-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_deft_h.py
649 lines (528 loc) · 27.7 KB
/
model_deft_h.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import utils as u
import torch
from torch.nn.parameter import Parameter
import torch.nn as nn
import math
from sgnn_dynamic import SGNNDynamic
# from sgnn_dynamic_dgl import SGNNDynamicDgl
import torch.nn.functional as F
import dgl
import dgl.function as fn
import numpy as np
class DEFT(torch.nn.Module):
def __init__(self, transformer_args, gcn_args, activation, device='cpu', skipfeats=False, data=''):
super().__init__()
RT_args = u.Namespace({})
feats = [gcn_args.feats_per_node,
gcn_args.layer_1_feats,
gcn_args.layer_2_feats]
self.device = device
self.skipfeats = skipfeats
self.RT_layers = []
self._parameters = nn.ParameterList()
for i in range(1,len(feats)):
RT_args = u.Namespace({
'in_feats' : feats[i-1],
'out_feats1': feats[i],
'sgnn_in_feats': feats[i-1] if i==1 else transformer_args.out_dim,
'activation': activation,
'filter_order': transformer_args.filter_order,
'in_channels_sgnn': feats[i] if i==1 else transformer_args.out_dim,
'out_channels_sgnn': transformer_args.out_channels_sgnn,
'fc1_dim': transformer_args.fc1_dim,
'pe_dim': transformer_args.pe_dim,
'out_feats': transformer_args.out_dim,
'num_heads': transformer_args.num_heads,
'layer_norm': transformer_args.layer_norm,
'batch_norm': transformer_args.batch_norm,
'is_recurrent': transformer_args.is_recurrent,
'sgwt_scales': transformer_args.sgwt_scales,
'device': device,
'use_transformer': transformer_args.use_transformer,
'concat_in_skipfeat': transformer_args.concat_in_skipfeat,
'rt_residual': transformer_args.rt_residual,
'skip_in_feat': transformer_args.skip_in_feat,
'use_spatial_feat_in_lpe': transformer_args.use_spatial_feat_in_lpe,
'use_spectral_in_lpe': transformer_args.use_spectral_in_lpe,
'num_filter_subspaces': transformer_args.num_filter_subspaces,
'use_spatial_feat_in_rgt_ip': transformer_args.use_spatial_feat_in_rgt_ip,
'skip_rgt_in_feat': transformer_args.skip_rgt_in_feat,
'device': device,
'aggregator': transformer_args.aggregator,
'use_static_spectral_wavelets': transformer_args.use_static_spectral_wavelets,
'use_sgnn_dgl': transformer_args.use_sgnn_dgl,
'data': data
})
rt_i = DEFTLayer(RT_args)
self.RT_layers.append(rt_i.to(self.device))
self._parameters.extend(list(self.RT_layers[-1].parameters()))
def parameters(self):
return self._parameters
def forward(self,A_list, Nodes_list,nodes_mask_list, graph_list, A_list_u, pos_enc_list=[]):
assert len(graph_list)==len(A_list), "DEFT model needs a list of DGL graphs of the same size of A_list to be provided."
node_feats= Nodes_list[-1]
for unit in self.RT_layers:
Nodes_list = unit(A_list,A_list_u,graph_list,Nodes_list,nodes_mask_list)
out = Nodes_list[-1]
if self.skipfeats:
out = torch.cat((out,node_feats), dim=1)
return out
class DEFTLayer(torch.nn.Module):
def __init__(self,args):
super().__init__()
self.args = args
cell_args = u.Namespace({})
cell_args.rows = args.sgnn_in_feats
cell_args.cols = args.out_feats1
self.evolve_weights = mat_GRU_cell(cell_args)
self.activation = self.args.activation
self.SGNN_init_weights = Parameter(torch.Tensor(self.args.sgnn_in_feats,self.args.out_feats1))
if self.args.use_static_spectral_wavelets:
self.filter_coeff_list = nn.ParameterList([Parameter(torch.Tensor(self.args.filter_order,)) for _ in range(self.args.num_filter_subspaces)])
else:
self.SGNN_proj_weights_fc_list = nn.ParameterList([Parameter(torch.Tensor(self.args.out_feats1,self.args.filter_order)) for _ in range(self.args.num_filter_subspaces)])
if self.args.use_spectral_in_lpe:
if self.args.use_spatial_feat_in_lpe and not self.args.use_spatial_feat_in_rgt_ip:
self.FFN_pe = nn.Linear(args.out_feats+args.out_feats1+1, args.pe_dim)
else:
self.FFN_pe = nn.Linear(args.out_feats+1, args.pe_dim)
else:
if self.args.use_spatial_feat_in_lpe:
self.FFN_pe = nn.Linear(args.out_feats1+1, args.pe_dim)
self.activation_pe = torch.nn.RReLU()
self.FFN_pe2 = nn.Linear(args.pe_dim*2, args.out_feats1)
self.FFN_pe3 = nn.Linear(args.out_feats1, args.out_feats1)
in_channels = args.in_channels_sgnn
out_channels = args.out_channels_sgnn
filter_order = args.filter_order
if self.args.use_sgnn_dgl:
self.sgnn_list = nn.ModuleList([SGNNDynamicDgl(in_channels, out_channels, filter_order, device=self.args.device) for _ in range(self.args.num_filter_subspaces)])
else:
self.sgnn_list = nn.ModuleList([SGNNDynamic(in_channels, out_channels, filter_order) for _ in range(self.args.num_filter_subspaces)])
self.fc_pool = ['sum','mean'][1]
self.fc1 = nn.Linear(self.args.filter_order, self.args.fc1_dim)
self.fc2 = nn.Linear(self.args.fc1_dim, self.args.filter_order)
self.reset_param(self.SGNN_init_weights)
if self.args.use_static_spectral_wavelets:
for filter_coeff in self.filter_coeff_list:
self.reset_param_fc(filter_coeff)
else:
for SGNN_proj_weights_fc in self.SGNN_proj_weights_fc_list:
self.reset_param(SGNN_proj_weights_fc)
in_dim_rgt = self.args.out_feats
out_dim_rgt = self.args.out_feats
num_heads = self.args.num_heads
layer_norm = self.args.layer_norm
batch_norm = self.args.batch_norm
is_recurrent = self.args.is_recurrent
self.FFN_rtg_in1 = nn.Linear(self.args.out_feats1+self.args.pe_dim, in_dim_rgt)
if self.args.use_transformer:
self.rgt_layer = RecGraphTransformerLayer(in_dim_rgt, out_dim_rgt, num_heads, dropout=0.0, layer_norm=layer_norm, batch_norm=batch_norm, residual=True, use_bias=False, use_state_vectors=is_recurrent, tied_weights=True)
elif self.args.aggregator is not '':
if self.args.aggregator=='GAT':
assert out_dim_rgt%num_heads==0, "[GAT] Expected out dimension must be equal to num_heads*dim_per_head"
out_dim_gat = out_dim_rgt//num_heads
self.rgt_layer = dgl.nn.pytorch.conv.GATConv(in_dim_rgt, out_dim_gat, num_heads, feat_drop=0.0, attn_drop=0.0, negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True)
elif self.args.aggregator=='GATv2':
assert out_dim_rgt%num_heads==0, "[GATv2] Expected out dimension must be equal to num_heads*dim_per_head"
out_dim_gat = out_dim_rgt//num_heads
self.rgt_layer = dgl.nn.pytorch.conv.GATv2Conv(in_dim_rgt, out_dim_gat, num_heads, feat_drop=0.0, attn_drop=0.0, negative_slope=0.2, residual=False, activation=None, allow_zero_in_degree=False, bias=True, share_weights=False)
elif self.args.aggregator=='PNA':
if self.args.data.lower()=='reddit':
aggregators = ['max']
scalers = ['identity']
else:
aggregators = ['mean', 'max', 'sum']
scalers = ['identity', 'amplification']
delta = 2.5
self.rgt_layer = dgl.nn.pytorch.conv.PNAConv(in_dim_rgt, out_dim_rgt, aggregators, scalers, delta, dropout=0.0, num_towers=1, edge_feat_size=0, residual=True)
elif self.args.aggregator=='GraphSAGE':
aggregator_type = 'pool'
self.rgt_layer = dgl.nn.pytorch.conv.SAGEConv(in_dim_rgt, out_dim_rgt, aggregator_type, feat_drop=0.0, bias=True, norm=None, activation=None)
elif self.args.aggregator=='GIN':
lin = torch.nn.Linear(in_dim_rgt, out_dim_rgt)
activation = torch.nn.functional.relu
self.rgt_layer = dgl.nn.pytorch.conv.GINConv(apply_func=lin, aggregator_type='sum', init_eps=0, learn_eps=False, activation=activation)
elif self.args.aggregator=='HGT':
assert out_dim_rgt%num_heads==0, "[HGT] Expected out dimension must be equal to num_heads*dim_per_head"
head_size = out_dim_rgt//num_heads
num_ntypes = 1
num_etypes = 1
self.rgt_layer = dgl.nn.pytorch.conv.HGTConv(in_dim_rgt, head_size, num_heads, num_ntypes, num_etypes, dropout=0.2, use_norm=False)
if self.args.concat_in_skipfeat:
self.proj_inp_rgt = nn.Linear(self.args.out_feats1, self.args.out_feats)
self.FFN_skipcat1 = nn.Linear(self.args.out_feats1+self.args.out_feats, self.args.out_feats)
self.FFN_skipcat2 = nn.Linear(self.args.out_feats1+self.args.out_feats, self.args.out_feats)
self.rt_residual = self.args.rt_residual
def reset_param(self,t):
#Initialize based on the number of columns
stdv = 1. / math.sqrt(t.size(1))
t.data.uniform_(-stdv,stdv)
def reset_param_fc(self,t):
# TODO: try initializing with all pass filter (all ones)?
#Initialize based on the number of columns
stdv = 1. / math.sqrt(t.size(0))
t.data.uniform_(-stdv,stdv)
def forward(self,A_list,A_list_u,G_list,node_embs_list,mask_list,residual=True):
residual = self.rt_residual
SGNN_weights = self.SGNN_init_weights
out_seq = []
seq_len = len(A_list)
for t,Ahat in enumerate(A_list):
node_embs = node_embs_list[t]
if len(A_list_u[t]['idx'].shape)==3:
edge_index = A_list_u[t]['idx'][0].T.to(self.args.device)
elif len(A_list_u[t]['idx'].shape)==2:
edge_index = A_list_u[t]['idx'].T.to(self.args.device)
else:
raise Exception("Unable to get edge index")
graph = G_list[t]
#first evolve the weights from the initial and use the new weights with the node_embs
if self.args.use_static_spectral_wavelets:
pass
else:
SGNN_weights = self.evolve_weights(SGNN_weights,node_embs,mask_list[t])
gnn_out0 = self.activation(Ahat.matmul(node_embs.matmul(SGNN_weights)))
node_embs_in1 = node_embs.matmul(SGNN_weights)
if self.args.use_spectral_in_lpe:
if self.args.use_static_spectral_wavelets:
filter_coeff_list = self.filter_coeff_list
else:
filter_coeff_list = []
for SGNN_proj_weights_fc in self.SGNN_proj_weights_fc_list:
gnn_out1 = self.activation(Ahat.matmul(node_embs.matmul(SGNN_weights.matmul(SGNN_proj_weights_fc))))
if self.fc_pool=='mean':
filter_coeff = torch.mean(gnn_out1, dim=0)
elif self.fc_pool=='sum':
filter_coeff = torch.sum(gnn_out1, dim=0)
filter_coeff = self.activation(self.fc1(filter_coeff))
filter_coeff = self.fc2(filter_coeff)
filter_coeff_list.append(filter_coeff)
node_embs = node_embs.matmul(SGNN_weights)
all_node_embs = []
for fc_idx, sgnn in enumerate(self.sgnn_list):
filter_coeff = filter_coeff_list[fc_idx]
for scale in self.args.sgwt_scales:
if self.args.use_sgnn_dgl:
graph.ndata['node_embs_sgnn_in'] = node_embs
node_embs_cur_scale = sgnn(graph, filter_coeff, feature_name='node_embs_sgnn_in', scale=scale) * (1./max(1,scale)**(self.args.filter_order))
else:
node_embs_cur_scale = sgnn(node_embs, edge_index, filter_coeff, scale=scale) * (1./max(1,scale)**(self.args.filter_order))
all_node_embs.append(node_embs_cur_scale)
all_node_embs = torch.cat([ne.unsqueeze(1) for ne in all_node_embs], dim=1)
node_embs = torch.sum(all_node_embs, dim=1)
if self.args.use_spatial_feat_in_rgt_ip:
node_embs = node_embs + gnn_out0
if t==0:
state_vectors = gnn_out0
time_pe = (1./seq_len)*torch.ones((node_embs.shape[0],1)).to(self.args.device)
if not self.args.use_spectral_in_lpe and not self.args.use_spatial_feat_in_lpe:
node_embs_in_rgt = node_embs_in1
else:
if self.args.use_spectral_in_lpe:
if self.args.use_spatial_feat_in_lpe and not self.args.use_spatial_feat_in_rgt_ip:
pe = torch.cat((node_embs,gnn_out0,time_pe), dim=1)
else:
pe = torch.cat((node_embs,time_pe), dim=1)
else:
if self.args.use_spatial_feat_in_lpe:
pe = torch.cat((gnn_out0,time_pe), dim=1)
pe = self.FFN_pe(pe)
pe_cos = torch.cos(pe)
pe_sin = torch.sin(pe)
pe = torch.cat((pe_cos,pe_sin), dim=1)
pe = self.activation_pe(self.FFN_pe2(pe))
pe = self.FFN_pe3(pe)
if self.args.use_spectral_in_lpe:
if self.args.concat_in_skipfeat:
node_embs = torch.cat((node_embs_in1,node_embs), dim=-1)
node_embs_in_rgt = self.FFN_skipcat1(node_embs)
else:
node_embs_in_rgt = node_embs_in1 + node_embs
else:
node_embs_in_rgt = node_embs_in1
node_embs_in_rgt = torch.cat((node_embs_in_rgt,pe), dim=1)
node_embs_in_rgt = self.FFN_rtg_in1(node_embs_in_rgt)
if self.args.use_transformer:
node_embs, state_vectors = self.rgt_layer(graph, node_embs_in_rgt, state_vectors)
elif self.args.aggregator!='':
if self.args.aggregator=='GAT':
node_embs = self.rgt_layer(graph, node_embs_in_rgt)
node_embs = node_embs.reshape((node_embs.shape[0],-1))
elif self.args.aggregator=='GATv2':
node_embs = self.rgt_layer(graph, node_embs_in_rgt)
node_embs = node_embs.reshape((node_embs.shape[0],-1))
elif self.args.aggregator=='PNA':
node_embs = self.rgt_layer(graph, node_embs_in_rgt)
elif self.args.aggregator=='GraphSAGE':
node_embs = self.rgt_layer(graph, node_embs_in_rgt)
elif self.args.aggregator=='GIN':
node_embs = self.rgt_layer(graph, node_embs_in_rgt)
elif self.args.aggregator=='HGT':
ntype = torch.zeros((graph.num_nodes(),),dtype=int).to(self.args.device)
etype = torch.zeros((graph.num_edges(),),dtype=int).to(self.args.device)
node_embs = self.rgt_layer(graph, node_embs_in_rgt, ntype, etype)
else:
node_embs = node_embs_in_rgt
if residual:
if self.args.concat_in_skipfeat:
node_embs = torch.cat((node_embs,gnn_out0), dim=-1)
node_embs = self.FFN_skipcat2(node_embs)
elif self.args.skip_in_feat:
node_embs = node_embs + node_embs_in1
elif self.args.skip_rgt_in_feat:
node_embs = node_embs + node_embs_in_rgt
else:
node_embs = node_embs + gnn_out0
out_seq.append(node_embs)
return out_seq
class mat_GRU_cell(torch.nn.Module):
def __init__(self,args):
super().__init__()
self.args = args
self.update = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Sigmoid())
self.reset = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Sigmoid())
self.htilda = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Tanh())
self.choose_topk = TopK(feats = args.rows,
k = args.cols)
def forward(self,prev_Q,prev_Z,mask):
z_topk = self.choose_topk(prev_Z,mask)
update = self.update(z_topk,prev_Q)
reset = self.reset(z_topk,prev_Q)
h_cap = reset * prev_Q
h_cap = self.htilda(z_topk, h_cap)
new_Q = (1 - update) * prev_Q + update * h_cap
return new_Q
class mat_GRU_gate(torch.nn.Module):
def __init__(self,rows,cols,activation):
super().__init__()
self.activation = activation
#the k here should be in_feats which is actually the rows
self.W = Parameter(torch.Tensor(rows,rows))
self.reset_param(self.W)
self.U = Parameter(torch.Tensor(rows,rows))
self.reset_param(self.U)
self.bias = Parameter(torch.zeros(rows,cols))
def reset_param(self,t):
#Initialize based on the number of columns
stdv = 1. / math.sqrt(t.size(1))
t.data.uniform_(-stdv,stdv)
def forward(self,x,hidden):
out = self.activation(self.W.matmul(x) + \
self.U.matmul(hidden) + \
self.bias)
return out
class TopK(torch.nn.Module):
def __init__(self,feats,k):
super().__init__()
self.scorer = Parameter(torch.Tensor(feats,1))
self.reset_param(self.scorer)
self.k = k
def reset_param(self,t):
#Initialize based on the number of rows
stdv = 1. / math.sqrt(t.size(0))
t.data.uniform_(-stdv,stdv)
def forward(self,node_embs,mask):
scores = node_embs.matmul(self.scorer) / self.scorer.norm()
scores = scores + mask
vals, topk_indices = scores.view(-1).topk(self.k)
topk_indices = topk_indices[vals > -float("Inf")]
if topk_indices.size(0) < self.k:
topk_indices = u.pad_with_last_val(topk_indices,self.k)
tanh = torch.nn.Tanh()
if isinstance(node_embs, torch.sparse.FloatTensor) or \
isinstance(node_embs, torch.cuda.sparse.FloatTensor):
node_embs = node_embs.to_dense()
out = node_embs[topk_indices] * tanh(scores[topk_indices].view(-1,1))
#we need to transpose the output
return out.t()
"""
Graph Transformer Layer
"""
"""
Util functions
"""
def src_dot_dst(src_field, dst_field, out_field):
def func(edges):
return {out_field: (edges.src[src_field] * edges.dst[dst_field]).sum(-1, keepdim=True)}
return func
def scaled_exp(field, scale_constant):
def func(edges):
# clamp for softmax numerical stability
return {field: torch.exp((edges.data[field] / scale_constant).clamp(-5, 5))}
return func
"""
Single Attention Head
"""
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, in_dim, out_dim, num_heads, use_bias):
super().__init__()
self.out_dim = out_dim
self.num_heads = num_heads
if use_bias:
self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=True)
self.K = nn.Linear(in_dim, out_dim * num_heads, bias=True)
self.V = nn.Linear(in_dim, out_dim * num_heads, bias=True)
else:
self.Q = nn.Linear(in_dim, out_dim * num_heads, bias=False)
self.K = nn.Linear(in_dim, out_dim * num_heads, bias=False)
self.V = nn.Linear(in_dim, out_dim * num_heads, bias=False)
# TODO: handle weighted edges if needed
def propagate_attention(self, g):
# Compute attention score
g.apply_edges(src_dot_dst('K_h', 'Q_h', 'score')) #, edges)
g.apply_edges(scaled_exp('score', np.sqrt(self.out_dim)))
# Send weighted values to target nodes
eids = g.edges()
g.send_and_recv(eids, fn.src_mul_edge('V_h', 'score', 'V_h'), fn.sum('V_h', 'wV'))
g.send_and_recv(eids, fn.copy_edge('score', 'score'), fn.sum('score', 'z'))
def forward(self, g, query, key, value):
Q_h = self.Q(query)
K_h = self.K(key)
V_h = self.V(value)
# Reshaping into [num_nodes, num_heads, feat_dim] to
# get projections for multi-head attention
# TODO: check if same key names give issue during backprop (hopefully should not)
g.ndata['Q_h'] = Q_h.view(-1, self.num_heads, self.out_dim)
g.ndata['K_h'] = K_h.view(-1, self.num_heads, self.out_dim)
g.ndata['V_h'] = V_h.view(-1, self.num_heads, self.out_dim)
self.propagate_attention(g)
head_out = g.ndata['wV']/g.ndata['z']
return head_out
class RecGraphTransformerLayer(nn.Module):
"""
Param:
"""
def __init__(self, in_dim, out_dim, num_heads, dropout=0.0, layer_norm=False, batch_norm=True, residual=True, use_bias=False, use_state_vectors=True, tied_weights=False):
super().__init__()
self.in_channels = in_dim
self.out_channels = out_dim
self.num_heads = num_heads
self.dropout = dropout
self.residual = residual
self.layer_norm = layer_norm
self.batch_norm = batch_norm
self.use_state_vectors = use_state_vectors
self.tied_weights = tied_weights
self.self_attention_v = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias)
if use_state_vectors:
if self.tied_weights:
self.cross_attention_v = self.self_attention_v
self.self_attention_h = self.self_attention_v
self.cross_attention_h = self.self_attention_v
else:
self.cross_attention_v = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias)
self.self_attention_h = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias)
self.cross_attention_h = MultiHeadAttentionLayer(in_dim, out_dim//num_heads, num_heads, use_bias)
if use_state_vectors:
self.O = nn.Linear(out_dim*2, out_dim)
else:
self.O = nn.Linear(out_dim, out_dim)
if self.layer_norm:
self.layer_norm1 = nn.LayerNorm(out_dim)
if self.batch_norm:
self.batch_norm1 = nn.BatchNorm1d(out_dim)
# FFN
self.FFN_layer1 = nn.Linear(out_dim, out_dim*2)
self.FFN_layer2 = nn.Linear(out_dim*2, out_dim)
if self.layer_norm:
self.layer_norm2 = nn.LayerNorm(out_dim)
if self.batch_norm:
self.batch_norm2 = nn.BatchNorm1d(out_dim)
if use_state_vectors:
if self.layer_norm:
self.layer_norm1_h = nn.LayerNorm(out_dim)
if self.batch_norm:
self.batch_norm1_h = nn.BatchNorm1d(out_dim)
if self.layer_norm:
self.layer_norm2_h = nn.LayerNorm(out_dim)
if self.batch_norm:
self.batch_norm2_h = nn.BatchNorm1d(out_dim)
self.O_h = nn.Linear(out_dim*2, out_dim)
self.FFN_layer1_h = nn.Linear(out_dim, out_dim*2)
self.FFN_layer2_h = nn.Linear(out_dim*2, out_dim)
self.FFN_gate1 = nn.Linear(in_dim, out_dim, bias=True)
self.FFN_gate2 = nn.Linear(in_dim, out_dim, bias=True)
def forward(self, g, h, state_vectors=None):
# Usual Vertical flow
h_in1 = h # for first residual connection
# multi-head attention out
attn_out_self = self.self_attention_v(g, h, h, h)
if self.use_state_vectors:
# TODO: add state ids/pos embeddings to state vectors?
attn_out_cross = self.cross_attention_v(g, h, state_vectors, state_vectors)
attn_out_self = attn_out_self.view(-1, self.out_channels)
attn_out_cross = attn_out_cross.view(-1, self.out_channels)
h = torch.cat((attn_out_self,attn_out_cross), dim=-1)
else:
attn_out = attn_out_self
h = attn_out.view(-1, self.out_channels)
h = F.dropout(h, self.dropout, training=self.training)
h = self.O(h)
if self.residual:
h = h_in1 + h # residual connection
if self.layer_norm:
h = self.layer_norm1(h)
if self.batch_norm:
h = self.batch_norm1(h)
h_in2 = h # for second residual connection
# FFN
h = self.FFN_layer1(h)
h = F.relu(h)
h = F.dropout(h, self.dropout, training=self.training)
h = self.FFN_layer2(h)
if self.residual:
h = h_in2 + h # residual connection
if self.layer_norm:
h = self.layer_norm2(h)
if self.batch_norm:
h = self.batch_norm2(h)
if self.use_state_vectors:
# Horizontal flow
sv_in1 = state_vectors # for first residual connection
# multi-head attention out
attn_out_self_h = self.self_attention_h(g, state_vectors, state_vectors, state_vectors)
# TODO: add state ids/pos embeddings to state vectors?
attn_out_cross_h = self.cross_attention_v(g, state_vectors, h_in1, h_in1)
attn_out_self_h = attn_out_self_h.view(-1, self.out_channels)
attn_out_cross_h = attn_out_cross_h.view(-1, self.out_channels)
sv = torch.cat((attn_out_self_h,attn_out_cross_h), dim=-1)
sv = F.dropout(sv, self.dropout, training=self.training)
sv = self.O_h(sv)
if self.residual:
# TODO: try with lstm gate?
g1 = self.FFN_gate1(h_in1)
g1 = nn.Sigmoid()(g1)
sv = (1-g1)*sv_in1 + g1*sv # residual connection with fixed gate
if self.layer_norm:
sv = self.layer_norm1_h(sv)
if self.batch_norm:
sv = self.batch_norm1_h(sv)
sv_in2 = sv # for second residual connection
# FFN
sv = self.FFN_layer1_h(sv)
sv = F.relu(sv)
sv = F.dropout(sv, self.dropout, training=self.training)
sv = self.FFN_layer2_h(sv)
if self.residual:
g2 = self.FFN_gate2(h_in1)
g2 = nn.Sigmoid()(g2)
sv = (1-g2)*sv_in2 + g2*sv # residual connection with fixed gate
if self.layer_norm:
sv = self.layer_norm2_h(sv)
if self.batch_norm:
sv = self.batch_norm2_h(sv)
if self.use_state_vectors:
return h, sv
else:
return h, None
def __repr__(self):
return '{}(in_channels={}, out_channels={}, heads={}, residual={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.num_heads, self.residual)