forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simpleTemplates.cu
264 lines (220 loc) · 8.23 KB
/
simpleTemplates.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This sample is a templatized version of the template project.
* It also shows how to correctly templatize dynamically allocated shared
* memory arrays.
* Host code.
*/
// System includes
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <math.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
// includes, kernels
#include "sharedmem.cuh"
int g_TotalFailures = 0;
////////////////////////////////////////////////////////////////////////////////
//! Simple test kernel for device functionality
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
template <class T>
__global__ void testKernel(T *g_idata, T *g_odata) {
// Shared mem size is determined by the host app at run time
SharedMemory<T> smem;
T *sdata = smem.getPointer();
// access thread id
const unsigned int tid = threadIdx.x;
// access number of threads in this block
const unsigned int num_threads = blockDim.x;
// read in input data from global memory
sdata[tid] = g_idata[tid];
__syncthreads();
// perform some computations
sdata[tid] = (T)num_threads * sdata[tid];
__syncthreads();
// write data to global memory
g_odata[tid] = sdata[tid];
}
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
template <class T>
void runTest(int argc, char **argv, int len);
template <class T>
void computeGold(T *reference, T *idata, const unsigned int len) {
const T T_len = static_cast<T>(len);
for (unsigned int i = 0; i < len; ++i) {
reference[i] = idata[i] * T_len;
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("> runTest<float,32>\n");
runTest<float>(argc, argv, 32);
printf("> runTest<int,64>\n");
runTest<int>(argc, argv, 64);
printf("\n[simpleTemplates] -> Test Results: %d Failures\n", g_TotalFailures);
exit(g_TotalFailures == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}
// To completely templatize runTest (below) with cutil, we need to use
// template specialization to wrap up CUTIL's array comparison and file writing
// functions for different types.
// Here's the generic wrapper for cutCompare*
template <class T>
class ArrayComparator {
public:
bool compare(const T *reference, T *data, unsigned int len) {
fprintf(stderr,
"Error: no comparison function implemented for this type\n");
return false;
}
};
// Here's the specialization for ints:
template <>
class ArrayComparator<int> {
public:
bool compare(const int *reference, int *data, unsigned int len) {
return compareData(reference, data, len, 0.15f, 0.0f);
}
};
// Here's the specialization for floats:
template <>
class ArrayComparator<float> {
public:
bool compare(const float *reference, float *data, unsigned int len) {
return compareData(reference, data, len, 0.15f, 0.15f);
}
};
// Here's the generic wrapper for cutWriteFile*
template <class T>
class ArrayFileWriter {
public:
bool write(const char *filename, T *data, unsigned int len, float epsilon) {
fprintf(stderr,
"Error: no file write function implemented for this type\n");
return false;
}
};
// Here's the specialization for ints:
template <>
class ArrayFileWriter<int> {
public:
bool write(const char *filename, int *data, unsigned int len, float epsilon) {
return sdkWriteFile(filename, data, len, epsilon, false);
}
};
// Here's the specialization for floats:
template <>
class ArrayFileWriter<float> {
public:
bool write(const char *filename, float *data, unsigned int len,
float epsilon) {
return sdkWriteFile(filename, data, len, epsilon, false);
}
};
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
template <class T>
void runTest(int argc, char **argv, int len) {
int devID;
cudaDeviceProp deviceProps;
devID = findCudaDevice(argc, (const char **)argv);
// get number of SMs on this GPU
checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
printf("CUDA device [%s] has %d Multi-Processors\n", deviceProps.name,
deviceProps.multiProcessorCount);
// create and start timer
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// start the timer
sdkStartTimer(&timer);
unsigned int num_threads = len;
unsigned int mem_size = sizeof(float) * num_threads;
// allocate host memory
T *h_idata = (T *)malloc(mem_size);
// initialize the memory
for (unsigned int i = 0; i < num_threads; ++i) {
h_idata[i] = (T)i;
}
// allocate device memory
T *d_idata;
checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size));
// copy host memory to device
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice));
// allocate device memory for result
T *d_odata;
checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size));
// setup execution parameters
dim3 grid(1, 1, 1);
dim3 threads(num_threads, 1, 1);
// execute the kernel
testKernel<T><<<grid, threads, mem_size>>>(d_idata, d_odata);
// check if kernel execution generated and error
getLastCudaError("Kernel execution failed");
// allocate mem for the result on host side
T *h_odata = (T *)malloc(mem_size);
// copy result from device to host
checkCudaErrors(cudaMemcpy(h_odata, d_odata, sizeof(T) * num_threads,
cudaMemcpyDeviceToHost));
sdkStopTimer(&timer);
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
sdkDeleteTimer(&timer);
// compute reference solution
T *reference = (T *)malloc(mem_size);
computeGold<T>(reference, h_idata, num_threads);
ArrayComparator<T> comparator;
ArrayFileWriter<T> writer;
// check result
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
// write file for regression test
writer.write("./data/regression.dat", h_odata, num_threads, 0.0f);
} else {
// custom output handling when no regression test running
// in this case check if the result is equivalent to the expected solution
bool res = comparator.compare(reference, h_odata, num_threads);
printf("Compare %s\n\n", (1 == res) ? "OK" : "MISMATCH");
g_TotalFailures += (1 != res);
}
// cleanup memory
free(h_idata);
free(h_odata);
free(reference);
checkCudaErrors(cudaFree(d_idata));
checkCudaErrors(cudaFree(d_odata));
}