extract orderer-related metadata from the tip of the ledger first
kafkaMetadata := &ab.KafkaMetadata{}
if err := proto.Unmarshal(metadataValue, kafkaMetadata); err != nil {
logger.Panicf("[channel: %s] Ledger may be corrupted:"+
"cannot unmarshal orderer metadata in most recent block", chainID)
}
return kafkaMetadata.LastOffsetPersisted,
kafkaMetadata.LastOriginalOffsetProcessed,
kafkaMetadata.LastResubmittedConfigOffset
}
return sarama.OffsetOldest - 1, int64(0), int64(0) // default
}
func newConnectMessage() *ab.KafkaMessage {
return &ab.KafkaMessage{
Type: &ab.KafkaMessage_Connect{
Connect: &ab.KafkaMessageConnect{
Payload: nil,
},
},
}
}
func newNormalMessage(payload []byte, configSeq uint64, originalOffset int64) *ab.KafkaMessage {
return &ab.KafkaMessage{
Type: &ab.KafkaMessage_Regular{
Regular: &ab.KafkaMessageRegular{
Payload: payload,
ConfigSeq: configSeq,
Class: ab.KafkaMessageRegular_NORMAL,
OriginalOffset: originalOffset,
},
},
}
}
func newConfigMessage(config []byte, configSeq uint64, originalOffset int64) *ab.KafkaMessage {
return &ab.KafkaMessage{
Type: &ab.KafkaMessage_Regular{
Regular: &ab.KafkaMessageRegular{
Payload: config,
ConfigSeq: configSeq,
Class: ab.KafkaMessageRegular_CONFIG,
OriginalOffset: originalOffset,
},
},
}
}
func newTimeToCutMessage(blockNumber uint64) *ab.KafkaMessage {
return &ab.KafkaMessage{
Type: &ab.KafkaMessage_TimeToCut{
TimeToCut: &ab.KafkaMessageTimeToCut{
BlockNumber: blockNumber,
},
},
}
}
func newProducerMessage(channel channel, pld []byte) *sarama.ProducerMessage {
return &sarama.ProducerMessage{
Topic: channel.topic(),
Key: sarama.StringEncoder(strconv.Itoa(int(channel.partition()))), // TODO Consider writing an IntEncoder?
Value: sarama.ByteEncoder(pld),
}
}
func (chain *chainImpl) processConnect(channelName string) error {
logger.Debugf("[channel: %s] It's a connect message - ignoring", channelName)
return nil
}
func (chain *chainImpl) processRegular(regularMessage *ab.KafkaMessageRegular, receivedOffset int64) error {
// When committing a normal message, we also update `lastOriginalOffsetProcessed` with `newOffset`.
// It is caller's responsibility to deduce correct value of `newOffset` based on following rules:
// - if Resubmission is switched off, it should always be zero
// - if the message is committed on first pass, meaning it's not re-validated and re-ordered, this value
// should be the same as current `lastOriginalOffsetProcessed`
// - if the message is re-validated and re-ordered, this value should be the `OriginalOffset` of that
// Kafka message, so that `lastOriginalOffsetProcessed` is advanced
commitNormalMsg := func(message *cb.Envelope, newOffset int64) {
batches, pending := chain.BlockCutter().Ordered(message)
logger.Debugf("[channel: %s] Ordering results: items in batch = %d, pending = %v", chain.ChannelID(), len(batches), pending)
switch {
case chain.timer != nil && !pending:
// Timer is already running but there are no messages pending, stop the timer
chain.timer = nil
case chain.timer == nil && pending:
// Timer is not already running and there are messages pending, so start it
chain.timer = time.After(chain.SharedConfig().BatchTimeout())
logger.Debugf("[channel: %s] Just began %s batch timer", chain.ChannelID(), chain.SharedConfig().BatchTimeout().String())
default:
// Do nothing when:
// 1. Timer is already running and there are messages pending
// 2. Timer is not set and there are no messages pending
}
if len(batches) == 0 {
// If no block is cut, we update the `lastOriginalOffsetProcessed`, start the timer if necessary and return
chain.lastOriginalOffsetProcessed = newOffset
return
}
offset := receivedOffset
if pending || len(batches) == 2 {
// If the newest envelope is not encapsulated into the first batch,
// the `LastOffsetPersisted` should be `receivedOffset` - 1.
offset--
} else {
// We are just cutting exactly one block, so it is safe to update
// `lastOriginalOffsetProcessed` with `newOffset` here, and then
// encapsulate it into this block. Otherwise, if we are cutting two
// blocks, the first one should use current `lastOriginalOffsetProcessed`
// and the second one should use `newOffset`, which is also used to
// update `lastOriginalOffsetProcessed`
chain.lastOriginalOffsetProcessed = newOffset
}
// Commit the first block
block := chain.CreateNextBlock(batches[0])
metadata := &ab.KafkaMetadata{
LastOffsetPersisted: offset,
LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,
LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,
}
chain.WriteBlock(block, metadata)
chain.lastCutBlockNumber++
logger.Debugf("[channel: %s] Batch filled, just cut block [%d] - last persisted offset is now %d", chain.ChannelID(), chain.lastCutBlockNumber, offset)
// Commit the second block if exists
if len(batches) == 2 {
chain.lastOriginalOffsetProcessed = newOffset
offset++
block := chain.CreateNextBlock(batches[1])
metadata := &ab.KafkaMetadata{
LastOffsetPersisted: offset,
LastOriginalOffsetProcessed: newOffset,
LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,
}
chain.WriteBlock(block, metadata)
chain.lastCutBlockNumber++
logger.Debugf("[channel: %s] Batch filled, just cut block [%d] - last persisted offset is now %d", chain.ChannelID(), chain.lastCutBlockNumber, offset)
}
}
// When committing a config message, we also update `lastOriginalOffsetProcessed` with `newOffset`.
// It is caller's responsibility to deduce correct value of `newOffset` based on following rules:
// - if Resubmission is switched off, it should always be zero
// - if the message is committed on first pass, meaning it's not re-validated and re-ordered, this value
// should be the same as current `lastOriginalOffsetProcessed`
// - if the message is re-validated and re-ordered, this value should be the `OriginalOffset` of that
// Kafka message, so that `lastOriginalOffsetProcessed` is advanced
commitConfigMsg := func(message *cb.Envelope, newOffset int64) {
logger.Debugf("[channel: %s] Received config message", chain.ChannelID())
batch := chain.BlockCutter().Cut()
if batch != nil {
logger.Debugf("[channel: %s] Cut pending messages into block", chain.ChannelID())
block := chain.CreateNextBlock(batch)
metadata := &ab.KafkaMetadata{
LastOffsetPersisted: receivedOffset - 1,
LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,
LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,
}
chain.WriteBlock(block, metadata)
chain.lastCutBlockNumber++
}
logger.Debugf("[channel: %s] Creating isolated block for config message", chain.ChannelID())
chain.lastOriginalOffsetProcessed = newOffset
block := chain.CreateNextBlock([]*cb.Envelope{message})
metadata := &ab.KafkaMetadata{
LastOffsetPersisted: receivedOffset,
LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,
LastResubmittedConfigOffset: chain.lastResubmittedConfigOffset,
}
chain.WriteConfigBlock(block, metadata)
chain.lastCutBlockNumber++
chain.timer = nil
}
seq := chain.Sequence()
env := &cb.Envelope{}
if err := proto.Unmarshal(regularMessage.Payload, env); err != nil {
// This shouldn't happen, it should be filtered at ingress
return fmt.Errorf("failed to unmarshal payload of regular message because = %s", err)
}
logger.Debugf("[channel: %s] Processing regular Kafka message of type %s", chain.ChannelID(), regularMessage.Class.String())
// If we receive a message from a pre-v1.1 orderer, or resubmission is explicitly disabled, every orderer
// should operate as the pre-v1.1 ones: validate again and not attempt to reorder. That is because the
// pre-v1.1 orderers cannot identify re-ordered messages and resubmissions could lead to committing
// the same message twice.
//
// The implicit assumption here is that the resubmission capability flag is set only when there are no more
// pre-v1.1 orderers on the network. Otherwise it is unset, and this is what we call a compatibility mode.
if regularMessage.Class == ab.KafkaMessageRegular_UNKNOWN || !chain.SharedConfig().Capabilities().Resubmission() {
// Received regular message of type UNKNOWN or resubmission if off, indicating an OSN network with v1.0.x orderer
logger.Warningf("[channel: %s] This orderer is running in compatibility mode", chain.ChannelID())
chdr, err := protoutil.ChannelHeader(env)
if err != nil {
return fmt.Errorf("discarding bad config message because of channel header unmarshalling error = %s", err)
}
class := chain.ClassifyMsg(chdr)
switch class {
case msgprocessor.ConfigMsg:
if _, _, err := chain.ProcessConfigMsg(env); err != nil {
return fmt.Errorf("discarding bad config message because = %s", err)
}
commitConfigMsg(env, chain.lastOriginalOffsetProcessed)
case msgprocessor.NormalMsg:
if _, err := chain.ProcessNormalMsg(env); err != nil {
return fmt.Errorf("discarding bad normal message because = %s", err)
}
commitNormalMsg(env, chain.lastOriginalOffsetProcessed)
case msgprocessor.ConfigUpdateMsg:
return fmt.Errorf("not expecting message of type ConfigUpdate")
default:
logger.Panicf("[channel: %s] Unsupported message classification: %v", chain.ChannelID(), class)
}
return nil
}
switch regularMessage.Class {
case ab.KafkaMessageRegular_UNKNOWN:
logger.Panicf("[channel: %s] Kafka message of type UNKNOWN should have been processed already", chain.ChannelID())
case ab.KafkaMessageRegular_NORMAL:
// This is a message that is re-validated and re-ordered
if regularMessage.OriginalOffset != 0 {
logger.Debugf("[channel: %s] Received re-submitted normal message with original offset %d", chain.ChannelID(), regularMessage.OriginalOffset)
// But we've reprocessed it already
if regularMessage.OriginalOffset <= chain.lastOriginalOffsetProcessed {
logger.Debugf(
"[channel: %s] OriginalOffset(%d) <= LastOriginalOffsetProcessed(%d), message has been consumed already, discard",
chain.ChannelID(), regularMessage.OriginalOffset, chain.lastOriginalOffsetProcessed)
return nil
}
logger.Debugf(
"[channel: %s] OriginalOffset(%d) > LastOriginalOffsetProcessed(%d), "+
"this is the first time we receive this re-submitted normal message",
chain.ChannelID(), regularMessage.OriginalOffset, chain.lastOriginalOffsetProcessed)
// In case we haven't reprocessed the message, there's no need to differentiate it from those
// messages that will be processed for the first time.
}
// The config sequence has advanced
if regularMessage.ConfigSeq < seq {
logger.Debugf("[channel: %s] Config sequence has advanced since this normal message got validated, re-validating", chain.ChannelID())
configSeq, err := chain.ProcessNormalMsg(env)
if err != nil {
return fmt.Errorf("discarding bad normal message because = %s", err)
}
logger.Debugf("[channel: %s] Normal message is still valid, re-submit", chain.ChannelID())
// For both messages that are ordered for the first time or re-ordered, we set original offset
// to current received offset and re-order it.
if err := chain.order(env, configSeq, receivedOffset); err != nil {
return fmt.Errorf("error re-submitting normal message because = %s", err)
}
return nil
}
// Any messages coming in here may or may not have been re-validated
// and re-ordered, BUT they are definitely valid here
// advance lastOriginalOffsetProcessed if message is re-validated and re-ordered
offset := regularMessage.OriginalOffset
if offset == 0 {
offset = chain.lastOriginalOffsetProcessed
}
commitNormalMsg(env, offset)
case ab.KafkaMessageRegular_CONFIG:
// This is a message that is re-validated and re-ordered
if regularMessage.OriginalOffset != 0 {
logger.Debugf("[channel: %s] Received re-submitted config message with original offset %d", chain.ChannelID(), regularMessage.OriginalOffset)
// But we've reprocessed it already
if regularMessage.OriginalOffset <= chain.lastOriginalOffsetProcessed {
logger.Debugf(
"[channel: %s] OriginalOffset(%d) <= LastOriginalOffsetProcessed(%d), message has been consumed already, discard",
chain.ChannelID(), regularMessage.OriginalOffset, chain.lastOriginalOffsetProcessed)
return nil
}
logger.Debugf(
"[channel: %s] OriginalOffset(%d) > LastOriginalOffsetProcessed(%d), "+
"this is the first time we receive this re-submitted config message",
chain.ChannelID(), regularMessage.OriginalOffset, chain.lastOriginalOffsetProcessed)
if regularMessage.OriginalOffset == chain.lastResubmittedConfigOffset && // This is very last resubmitted config message
regularMessage.ConfigSeq == seq { // AND we don't need to resubmit it again
logger.Debugf("[channel: %s] Config message with original offset %d is the last in-flight resubmitted message"+
"and it does not require revalidation, unblock ingress messages now", chain.ChannelID(), regularMessage.OriginalOffset)
chain.reprocessConfigComplete() // Therefore, we could finally unblock broadcast
}
// Somebody resubmitted message at offset X, whereas we didn't. This is due to non-determinism where
// that message was considered invalid by us during re-validation, however somebody else deemed it to
// be valid, and resubmitted it. We need to advance lastResubmittedConfigOffset in this case in order
// to enforce consistency across the network.
if chain.lastResubmittedConfigOffset < regularMessage.OriginalOffset {
chain.lastResubmittedConfigOffset = regularMessage.OriginalOffset
}
}
// The config sequence has advanced
if regularMessage.ConfigSeq < seq {
logger.Debugf("[channel: %s] Config sequence has advanced since this config message got validated, re-validating", chain.ChannelID())
configEnv, configSeq, err := chain.ProcessConfigMsg(env)
if err != nil {
return fmt.Errorf("rejecting config message because = %s", err)
}
// For both messages that are ordered for the first time or re-ordered, we set original offset
// to current received offset and re-order it.
if err := chain.configure(configEnv, configSeq, receivedOffset); err != nil {
return fmt.Errorf("error re-submitting config message because = %s", err)
}
logger.Debugf("[channel: %s] Resubmitted config message with offset %d, block ingress messages", chain.ChannelID(), receivedOffset)
chain.lastResubmittedConfigOffset = receivedOffset // Keep track of last resubmitted message offset
chain.reprocessConfigPending() // Begin blocking ingress messages
return nil
}
// Any messages coming in here may or may not have been re-validated
// and re-ordered, BUT they are definitely valid here
// advance lastOriginalOffsetProcessed if message is re-validated and re-ordered
offset := regularMessage.OriginalOffset
if offset == 0 {
offset = chain.lastOriginalOffsetProcessed
}
commitConfigMsg(env, offset)
default:
return errors.Errorf("unsupported regular kafka message type: %v", regularMessage.Class.String())
}
return nil
}
func (chain *chainImpl) processTimeToCut(ttcMessage *ab.KafkaMessageTimeToCut, receivedOffset int64) error {
ttcNumber := ttcMessage.GetBlockNumber()
logger.Debugf("[channel: %s] It's a time-to-cut message for block [%d]", chain.ChannelID(), ttcNumber)
if ttcNumber == chain.lastCutBlockNumber+1 {
chain.timer = nil
logger.Debugf("[channel: %s] Nil'd the timer", chain.ChannelID())
batch := chain.BlockCutter().Cut()
if len(batch) == 0 {
return fmt.Errorf("got right time-to-cut message (for block [%d]),"+
" no pending requests though; this might indicate a bug", chain.lastCutBlockNumber+1)
}
block := chain.CreateNextBlock(batch)
metadata := &ab.KafkaMetadata{
LastOffsetPersisted: receivedOffset,
LastOriginalOffsetProcessed: chain.lastOriginalOffsetProcessed,
}
chain.WriteBlock(block, metadata)
chain.lastCutBlockNumber++
logger.Debugf("[channel: %s] Proper time-to-cut received, just cut block [%d]", chain.ChannelID(), chain.lastCutBlockNumber)
return nil
} else if ttcNumber > chain.lastCutBlockNumber+1 {
return fmt.Errorf("got larger time-to-cut message (%d) than allowed/expected (%d)"+
" - this might indicate a bug", ttcNumber, chain.lastCutBlockNumber+1)
}
logger.Debugf("[channel: %s] Ignoring stale time-to-cut-message for block [%d]", chain.ChannelID(), ttcNumber)
return nil
}
// WriteBlock acts as a wrapper around the consenter support WriteBlock, encoding the metadata,
// and updating the metrics.
func (chain *chainImpl) WriteBlock(block *cb.Block, metadata *ab.KafkaMetadata) {
chain.ConsenterSupport.WriteBlock(block, protoutil.MarshalOrPanic(metadata))
chain.consenter.Metrics().LastOffsetPersisted.With("channel", chain.ChannelID()).Set(float64(metadata.LastOffsetPersisted))
}
// WriteConfigBlock acts as a wrapper around the consenter support WriteConfigBlock, encoding the metadata,
// and updating the metrics.
func (chain *chainImpl) WriteConfigBlock(block *cb.Block, metadata *ab.KafkaMetadata) {
chain.ConsenterSupport.WriteConfigBlock(block, protoutil.MarshalOrPanic(metadata))
chain.consenter.Metrics().LastOffsetPersisted.With("channel", chain.ChannelID()).Set(float64(metadata.LastOffsetPersisted))
}
// Post a CONNECT message to the channel using the given retry options. This
// prevents the panicking that would occur if we were to set up a consumer and
// seek on a partition that hadn't been written to yet.
func sendConnectMessage(retryOptions localconfig.Retry, exitChan chan struct{}, producer sarama.SyncProducer, channel channel) error {
logger.Infof("[channel: %s] About to post the CONNECT message...", channel.topic())
payload := protoutil.MarshalOrPanic(newConnectMessage())
message := newProducerMessage(channel, payload)
retryMsg := "Attempting to post the CONNECT message..."
postConnect := newRetryProcess(retryOptions, exitChan, channel, retryMsg, func() error {
select {
case <-exitChan:
logger.Debugf("[channel: %s] Consenter for channel exiting, aborting retry", channel)
return nil
default:
_, _, err := producer.SendMessage(message)
return err
}
})
return postConnect.retry()
}
func sendTimeToCut(producer sarama.SyncProducer, channel channel, timeToCutBlockNumber uint64, timer *<-chan time.Time) error {
logger.Debugf("[channel: %s] Time-to-cut block [%d] timer expired", channel.topic(), timeToCutBlockNumber)
*timer = nil
payload := protoutil.MarshalOrPanic(newTimeToCutMessage(timeToCutBlockNumber))
message := newProducerMessage(channel, payload)
_, _, err := producer.SendMessage(message)
return err
}
// Sets up the partition consumer for a channel using the given retry options.
func setupChannelConsumerForChannel(retryOptions localconfig.Retry, haltChan chan struct{}, parentConsumer sarama.Consumer, channel channel, startFrom int64) (sarama.PartitionConsumer, error) {
var err error
var channelConsumer sarama.PartitionConsumer
logger.Infof("[channel: %s] Setting up the channel consumer for this channel (start offset: %d)...", channel.topic(), startFrom)
retryMsg := "Connecting to the Kafka cluster"
setupChannelConsumer := newRetryProcess(retryOptions, haltChan, channel, retryMsg, func() error {
channelConsumer, err = parentConsumer.ConsumePartition(channel.topic(), channel.partition(), startFrom)
return err
})
return channelConsumer, setupChannelConsumer.retry()
}
// Sets up the parent consumer for a channel using the given retry options.
func setupParentConsumerForChannel(retryOptions localconfig.Retry, haltChan chan struct{}, brokers []string, brokerConfig *sarama.Config, channel channel) (sarama.Consumer, error) {
var err error
var parentConsumer sarama.Consumer
logger.Infof("[channel: %s] Setting up the parent consumer for this channel...", channel.topic())
retryMsg := "Connecting to the Kafka cluster"
setupParentConsumer := newRetryProcess(retryOptions, haltChan, channel, retryMsg, func() error {