-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
53 lines (43 loc) · 2.06 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn.functional as F
from tqdm import tqdm
from torchvision import transforms
from utils.dice_score import multiclass_dice_coeff, dice_coeff
def evaluate(net, dataloader, device, pretrained, test=False):
net.eval()
num_val_batches = len(dataloader)
dice_score = 0
# iterate over the validation set
for batch in tqdm(dataloader, total=num_val_batches, desc='Validation round', unit='batch', leave=False):
image, mask_true = batch['image'], batch['mask']
# move images and labels to correct device and type
image = image.to(device=device, dtype=torch.float32)
mask_true = mask_true.to(device=device, dtype=torch.long)
if pretrained:
mask_true = F.one_hot(mask_true, 2).permute(0, 3, 1, 2).float()
else:
mask_true = F.one_hot(mask_true, net.n_classes).permute(0, 3, 1, 2).float()
with torch.no_grad():
# predict the mask
mask_pred = net(image)
if test:
transform = transforms.ToPILImage()
print(mask_pred[0])
temp = transform(mask_pred[0]).convert('L')
temp.save('.\data\PREDICT\preds/' + str(batch) + '.tif')
# convert to one-hot format
# if net.n_classes == 1:
# mask_pred = (F.sigmoid(mask_pred) > 0.5).float()
# # compute the Dice score
# dice_score += dice_coeff(mask_pred, mask_true, reduce_batch_first=False)
if pretrained:
mask_pred = F.one_hot(mask_pred.argmax(dim=1), 2).permute(0, 3, 1, 2).float()
else:
mask_pred = F.one_hot(mask_pred.argmax(dim=1), net.n_classes).permute(0, 3, 1, 2).float()
# compute the Dice score, ignoring background
dice_score += multiclass_dice_coeff(mask_pred[:, 1:, ...], mask_true[:, 1:, ...], reduce_batch_first=False)
net.train()
# Fixes a potential division by zero error
if num_val_batches == 0:
return dice_score
return dice_score / num_val_batches