-
Notifications
You must be signed in to change notification settings - Fork 7
/
array.go
522 lines (490 loc) · 13.7 KB
/
array.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
package ameda
// VecOne try to return the first element, otherwise return zero value.
func VecOne[T any](s []T) T {
if len(s) > 0 {
return s[0]
}
return Zero[T]()
}
// VecCopy creates a copy of the slice.
func VecCopy[T any](s []T) []T {
r := make([]T, len(s))
copy(r, s)
return r
}
// VecCopyWithin copies part of an slice to another location in the current slice.
// @target
// Zero-based index at which to copy the sequence to. If negative, target will be counted from the end.
// @start
// Zero-based index at which to start copying elements from. If negative, start will be counted from the end.
// @end
// Zero-based index at which to end copying elements from. VecCopyWithin copies up to but not including end.
// If negative, end will be counted from the end.
// If end is omitted, VecCopyWithin will copy until the last index (default to len(s)).
func VecCopyWithin[T any](s []T, target, start int, end ...int) {
target = fixIndex(len(s), target, true)
if target == len(s) {
return
}
sub := VecSlice(s, start, end...)
for i, v := range sub {
s[target+i] = v
}
}
// VecEvery tests whether all elements in the slice pass the test implemented by the provided function.
// NOTE:
// Calling this method on an empty slice will return true for any condition!
func VecEvery[T any](s []T, fn func(s []T, k int, v T) bool) bool {
for k, v := range s {
if !fn(s, k, v) {
return false
}
}
return true
}
// VecFill changes all elements in the current slice to a value, from a start index to an end index.
// @value
// Zero-based index at which to copy the sequence to. If negative, target will be counted from the end.
// @start
// Zero-based index at which to start copying elements from. If negative, start will be counted from the end.
// @end
// Zero-based index at which to end copying elements from. VecCopyWithin copies up to but not including end.
// If negative, end will be counted from the end.
// If end is omitted, VecCopyWithin will copy until the last index (default to len(s)).
func VecFill[T any](s []T, value T, start int, end ...int) {
fixedStart, fixedEnd, ok := fixRange(len(s), start, end...)
if !ok {
return
}
for i := fixedStart; i < fixedEnd; i++ {
s[i] = value
}
}
// VecFilter creates a new slice with all elements that pass the test implemented by the provided function.
func VecFilter[T any](s []T, fn func(s []T, k int, v T) bool) []T {
ret := make([]T, 0)
for k, v := range s {
if fn(s, k, v) {
ret = append(ret, v)
}
}
return ret
}
// VecFind returns the key-value of the first element in the provided slice that satisfies the provided testing function.
// NOTE:
// If not found, k = -1
func VecFind[T any](s []T, fn func(s []T, k int, v T) bool) (k int, v T) {
for k, v := range s {
if fn(s, k, v) {
return k, v
}
}
return -1, Zero[T]()
}
// VecIncludes determines whether an slice includes a certain value among its entries.
// @fromIndex
// The index to start the search at. Defaults to 0.
func VecIncludes[T comparable](s []T, valueToFind T, fromIndex ...int) bool {
return VecIndexOf(s, valueToFind, fromIndex...) > -1
}
// VecIndexOf returns the first index at which a given element can be found in the slice, or -1 if it is not present.
// @fromIndex
// The index to start the search at. Defaults to 0.
func VecIndexOf[T comparable](s []T, searchElement T, fromIndex ...int) int {
idx := getFromIndex(len(s), fromIndex...)
for k, v := range s[idx:] {
if searchElement == v {
return k + idx
}
}
return -1
}
// VecLastIndexOf returns the last index at which a given element can be found in the slice, or -1 if it is not present.
// @fromIndex
// The index to start the search at. Defaults to 0.
func VecLastIndexOf[T comparable](s []T, searchElement T, fromIndex ...int) int {
idx := getFromIndex(len(s), fromIndex...)
for i := len(s) - 1; i >= idx; i-- {
if searchElement == s[i] {
return i
}
}
return -1
}
// VecMap creates a new slice populated with the results of calling a provided function
// on every element in the calling slice.
func VecMap[T any](s []T, fn func(s []T, k int, v T) T) []T {
ret := make([]T, len(s))
for k, v := range s {
ret[k] = fn(s, k, v)
}
return ret
}
// VecPop removes the last element from an slice and returns that element.
// This method changes the length of the slice.
func VecPop[T any](s *[]T) (T, bool) {
a := *s
if len(a) == 0 {
return Zero[T](), false
}
lastIndex := len(a) - 1
last := a[lastIndex]
a = a[:lastIndex]
*s = a[:len(a):len(a)]
return last, true
}
// VecPush adds one or more elements to the end of an slice and returns the new length of the slice.
func VecPush[T any](s *[]T, element ...T) int {
*s = append(*s, element...)
return len(*s)
}
// VecPushDistinct adds one or more new elements that do not exist in the current slice at the end.
func VecPushDistinct[T comparable](s []T, element ...T) []T {
L:
for _, v := range element {
for _, vv := range s {
if vv == v {
continue L
}
}
s = append(s, v)
}
return s
}
// VecReduce executes a reducer function (that you provide) on each element of the slice,
// resulting in a single output value.
// @accumulator
// The accumulator accumulates callback's return values.
// It is the accumulated value previously returned in the last invocation of the callback—or initialValue,
// if it was supplied (see below).
// @initialValue
// A value to use as the first argument to the first call of the callback.
// If no initialValue is supplied, the first element in the slice will be used and skipped.
func VecReduce[T any](s []T, fn func(s []T, k int, v, accumulator T) T, initialValue ...T) T {
if len(s) == 0 {
return Zero[T]()
}
start := 0
acc := s[start]
if len(initialValue) > 0 {
acc = initialValue[0]
} else {
start += 1
}
for i := start; i < len(s); i++ {
acc = fn(s, i, s[i], acc)
}
return acc
}
// VecReduceRight applies a function against an accumulator and each value of the slice (from right-to-left)
// to reduce it to a single value.
// @accumulator
// The accumulator accumulates callback's return values.
// It is the accumulated value previously returned in the last invocation of the callback—or initialValue,
// if it was supplied (see below).
// @initialValue
// A value to use as the first argument to the first call of the callback.
// If no initialValue is supplied, the first element in the slice will be used and skipped.
func VecReduceRight[T any](s []T, fn func(s []T, k int, v, accumulator T) T, initialValue ...T) T {
if len(s) == 0 {
return Zero[T]()
}
end := len(s) - 1
acc := s[end]
if len(initialValue) > 0 {
acc = initialValue[0]
} else {
end -= 1
}
for i := end; i >= 0; i-- {
acc = fn(s, i, s[i], acc)
}
return acc
}
// VecReverse reverses an slice in place.
func VecReverse[T any](s []T) {
first := 0
last := len(s) - 1
for first < last {
s[first], s[last] = s[last], s[first]
first++
last--
}
}
// VecShift removes the first element from an slice and returns that removed element.
// This method changes the length of the slice.
func VecShift[T any](s *[]T) (T, bool) {
a := *s
if len(a) == 0 {
return Zero[T](), false
}
first := a[0]
a = a[1:]
*s = a[:len(a):len(a)]
return first, true
}
// VecSlice returns a copy of a portion of an slice into a new slice object selected
// from begin to end (end not included) where begin and end represent the index of items in that slice.
// The original slice will not be modified.
func VecSlice[T any](s []T, begin int, end ...int) []T {
fixedStart, fixedEnd, ok := fixRange(len(s), begin, end...)
if !ok {
return []T{}
}
return VecCopy[T](s[fixedStart:fixedEnd])
}
// VecSome tests whether at least one element in the slice passes the test implemented by the provided function.
// NOTE:
// Calling this method on an empty slice returns false for any condition!
func VecSome[T any](s []T, fn func(s []T, k int, v T) bool) bool {
for k, v := range s {
if fn(s, k, v) {
return true
}
}
return false
}
// VecSplice changes the contents of an slice by removing or replacing
// existing elements and/or adding new elements in place.
func VecSplice[T any](s *[]T, start, deleteCount int, items ...T) {
a := *s
if deleteCount < 0 {
deleteCount = 0
}
start, end, _ := fixRange(len(a), start, start+1+deleteCount)
deleteCount = end - start - 1
for i := 0; i < len(items); i++ {
if deleteCount > 0 {
// replace
a[start] = items[i]
deleteCount--
start++
} else {
// insert
lastSlice := VecCopy[T](a[start:])
items = items[i:]
a = append(a[:start], items...)
a = append(a[:start+len(items)], lastSlice...)
*s = a[:len(a):len(a)]
return
}
}
if deleteCount > 0 {
a = append(a[:start], a[start+1+deleteCount:]...)
}
*s = a[:len(a):len(a)]
}
// VecUnshift adds one or more elements to the beginning of an slice and returns the new length of the slice.
func VecUnshift[T any](s *[]T, element ...T) int {
*s = append(element, *s...)
return len(*s)
}
// VecUnshiftDistinct adds one or more new elements that do not exist in the current slice to the beginning
// and returns the new length of the slice.
func VecUnshiftDistinct[T comparable](s *[]T, element ...T) int {
a := *s
if len(element) == 0 {
return len(a)
}
m := make(map[T]bool, len(element))
r := make([]T, 0, len(a)+len(element))
L:
for _, v := range element {
if m[v] {
continue
}
m[v] = true
for _, vv := range a {
if vv == v {
continue L
}
}
r = append(r, v)
}
r = append(r, a...)
*s = r[:len(r):len(r)]
return len(r)
}
// VecRemoveFirst removes the first matched elements from the slice,
// and returns the new length of the slice.
func VecRemoveFirst[T comparable](p *[]T, elements ...T) int {
a := *p
m := make(map[interface{}]struct{}, len(elements))
for _, element := range elements {
if _, ok := m[element]; ok {
continue
}
m[element] = struct{}{}
for k, v := range a {
if v == element {
a = append(a[:k], a[k+1:]...)
break
}
}
}
n := len(a)
*p = a[:n:n]
return n
}
// VecRemoveEvery removes all the elements from the slice,
// and returns the new length of the slice.
func VecRemoveEvery[T comparable](p *[]T, elements ...T) int {
a := *p
m := make(map[interface{}]struct{}, len(elements))
for _, element := range elements {
if _, ok := m[element]; ok {
continue
}
m[element] = struct{}{}
for i := 0; i < len(a); i++ {
if a[i] == element {
a = append(a[:i], a[i+1:]...)
i--
}
}
}
n := len(a)
*p = a[:n:n]
return n
}
// VecConcat is used to merge two or more slices.
// This method does not change the existing slices, but instead returns a new slice.
func VecConcat[T any](s ...[]T) []T {
var totalLen int
for _, v := range s {
totalLen += len(v)
}
ret := make([]T, totalLen)
dst := ret
for _, v := range s {
n := copy(dst, v)
dst = dst[n:]
}
return ret
}
// VecIntersect calculates intersection of two or more slices,
// and returns the count of each element.
func VecIntersect[T comparable](s ...[]T) (intersectCount map[T]int) {
if len(s) == 0 {
return nil
}
for _, v := range s {
if len(v) == 0 {
return nil
}
}
counts := make([]map[T]int, len(s))
for k, v := range s {
counts[k] = vecDistinct(v, nil)
}
intersectCount = counts[0]
L:
for k, v := range intersectCount {
for _, c := range counts[1:] {
v2 := c[k]
if v2 == 0 {
delete(intersectCount, k)
continue L
}
if v > v2 {
v = v2
}
}
intersectCount[k] = v
}
return intersectCount
}
// VecDistinct calculates the count of each different element,
// and only saves these different elements in place if changeSlice is true.
func VecDistinct[T comparable](s *[]T, changeSlice bool) (distinctCount map[T]int) {
if !changeSlice {
return vecDistinct(*s, nil)
}
a := (*s)[:0]
distinctCount = vecDistinct(*s, &a)
n := len(distinctCount)
*s = a[:n:n]
return distinctCount
}
func vecDistinct[T comparable](src []T, dst *[]T) map[T]int {
m := make(map[T]int, len(src))
if dst == nil {
for _, v := range src {
n := m[v]
m[v] = n + 1
}
} else {
a := *dst
for _, v := range src {
n := m[v]
m[v] = n + 1
if n == 0 {
a = append(a, v)
}
}
*dst = a
}
return m
}
// SetsUnion calculates between multiple collections: set1 ∪ set2 ∪ others...
// This method does not change the existing slices, but instead returns a new slice.
func SetsUnion[T comparable](set1, set2 []T, others ...[]T) []T {
m := make(map[T]struct{}, len(set1)+len(set2))
r := make([]T, 0, len(m))
for _, set := range append([][]T{set1, set2}, others...) {
for _, v := range set {
_, ok := m[v]
if ok {
continue
}
r = append(r, v)
m[v] = struct{}{}
}
}
return r
}
// SetsIntersect calculates between multiple collections: set1 ∩ set2 ∩ others...
// This method does not change the existing slices, but instead returns a new slice.
func SetsIntersect[T comparable](set1, set2 []T, others ...[]T) []T {
sets := append([][]T{set2}, others...)
setsCount := make([]map[T]int, len(sets))
for k, v := range sets {
setsCount[k] = vecDistinct(v, nil)
}
m := make(map[T]struct{}, len(set1))
r := make([]T, 0, len(m))
L:
for _, v := range set1 {
if _, ok := m[v]; ok {
continue
}
m[v] = struct{}{}
for _, m2 := range setsCount {
if m2[v] == 0 {
continue L
}
}
r = append(r, v)
}
return r
}
// SetsDifference calculates between multiple collections: set1 - set2 - others...
// This method does not change the existing slices, but instead returns a new slice.
func SetsDifference[T comparable](set1, set2 []T, others ...[]T) []T {
m := make(map[T]struct{}, len(set1))
r := make([]T, 0, len(set1))
sets := append([][]T{set2}, others...)
for _, v := range sets {
inter := SetsIntersect(set1, v)
for _, v := range inter {
m[v] = struct{}{}
}
}
for _, v := range set1 {
if _, ok := m[v]; !ok {
r = append(r, v)
m[v] = struct{}{}
}
}
return r
}