Skip to content
This repository has been archived by the owner on Nov 8, 2023. It is now read-only.

Increased audio volume gain. #4

Closed
wants to merge 1 commit into from
Closed

Increased audio volume gain. #4

wants to merge 1 commit into from

Conversation

tejasjadhav
Copy link

No description provided.

ronasimi pushed a commit to ronasimi/kernel_msm that referenced this pull request Dec 21, 2014
On architectures where cputime_t is 64 bit type, is possible to trigger
divide by zero on do_div(temp, (__force u32) total) line, if total is a
non zero number but has lower 32 bit's zeroed. Removing casting is not
a good solution since some do_div() implementations do cast to u32
internally.

This problem can be triggered in practice on very long lived processes:

  PID: 2331   TASK: ffff880472814b00  CPU: 2   COMMAND: "oraagent.bin"
   #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b
   aosp-mirror#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2
   aosp-mirror#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00
   aosp-mirror#3 [ffff880472a51cd0] die at ffffffff8100f26b
   aosp-mirror#4 [ffff880472a51d00] do_trap at ffffffff814f03f4
   aosp-mirror#5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff
   aosp-mirror#6 [ffff880472a51e00] divide_error at ffffffff8100be7b
      [exception RIP: thread_group_times+0x56]
      RIP: ffffffff81056a16  RSP: ffff880472a51eb8  RFLAGS: 00010046
      RAX: bc3572c9fe12d194  RBX: ffff880874150800  RCX: 0000000110266fad
      RDX: 0000000000000000  RSI: ffff880472a51eb8  RDI: 001038ae7d9633dc
      RBP: ffff880472a51ef8   R8: 00000000b10a3a64   R9: ffff880874150800
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: ffff880472a51f08
      R13: ffff880472a51f10  R14: 0000000000000000  R15: 0000000000000007
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   aosp-mirror#7 [ffff880472a51f00] do_sys_times at ffffffff8108845d
   aosp-mirror#8 [ffff880472a51f40] sys_times at ffffffff81088524
   aosp-mirror#9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2
      RIP: 0000003808caac3a  RSP: 00007fcba27ab6d8  RFLAGS: 00000202
      RAX: 0000000000000064  RBX: ffffffff8100b0f2  RCX: 0000000000000000
      RDX: 00007fcba27ab6e0  RSI: 000000000076d58e  RDI: 00007fcba27ab6e0
      RBP: 00007fcba27ab700   R8: 0000000000000020   R9: 000000000000091b
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: 00007fff9ca41940
      R13: 0000000000000000  R14: 00007fcba27ac9c0  R15: 00007fff9ca41940
      ORIG_RAX: 0000000000000064  CS: 0033  SS: 002b

Cc: stable@vger.kernel.org
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Kevindeving pushed a commit to lollipop-og/kernel_msm that referenced this pull request Dec 24, 2014
On architectures where cputime_t is 64 bit type, is possible to trigger
divide by zero on do_div(temp, (__force u32) total) line, if total is a
non zero number but has lower 32 bit's zeroed. Removing casting is not
a good solution since some do_div() implementations do cast to u32
internally.

This problem can be triggered in practice on very long lived processes:

  PID: 2331   TASK: ffff880472814b00  CPU: 2   COMMAND: "oraagent.bin"
   #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b
   aosp-mirror#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2
   aosp-mirror#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00
   aosp-mirror#3 [ffff880472a51cd0] die at ffffffff8100f26b
   aosp-mirror#4 [ffff880472a51d00] do_trap at ffffffff814f03f4
   aosp-mirror#5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff
   aosp-mirror#6 [ffff880472a51e00] divide_error at ffffffff8100be7b
      [exception RIP: thread_group_times+0x56]
      RIP: ffffffff81056a16  RSP: ffff880472a51eb8  RFLAGS: 00010046
      RAX: bc3572c9fe12d194  RBX: ffff880874150800  RCX: 0000000110266fad
      RDX: 0000000000000000  RSI: ffff880472a51eb8  RDI: 001038ae7d9633dc
      RBP: ffff880472a51ef8   R8: 00000000b10a3a64   R9: ffff880874150800
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: ffff880472a51f08
      R13: ffff880472a51f10  R14: 0000000000000000  R15: 0000000000000007
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   aosp-mirror#7 [ffff880472a51f00] do_sys_times at ffffffff8108845d
   aosp-mirror#8 [ffff880472a51f40] sys_times at ffffffff81088524
   aosp-mirror#9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2
      RIP: 0000003808caac3a  RSP: 00007fcba27ab6d8  RFLAGS: 00000202
      RAX: 0000000000000064  RBX: ffffffff8100b0f2  RCX: 0000000000000000
      RDX: 00007fcba27ab6e0  RSI: 000000000076d58e  RDI: 00007fcba27ab6e0
      RBP: 00007fcba27ab700   R8: 0000000000000020   R9: 000000000000091b
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: 00007fff9ca41940
      R13: 0000000000000000  R14: 00007fcba27ac9c0  R15: 00007fff9ca41940
      ORIG_RAX: 0000000000000064  CS: 0033  SS: 002b

Cc: stable@vger.kernel.org
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
SaiAvinash92 pushed a commit to SaiAvinash92/mako that referenced this pull request Dec 27, 2014
workqueue: change BUG_ON() to WARN_ON()

This BUG_ON() can be triggered if you call schedule_work() before
calling INIT_WORK().  It is a bug definitely, but it's nicer to just
print a stack trace and return.

Reported-by: Matt Renzelmann <mjr@cs.wisc.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: Catch more locking problems with flush_work()

If a workqueue is flushed with flush_work() lockdep checking can
be circumvented. For example:

 static DEFINE_MUTEX(mutex);

 static void my_work(struct work_struct *w)
 {
         mutex_lock(&mutex);
         mutex_unlock(&mutex);
 }

 static DECLARE_WORK(work, my_work);

 static int __init start_test_module(void)
 {
         schedule_work(&work);
         return 0;
 }
 module_init(start_test_module);

 static void __exit stop_test_module(void)
 {
         mutex_lock(&mutex);
         flush_work(&work);
         mutex_unlock(&mutex);
 }
 module_exit(stop_test_module);

would not always print a warning when flush_work() was called.
In this trivial example nothing could go wrong since we are
guaranteed module_init() and module_exit() don't run concurrently,
but if the work item is schedule asynchronously we could have a
scenario where the work item is running just at the time flush_work()
is called resulting in a classic ABBA locking problem.

Add a lockdep hint by acquiring and releasing the work item
lockdep_map in flush_work() so that we always catch this
potential deadlock scenario.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

lockdep: fix oops in processing workqueue

Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].

Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.

Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.

Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.

Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].

Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().

* Patch orginally from Peter.  Hugh modified it a bit and wrote the
  description.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: perform cpu down operations from low priority cpu_notifier()

Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers.  This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.

Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers.  This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.

However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress.  Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.

While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.

Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.

Workqueue cpu hotplug operations will soon go through further cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop CPU_DYING notifier operation

Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED.
This was necessary because workqueue's CPU_DOWN_PREPARE happened
before other DOWN_PREPARE notifiers and workqueue needed to stay
associated across the rest of DOWN_PREPARE.

After the previous patch, workqueue's DOWN_PREPARE happens after
others and can set GCWQ_DISASSOCIATED directly.  Drop CPU_DYING and
let the trustee set GCWQ_DISASSOCIATED after disabling concurrency
management.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: ROGUE workers are UNBOUND workers

Currently, WORKER_UNBOUND is used to mark workers for the unbound
global_cwq and WORKER_ROGUE is used to mark workers for disassociated
per-cpu global_cwqs.  Both are used to make the marked worker skip
concurrency management and the only place they make any difference is
in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling
idle timer, which can easily be replaced with trustee state testing.

This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops
WORKER_ROGUE.  This is to prepare for removing trustee and handling
disassociated global_cwqs as unbound.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: use mutex for global_cwq manager exclusion

POOL_MANAGING_WORKERS is used to ensure that at most one worker takes
the manager role at any given time on a given global_cwq.  Trustee
later hitched on it to assume manager adding blocking wait for the
bit.  As trustee already needed a custom wait mechanism, waiting for
MANAGING_WORKERS was rolled into the same mechanism.

Trustee is scheduled to be removed.  This patch separates out
MANAGING_WORKERS wait into per-pool mutex.  Workers use
mutex_trylock() to test for manager role and trustee uses mutex_lock()
to claim manager roles.

gcwq_claim/release_management() helpers are added to grab and release
manager roles of all pools on a global_cwq.  gcwq_claim_management()
always grabs pool manager mutexes in ascending pool index order and
uses pool index as lockdep subclass.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop @bind from create_worker()

Currently, create_worker()'s callers are responsible for deciding
whether the newly created worker should be bound to the associated CPU
and create_worker() sets WORKER_UNBOUND only for the workers for the
unbound global_cwq.  Creation during normal operation is always via
maybe_create_worker() and @bind is true.  For workers created during
hotplug, @bind is false.

Normal operation path is planned to be used even while the CPU is
going through hotplug operations or offline and this static decision
won't work.

Drop @bind from create_worker() and decide whether to bind by looking
at GCWQ_DISASSOCIATED.  create_worker() will also set WORKER_UNBOUND
autmatically if disassociated.  To avoid flipping GCWQ_DISASSOCIATED
while create_worker() is in progress, the flag is now allowed to be
changed only while holding all manager_mutexes on the global_cwq.

This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's
back.  CPU_ONLINE no longer clears DISASSOCIATED before flushing
trustee, which clears DISASSOCIATED before rebinding remaining workers
if asked to release.  For cases where trustee isn't around, CPU_ONLINE
clears DISASSOCIATED after flushing trustee.  Also, now, first_idle
has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE
while binding it.  These convolutions will soon be removed by further
simplification of CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: reimplement CPU online rebinding to handle idle workers

Currently, if there are left workers when a CPU is being brough back
online, the trustee kills all idle workers and scheduled rebind_work
so that they re-bind to the CPU after the currently executing work is
finished.  This works for busy workers because concurrency management
doesn't try to wake up them from scheduler callbacks, which require
the target task to be on the local run queue.  The busy worker bumps
concurrency counter appropriately as it clears WORKER_UNBOUND from the
rebind work item and it's bound to the CPU before returning to the
idle state.

To reduce CPU on/offlining overhead (as many embedded systems use it
for powersaving) and simplify the code path, workqueue is planned to
be modified to retain idle workers across CPU on/offlining.  This
patch reimplements CPU online rebinding such that it can also handle
idle workers.

As noted earlier, due to the local wakeup requirement, rebinding idle
workers is tricky.  All idle workers must be re-bound before scheduler
callbacks are enabled.  This is achieved by interlocking idle
re-binding.  Idle workers are requested to re-bind and then hold until
all idle re-binding is complete so that no bound worker starts
executing work item.  Only after all idle workers are re-bound and
parked, CPU_ONLINE proceeds to release them and queue rebind work item
to busy workers thus guaranteeing scheduler callbacks aren't invoked
until all idle workers are ready.

worker_rebind_fn() is renamed to busy_worker_rebind_fn() and
idle_worker_rebind() for idle workers is added.  Rebinding logic is
moved to rebind_workers() and now called from CPU_ONLINE after
flushing trustee.  While at it, add CPU sanity check in
worker_thread().

Note that now a worker may become idle or the manager between trustee
release and rebinding during CPU_ONLINE.  As the previous patch
updated create_worker() so that it can be used by regular manager
while unbound and this patch implements idle re-binding, this is safe.

This prepares for removal of trustee and keeping idle workers across
CPU hotplugs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: don't butcher idle workers on an offline CPU

Currently, during CPU offlining, after all pending work items are
drained, the trustee butchers all workers.  Also, on CPU onlining
failure, workqueue_cpu_callback() ensures that the first idle worker
is destroyed.  Combined, these guarantee that an offline CPU doesn't
have any worker for it once all the lingering work items are finished.

This guarantee isn't really necessary and makes CPU on/offlining more
expensive than needs to be, especially for platforms which use CPU
hotplug for powersaving.

This patch lets offline CPUs removes idle worker butchering from the
trustee and let a CPU which failed onlining keep the created first
worker.  The first worker is created if the CPU doesn't have any
during CPU_DOWN_PREPARE and started right away.  If onlining succeeds,
the rebind_workers() call in CPU_ONLINE will rebind it like any other
workers.  If onlining fails, the worker is left alone till the next
try.

This makes CPU hotplugs cheaper by allowing global_cwqs to keep
workers across them and simplifies code.

Note that trustee doesn't re-arm idle timer when it's done and thus
the disassociated global_cwq will keep all workers until it comes back
online.  This will be improved by further patches.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: remove CPU offline trustee

With the previous changes, a disassociated global_cwq now can run as
an unbound one on its own - it can create workers as necessary to
drain remaining works after the CPU has been brought down and manage
the number of workers using the usual idle timer mechanism making
trustee completely redundant except for the actual unbinding
operation.

This patch removes the trustee and let a disassociated global_cwq
manage itself.  Unbinding is moved to a work item (for CPU affinity)
which is scheduled and flushed from CPU_DONW_PREPARE.

This patch moves nr_running clearing outside gcwq and manager locks to
simplify the code.  As nr_running is unused at the point, this is
safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: simplify CPU hotplug code

With trustee gone, CPU hotplug code can be simplified.

* gcwq_claim/release_management() now grab and release gcwq lock too
  respectively and gained _and_lock and _and_unlock postfixes.

* All CPU hotplug logic was implemented in workqueue_cpu_callback()
  which was called by workqueue_cpu_up/down_callback() for the correct
  priority.  This was because up and down paths shared a lot of logic,
  which is no longer true.  Remove workqueue_cpu_callback() and move
  all hotplug logic into the two actual callbacks.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: fix spurious CPU locality WARN from process_one_work()

25511a4776 "workqueue: reimplement CPU online rebinding to handle idle
workers" added CPU locality sanity check in process_one_work().  It
triggers if a worker is executing on a different CPU without UNBOUND
or REBIND set.

This works for all normal workers but rescuers can trigger this
spuriously when they're serving the unbound or a disassociated
global_cwq - rescuers don't have either flag set and thus its
gcwq->cpu can be a different value including %WORK_CPU_UNBOUND.

Fix it by additionally testing %GCWQ_DISASSOCIATED.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Refence: <20120721213656.GA7783@linux.vnet.ibm.com>

workqueue: reorder queueing functions so that _on() variants are on top

Currently, queue/schedule[_delayed]_work_on() are located below the
counterpart without the _on postifx even though the latter is usually
implemented using the former.  Swap them.

This is cleanup and doesn't cause any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: make queueing functions return bool

All queueing functions return 1 on success, 0 if the work item was
already pending.  Update them to return bool instead.  This signifies
better that they don't return 0 / -errno.

This is cleanup and doesn't cause any functional difference.

While at it, fix comment opening for schedule_work_on().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add missing smp_wmb() in process_one_work()

WORK_STRUCT_PENDING is used to claim ownership of a work item and
process_one_work() releases it before starting execution.  When
someone else grabs PENDING, all pre-release updates to the work item
should be visible and all updates made by the new owner should happen
afterwards.

Grabbing PENDING uses test_and_set_bit() and thus has a full barrier;
however, clearing doesn't have a matching wmb.  Given the preceding
spin_unlock and use of clear_bit, I don't believe this can be a
problem on an actual machine and there hasn't been any related report
but it still is theretically possible for clear_pending to permeate
upwards and happen before work->entry update.

Add an explicit smp_wmb() before work_clear_pending().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org

workqueue: disable irq while manipulating PENDING

Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access
to the target work item.  They first try to claim the bit and proceed
with queueing only after that succeeds and there's a window between
PENDING being set and the actual queueing where the task can be
interrupted or preempted.

There's also a similar window in process_one_work() when clearing
PENDING.  A work item is dequeued, gcwq->lock is released and then
PENDING is cleared and the worker might get interrupted or preempted
between releasing gcwq->lock and clearing PENDING.

cancel[_delayed]_work_sync() tries to claim or steal PENDING.  The
function assumes that a work item with PENDING is either queued or in
the process of being [de]queued.  In the latter case, it busy-loops
until either the work item loses PENDING or is queued.  If canceling
coincides with the above described interrupts or preemptions, the
canceling task will busy-loop while the queueing or executing task is
preempted.

This patch keeps irq disabled across claiming PENDING and actual
queueing and moves PENDING clearing in process_one_work() inside
gcwq->lock so that busy looping from PENDING && !queued doesn't wait
for interrupted/preempted tasks.  Note that, in process_one_work(),
setting last CPU and clearing PENDING got merged into single
operation.

This removes possible long busy-loops and will allow using
try_to_grab_pending() from bh and irq contexts.

v2: __queue_work() was testing preempt_count() to ensure that the
    caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Disable irq instead of preemption.  IRQ will be disabled while
    grabbing gcwq->lock later anyway and this allows using
    try_to_grab_pending() from bh and irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: set delayed_work->timer function on initialization

delayed_work->timer.function is currently initialized during
queue_delayed_work_on().  Export delayed_work_timer_fn() and set
delayed_work timer function during delayed_work initialization
together with other fields.

This ensures the timer function is always valid on an initialized
delayed_work.  This is to help mod_delayed_work() implementation.

To detect delayed_work users which diddle with the internal timer,
trigger WARN if timer function doesn't match on queue.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: unify local CPU queueing handling

Queueing functions have been using different methods to determine the
local CPU.

* queue_work() superflously uses get/put_cpu() to acquire and hold the
  local CPU across queue_work_on().

* delayed_work_timer_fn() uses smp_processor_id().

* queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu
  which is interpreted as the local CPU.

* flush_delayed_work[_sync]() were using raw_smp_processor_id().

* __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the
  target workqueue is bound one but nobody uses this.

This patch converts all functions to uniformly use %WORK_CPU_UNBOUND
to indicate local CPU and use the local binding feature of
__queue_work().  unlikely() is dropped from %WORK_CPU_UNBOUND handling
in __queue_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix zero @delay handling of queue_delayed_work_on()

If @delay is zero and the dealyed_work is idle, queue_delayed_work()
queues it for immediate execution; however, queue_delayed_work_on()
lacks this logic and always goes through timer regardless of @delay.

This patch moves 0 @delay handling logic from queue_delayed_work() to
queue_delayed_work_on() so that both functions behave the same.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: move try_to_grab_pending() upwards

try_to_grab_pending() will be used by to-be-implemented
mod_delayed_work[_on]().  Move try_to_grab_pending() and related
functions above queueing functions.

This patch only moves functions around.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce WORK_OFFQ_FLAG_*

Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain
WORK_STRUCT_FLAG_* and flush color.  If the work item is queued, the
rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise,
WORK_STRUCT_CWQ is clear and the bits contain the last CPU number -
either a real CPU number or one of WORK_CPU_*.

Scheduled addition of mod_delayed_work[_on]() requires an additional
flag, which is used only while a work item is off queue.  There are
more than enough bits to represent off-queue CPU number on both 32 and
64bits.  This patch introduces WORK_OFFQ_FLAG_* which occupy the lower
part of the @work->data high bits while off queue.  This patch doesn't
define any actual OFFQ flag yet.

Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds
the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to
make room for OFFQ flags.

To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong
cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON()
to check that there are enough bits to accomodate off-queue CPU number
is added.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: factor out __queue_delayed_work() from queue_delayed_work_on()

This is to prepare for mod_delayed_work[_on]() and doesn't cause any
functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()

* Use bool @is_dwork instead of @timer and let try_to_grab_pending()
  use to_delayed_work() to determine the delayed_work address.

* Move timer handling from __cancel_work_timer() to
  try_to_grab_pending().

* Make try_to_grab_pending() use -EAGAIN instead of -1 for
  busy-looping and drop the ret local variable.

* Add proper function comment to try_to_grab_pending().

This makes the code a bit easier to understand and will ease further
changes.  This patch doesn't make any functional change.

v2: Use @is_dwork instead of @timer.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: mark a work item being canceled as such

There can be two reasons try_to_grab_pending() can fail with -EAGAIN.
One is when someone else is queueing or deqeueing the work item.  With
the previous patches, it is guaranteed that PENDING and queued state
will soon agree making it safe to busy-retry in this case.

The other is if multiple __cancel_work_timer() invocations are racing
one another.  __cancel_work_timer() grabs PENDING and then waits for
running instances of the target work item on all CPUs while holding
PENDING and !queued.  try_to_grab_pending() invoked from another task
will keep returning -EAGAIN while the current owner is waiting.

Not distinguishing the two cases is okay because __cancel_work_timer()
is the only user of try_to_grab_pending() and it invokes
wait_on_work() whenever grabbing fails.  For the first case, busy
looping should be fine but wait_on_work() doesn't cause any critical
problem.  For the latter case, the new contender usually waits for the
same condition as the current owner, so no unnecessarily extended
busy-looping happens.  Combined, these make __cancel_work_timer()
technically correct even without irq protection while grabbing PENDING
or distinguishing the two different cases.

While the current code is technically correct, not distinguishing the
two cases makes it difficult to use try_to_grab_pending() for other
purposes than canceling because it's impossible to tell whether it's
safe to busy-retry grabbing.

This patch adds a mechanism to mark a work item being canceled.
try_to_grab_pending() now disables irq on success and returns -EAGAIN
to indicate that grabbing failed but PENDING and queued states are
gonna agree soon and it's safe to busy-loop.  It returns -ENOENT if
the work item is being canceled and it may stay PENDING && !queued for
arbitrary amount of time.

__cancel_work_timer() is modified to mark the work canceling with
WORK_OFFQ_CANCELING after grabbing PENDING, thus making
try_to_grab_pending() fail with -ENOENT instead of -EAGAIN.  Also, it
invokes wait_on_work() iff grabbing failed with -ENOENT.  This isn't
necessary for correctness but makes it consistent with other future
users of try_to_grab_pending().

v2: try_to_grab_pending() was testing preempt_count() to ensure that
    the caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Updated so that try_to_grab_pending() disables irq on success
    rather than requiring preemption disabled by the caller.  This
    makes busy-looping easier and will allow try_to_grap_pending() to
    be used from bh/irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: implement mod_delayed_work[_on]()

Workqueue was lacking a mechanism to modify the timeout of an already
pending delayed_work.  delayed_work users have been working around
this using several methods - using an explicit timer + work item,
messing directly with delayed_work->timer, and canceling before
re-queueing, all of which are error-prone and/or ugly.

This patch implements mod_delayed_work[_on]() which behaves similarly
to mod_timer() - if the delayed_work is idle, it's queued with the
given delay; otherwise, its timeout is modified to the new value.
Zero @delay guarantees immediate execution.

v2: Updated to reflect try_to_grab_pending() changes.  Now safe to be
    called from bh context.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>

workqueue: fix CPU binding of flush_delayed_work[_sync]()

delayed_work encodes the workqueue to use and the last CPU in
delayed_work->work.data while it's on timer.  The target CPU is
implicitly recorded as the CPU the timer is queued on and
delayed_work_timer_fn() queues delayed_work->work to the CPU it is
running on.

Unfortunately, this leaves flush_delayed_work[_sync]() no way to find
out which CPU the delayed_work was queued for when they try to
re-queue after killing the timer.  Currently, it chooses the local CPU
flush is running on.  This can unexpectedly move a delayed_work queued
on a specific CPU to another CPU and lead to subtle errors.

There isn't much point in trying to save several bytes in struct
delayed_work, which is already close to a hundred bytes on 64bit with
all debug options turned off.  This patch adds delayed_work->cpu to
remember the CPU it's queued for.

Note that if the timer is migrated during CPU down, the work item
could be queued to the downed global_cwq after this change.  As a
detached global_cwq behaves like an unbound one, this doesn't change
much for the delayed_work.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: add missing wmb() in clear_work_data()

Any operation which clears PENDING should be preceded by a wmb to
guarantee that the next PENDING owner sees all the changes made before
PENDING release.

There are only two places where PENDING is cleared -
set_work_cpu_and_clear_pending() and clear_work_data().  The caller of
the former already does smp_wmb() but the latter doesn't have any.

Move the wmb above set_work_cpu_and_clear_pending() into it and add
one to clear_work_data().

There hasn't been any report related to this issue, and, given how
clear_work_data() is used, it is extremely unlikely to have caused any
actual problems on any architecture.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>

workqueue: use enum value to set array size of pools in gcwq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool
for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent
size of pools, definition of worker_pool in gcwq doesn't use it.
Using it makes code robust and prevent future mistakes.
So change code to use this enum value.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: correct req_cpu in trace_workqueue_queue_work()

When we do tracing workqueue_queue_work(), it records requested cpu.
But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND,
requested cpu is changed as local cpu.
In case of @wq->flag & WQ_UNBOUND, above change is not occured,
therefore it is reasonable to correct it.

Use temporary local variable for storing requested cpu.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: change value of lcpu in __queue_delayed_work_on()

We assign cpu id into work struct's data field in __queue_delayed_work_on().
In current implementation, when work is come in first time,
current running cpu id is assigned.
If we do __queue_delayed_work_on() with CPU A on CPU B,
__queue_work() invoked in delayed_work_timer_fn() go into
the following sub-optimal path in case of WQ_NON_REENTRANT.

	gcwq = get_gcwq(cpu);
	if (wq->flags & WQ_NON_REENTRANT &&
		(last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {

Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND.
It is sufficient to prevent to go into sub-optimal path.

tj: Slightly rephrased the comment.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce system_highpri_wq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool
for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker
or highpri worker. But, we don't consider this difference in rebind_workers(),
we use just system_wq for highpri worker. It makes mismatch between
cwq->pool and worker->pool.

It doesn't make error in current implementation, but possible in the future.
Now, we introduce system_highpri_wq to use proper cwq for highpri workers
in rebind_workers(). Following patch fix this issue properly.

tj: Even apart from rebinding, having system_highpri_wq generally
    makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for highpri workers in rebind_workers()

In rebind_workers(), we do inserting a work to rebind to cpu for busy workers.
Currently, in this case, we use only system_wq. This makes a possible
error situation as there is mismatch between cwq->pool and worker->pool.

To prevent this, we should use system_highpri_wq for highpri worker
to match theses. This implements it.

tj: Rephrased comment a bit.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for unbind_work

To speed cpu down processing up, use system_highpri_wq.
As scheduling priority of workers on it is higher than system_wq and
it is not contended by other normal works on this cpu, work on it
is processed faster than system_wq.

tj: CPU up/downs care quite a bit about latency these days.  This
    shouldn't hurt anything and makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix checkpatch issues

Fixed some checkpatch warnings.

tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit.

Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>

workqueue: make all workqueues non-reentrant

By default, each per-cpu part of a bound workqueue operates separately
and a work item may be executing concurrently on different CPUs.  The
behavior avoids some cross-cpu traffic but leads to subtle weirdities
and not-so-subtle contortions in the API.

* There's no sane usefulness in allowing a single work item to be
  executed concurrently on multiple CPUs.  People just get the
  behavior unintentionally and get surprised after learning about it.
  Most either explicitly synchronize or use non-reentrant/ordered
  workqueue but this is error-prone.

* flush_work() can't wait for multiple instances of the same work item
  on different CPUs.  If a work item is executing on cpu0 and then
  queued on cpu1, flush_work() can only wait for the one on cpu1.

  Unfortunately, work items can easily cross CPU boundaries
  unintentionally when the queueing thread gets migrated.  This means
  that if multiple queuers compete, flush_work() can't even guarantee
  that the instance queued right before it is finished before
  returning.

* flush_work_sync() was added to work around some of the deficiencies
  of flush_work().  In addition to the usual flushing, it ensures that
  all currently executing instances are finished before returning.
  This operation is expensive as it has to walk all CPUs and at the
  same time fails to address competing queuer case.

  Incorrectly using flush_work() when flush_work_sync() is necessary
  is an easy error to make and can lead to bugs which are difficult to
  reproduce.

* Similar problems exist for flush_delayed_work[_sync]().

Other than the cross-cpu access concern, there's no benefit in
allowing parallel execution and it's plain silly to have this level of
contortion for workqueue which is widely used from core code to
extremely obscure drivers.

This patch makes all workqueues non-reentrant.  If a work item is
executing on a different CPU when queueing is requested, it is always
queued to that CPU.  This guarantees that any given work item can be
executing on one CPU at maximum and if a work item is queued and
executing, both are on the same CPU.

The only behavior change which may affect workqueue users negatively
is that non-reentrancy overrides the affinity specified by
queue_work_on().  On a reentrant workqueue, the affinity specified by
queue_work_on() is always followed.  Now, if the work item is
executing on one of the CPUs, the work item will be queued there
regardless of the requested affinity.  I've reviewed all workqueue
users which request explicit affinity, and, fortunately, none seems to
be crazy enough to exploit parallel execution of the same work item.

This adds an additional busy_hash lookup if the work item was
previously queued on a different CPU.  This shouldn't be noticeable
under any sane workload.  Work item queueing isn't a very
high-frequency operation and they don't jump across CPUs all the time.
In a micro benchmark to exaggerate this difference - measuring the
time it takes for two work items to repeatedly jump between two CPUs a
number (10M) of times with busy_hash table densely populated, the
difference was around 3%.

While the overhead is measureable, it is only visible in pathological
cases and the difference isn't huge.  This change brings much needed
sanity to workqueue and makes its behavior consistent with timer.  I
think this is the right tradeoff to make.

This enables significant simplification of workqueue API.
Simplification patches will follow.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut flush[_delayed]_work_sync()

Now that all workqueues are non-reentrant, flush[_delayed]_work_sync()
are equivalent to flush[_delayed]_work().  Drop the separate
implementation and make them thin wrappers around
flush[_delayed]_work().

* start_flush_work() no longer takes @wait_executing as the only left
  user - flush_work() - always sets it to %true.

* __cancel_work_timer() uses flush_work() instead of wait_on_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut system_nrt[_freezable]_wq()

Now that all workqueues are non-reentrant, system[_freezable]_wq() are
equivalent to system_nrt[_freezable]_wq().  Replace the latter with
wrappers around system[_freezable]_wq().  The wrapping goes through
inline functions so that __deprecated can be added easily.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: cosmetic whitespace updates for macro definitions

Consistently use the last tab position for '\' line continuation in
complex macro definitions.  This is to help the following patches.

This patch is cosmetic.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()

workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so
hotcpu_notifier() fits better than cpu_notifier().

When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same.

When HOTPLUG_CPU=n, if we use cpu_notifier(),
workqueue_cpu_down_callback() will be called during boot to do
nothing, and the memory of workqueue_cpu_down_callback() and
gcwq_unbind_fn() will be discarded after boot.

If we use hotcpu_notifier(), we can avoid the no-op call of
workqueue_cpu_down_callback() and the memory of
workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at
build time:

$ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
-rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier
-rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier

$ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
   text	   data	    bss	    dec	    hex	filename
  18513	   2387	   1221	  22121	   5669	kernel/workqueue.o.cpu_notifier
  18082	   2355	   1221	  21658	   549a	kernel/workqueue.o.hotcpu_notifier

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()

cancel_delayed_work() can't be called from IRQ handlers due to its use
of del_timer_sync() and can't cancel work items which are already
transferred from timer to worklist.

Also, unlike other flush and cancel functions, a canceled delayed_work
would still point to the last associated cpu_workqueue.  If the
workqueue is destroyed afterwards and the work item is re-used on a
different workqueue, the queueing code can oops trying to dereference
already freed cpu_workqueue.

This patch reimplements cancel_delayed_work() using
try_to_grab_pending() and set_work_cpu_and_clear_pending().  This
allows the function to be called from IRQ handlers and makes its
behavior consistent with other flush / cancel functions.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic

The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function

This doesn't make any functional difference and is purely to help the
next patch to be simpler.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>

workqueue: fix possible deadlock in idle worker rebinding

Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked.  rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.

Unfortunately, this isn't enough.  The second wait from idle workers
is implemented as follows.

	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));

rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns.  If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.

This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning.  This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.

This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.

This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>

workqueue: restore POOL_MANAGING_WORKERS

This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".

There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management.  POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.

This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes.  The
next patch will update it.

Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress.  While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.

tj: Rewrote patch description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible idle worker depletion across CPU hotplug

To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress.  This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.

If someone else seems to be performing the manager role, workers
proceed to execute work items.  CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.

This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.

This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion.  For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used.  pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug.  The elected manager won't proceed
without holding pool->manager_mutex.

This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress.  It will block on
manager_mutex and perform management after CPU hotplug is complete.

Note that hotplug may happen while waiting for manager_mutex.  A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it.  Make the manager handle its own un/rebinding.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()

busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed
(CPU is down again).  This used to be okay because the flag wasn't
used for anything else.

However, after 25511a477 "workqueue: reimplement CPU online rebinding
to handle idle workers", WORKER_REBIND is also used to command idle
workers to rebind.  If not cleared, the worker may confuse the next
CPU_UP cycle by having REBIND spuriously set or oops / get stuck by
prematurely calling idle_worker_rebind().

  WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5
 00()
  Hardware name: Bochs
  Modules linked in: test_wq(O-)
  Pid: 33, comm: kworker/1:1 Tainted: G           O 3.6.0-rc1-work+ #3
  Call Trace:
   [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0
   [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20
   [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  ---[ end trace e977cf20f4661968 ]---
  BUG: unable to handle kernel NULL pointer dereference at           (null)
  IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500
  PGD 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: test_wq(O-)
  CPU 0
  Pid: 33, comm: kworker/1:1 Tainted: G        W  O 3.6.0-rc1-work+ #3 Bochs Bochs
  RIP: 0010:[<ffffffff810b3db0>]  [<ffffffff810b3db0>] worker_thread+0x360/0x500
  RSP: 0018:ffff88001e1c9de0  EFLAGS: 00010086
  RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009
  RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001
  R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580
  R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900
  FS:  0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900)
  Stack:
   ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010
   ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900
   ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340
  Call Trace:
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b
  RIP  [<ffffffff810b3db0>] worker_thread+0x360/0x500
   RSP <ffff88001e1c9de0>
  CR2: 0000000000000000

There was no reason to keep WORKER_REBIND on failure in the first
place - WORKER_UNBOUND is guaranteed to be set in such cases
preventing incorrectly activating concurrency management.  Always
clear WORKER_REBIND.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement idle worker rebinding

Currently rebind_workers() uses rebinds idle workers synchronously
before proceeding to requesting busy workers to rebind.  This is
necessary because all workers on @worker_pool->idle_list must be bound
before concurrency management local wake-ups from the busy workers
take place.

Unfortunately, the synchronous idle rebinding is quite complicated.
This patch reimplements idle rebinding to simplify the code path.

Rather than trying to make all idle workers bound before rebinding
busy workers, we simply remove all to-be-bound idle workers from the
idle list and let them add themselves back after completing rebinding
(successful or not).

As only workers which finished rebinding can on on the idle worker
list, the idle worker list is guaranteed to have only bound workers
unless CPU went down again and local wake-ups are safe.

After the change, @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list.  More specifically,
nr_idle may be non-zero while ->idle_list is empty.  All users of
->nr_idle and ->idle_list are audited.  The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.

After this patch, rebind_workers() no longer performs the nasty
idle-rebind retries which require temporary release of gcwq->lock, and
both unbinding and rebinding are atomic w.r.t. global_cwq->lock.

worker->idle_rebind and global_cwq->rebind_hold are now unnecessary
and removed along with the definition of struct idle_rebind.

Changed from V1:
	1) remove unlikely from too_many_workers(), ->idle_list can be empty
	   anytime, even before this patch, no reason to use unlikely.
	2) fix a small rebasing mistake.
	   (which is from rebasing the orignal fixing patch to for-next)
	3) add a lot of comments.
	4) clear WORKER_REBIND unconditionaly in idle_worker_rebind()

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for busy rebinding

Because the old unbind/rebinding implementation wasn't atomic w.r.t.
GCWQ_DISASSOCIATED manipulation which is protected by
global_cwq->lock, we had to use two flags, WORKER_UNBOUND and
WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with
back-to-back CPU hotplug operations; otherwise, completion of
rebinding while another unbinding is in progress could clear UNBIND
prematurely.

Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED,
there's no need to use two flags.  Just one is enough.  Don't use
WORKER_REBIND for busy rebinding.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for idle rebinding

Now both worker destruction and idle rebinding remove the worker from
idle list while it's still idle, so list_empty(&worker->entry) can be
used to test whether either is pending and WORKER_DIE to distinguish
between the two instead making WORKER_REBIND unnecessary.

Use list_empty(&worker->entry) to determine whether destruction or
rebinding is pending.  This simplifies worker state transitions.

WORKER_REBIND is not needed anymore.  Remove it.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: rename manager_mutex to assoc_mutex

Now that manager_mutex's role has changed from synchronizing manager
role to excluding hotplug against manager, the name is misleading.

As it is protecting the CPU-association of the gcwq now, rename it to
assoc_mutex.

This patch is pure rename and doesn't introduce any functional change.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use __cpuinit instead of __devinit for cpu callbacks

For workqueue hotplug callbacks, it makes less sense to use __devinit
which discards the memory after boot if !HOTPLUG.  __cpuinit, which
discards the memory after boot if !HOTPLUG_CPU fits better.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible stall on try_to_grab_pending() of a delayed work item

Currently, when try_to_grab_pending() grabs a delayed work item, it
leaves its linked work items alone on the delayed_works.  The linked
work items are always NO_COLOR and will cause future
cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and
may cause the whole cwq to stall.  For example,

state: cwq->max_active = 1, cwq->nr_active = 1
       one work in cwq->pool, many in cwq->delayed_works.

step1: try_to_grab_pending() removes a work item from delayed_works
       but leaves its NO_COLOR linked work items on it.

step2: Later on, cwq_activate_first_delayed() activates the linked
       work item increasing ->nr_active.

step3: cwq->nr_active = 1, but all activated work items of the cwq are
       NO_COLOR.  When they finish, cwq->nr_active will not be
       decreased due to NO_COLOR, and no further work items will be
       activated from cwq->delayed_works. the cwq stalls.

Fix it by ensuring the target work item is activated before stealing
PENDING in try_to_grab_pending().  This ensures that all the linked
work items are activated without incorrectly bumping cwq->nr_active.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org

workqueue: reimplement work_on_cpu() using system_wq

The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org

workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()

Using a helper instead of open code makes thaw_workqueues() clearer.
The helper will also be used by the next patch.

tj: Slight update to comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()

workqueue_set_max_active() may increase ->max_active without
activating delayed works and may make the activation order differ from
the queueing order.  Both aren't strictly bugs but the resulting
behavior could be a bit odd.

To make things more consistent, use cwq_set_max_active() helper which
immediately makes use of the newly increased max_mactive if there are
delayed work items and also keeps the activation order.

tj: Slight update to description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()

e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made
try_to_grab_pending() safe to use from irq context but forgot to
remove WARN_ON_ONCE(in_irq()).  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>

workqueue: cancel_delayed_work() should return %false if work item is idle

57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.

try_to_grab_pending() indicates that the target work item was idle by
zero return value.  Use it for return.  Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.

Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>

workqueue: exit rescuer_thread() as TASK_RUNNING

A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay

8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()")
implemented mod_delayed_work[_on]() using the improved
try_to_grab_pending().  The function is later used, among others, to
replace [__]candel_delayed_work() + queue_delayed_work() combinations.

Unfortunately, a delayed_work item w/ zero @delay is handled slightly
differently by mod_delayed_work_on() compared to
queue_delayed_work_on().  The latter skips timer altogether and
directly queues it using queue_work_on() while the former schedules
timer which will expire on the closest tick.  This means, when @delay
is zero, that [__]cancel_delayed_work() + queue_delayed_work_on()
makes the target item immediately executable while
mod_delayed_work_on() may induce delay of upto a full tick.

This somewhat subtle difference breaks some of the converted users.
e.g. block queue plugging uses delayed_work for deferred processing
and uses mod_delayed_work_on() when the queue needs to be immediately
unplugged.  The above problem manifested as noticeably higher number
of context switches under certain circumstances.

The difference in behavior was caused by missing special case handling
for 0 delay in mod_delayed_work_on() compared to
queue_delayed_work_on().  Joonsoo Kim posted a patch to add it -
("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1].
The patch was queued for 3.8 but it was described as optimization and
I missed that it was a correctness issue.

As both queue_delayed_work_on() and mod_delayed_work_on() use
__queue_delayed_work() for queueing, it seems that the better approach
is to move the 0 delay special handling to the function instead of
duplicating it in mod_delayed_work_on().

Fix the problem by moving 0 delay special case handling from
queue_delayed_work_on() to __queue_delayed_work().  This replaces
Joonsoo's patch.

[1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Anders Kaseorg <andersk@MIT.EDU>
Reported-and-tested-by: Zlatko Calusic <zlatko.calusic@iskon.hr>
LKML-Reference: <alpine.DEB.2.00.1211280953350.26602@dr-wily.mit.edu>
LKML-Reference: <50A78AA9.5040904@iskon.hr>
Cc: Joonsoo Kim <js1304@gmail.com>

workqueue: trivial fix for return statement in work_busy()

Return type of work_busy() is unsigned int.
There is return statement returning boolean value, 'false' in work_busy().
It is not problem, because 'false' may be treated '0'.
However, fixing it would make code robust.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up()

Recently, workqueue code has gone through some changes and we found
some bugs related to concurrency management operations happening on
the wrong CPU.  When a worker is concurrency managed
(!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and
woken up to that cpu.  Add WARN_ON_ONCE() to verify this.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s

8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().

Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work.  8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().

Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>

wq

Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229
Signed-off-by: franciscofranco <franciscofranco.1990@gmail.com>
SaiAvinash92 pushed a commit to SaiAvinash92/mako that referenced this pull request Dec 28, 2014
The offset must be multiplied by 4 to be sure to access the correct
32bit word in the stack scratch space.

For instance, a store at scratch memory cell aosp-mirror#1 was generating the
following:

st	r4, [sp, aosp-mirror#1]

While the correct code for this is:

st	r4, [sp, aosp-mirror#4]

To reproduce the bug (assuming your system has a NIC with the mac
address 52:54:00:12:34:56):

echo 0 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will capture packets as expected

echo 1 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will not.

This bug was present since the original inclusion of bpf_jit for ARM
(ddecdfc: ARM: 7259/3: net: JIT compiler for packet filters).

Signed-off-by: Nicolas Schichan <nschichan@freebox.fr>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
SaiAvinash92 pushed a commit to SaiAvinash92/mako that referenced this pull request Jan 20, 2015
workqueue: change BUG_ON() to WARN_ON()

This BUG_ON() can be triggered if you call schedule_work() before
calling INIT_WORK().  It is a bug definitely, but it's nicer to just
print a stack trace and return.

Reported-by: Matt Renzelmann <mjr@cs.wisc.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: Catch more locking problems with flush_work()

If a workqueue is flushed with flush_work() lockdep checking can
be circumvented. For example:

 static DEFINE_MUTEX(mutex);

 static void my_work(struct work_struct *w)
 {
         mutex_lock(&mutex);
         mutex_unlock(&mutex);
 }

 static DECLARE_WORK(work, my_work);

 static int __init start_test_module(void)
 {
         schedule_work(&work);
         return 0;
 }
 module_init(start_test_module);

 static void __exit stop_test_module(void)
 {
         mutex_lock(&mutex);
         flush_work(&work);
         mutex_unlock(&mutex);
 }
 module_exit(stop_test_module);

would not always print a warning when flush_work() was called.
In this trivial example nothing could go wrong since we are
guaranteed module_init() and module_exit() don't run concurrently,
but if the work item is schedule asynchronously we could have a
scenario where the work item is running just at the time flush_work()
is called resulting in a classic ABBA locking problem.

Add a lockdep hint by acquiring and releasing the work item
lockdep_map in flush_work() so that we always catch this
potential deadlock scenario.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

lockdep: fix oops in processing workqueue

Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].

Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.

Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.

Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.

Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].

Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().

* Patch orginally from Peter.  Hugh modified it a bit and wrote the
  description.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: perform cpu down operations from low priority cpu_notifier()

Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers.  This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.

Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers.  This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.

However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress.  Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.

While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.

Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.

Workqueue cpu hotplug operations will soon go through further cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop CPU_DYING notifier operation

Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED.
This was necessary because workqueue's CPU_DOWN_PREPARE happened
before other DOWN_PREPARE notifiers and workqueue needed to stay
associated across the rest of DOWN_PREPARE.

After the previous patch, workqueue's DOWN_PREPARE happens after
others and can set GCWQ_DISASSOCIATED directly.  Drop CPU_DYING and
let the trustee set GCWQ_DISASSOCIATED after disabling concurrency
management.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: ROGUE workers are UNBOUND workers

Currently, WORKER_UNBOUND is used to mark workers for the unbound
global_cwq and WORKER_ROGUE is used to mark workers for disassociated
per-cpu global_cwqs.  Both are used to make the marked worker skip
concurrency management and the only place they make any difference is
in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling
idle timer, which can easily be replaced with trustee state testing.

This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops
WORKER_ROGUE.  This is to prepare for removing trustee and handling
disassociated global_cwqs as unbound.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: use mutex for global_cwq manager exclusion

POOL_MANAGING_WORKERS is used to ensure that at most one worker takes
the manager role at any given time on a given global_cwq.  Trustee
later hitched on it to assume manager adding blocking wait for the
bit.  As trustee already needed a custom wait mechanism, waiting for
MANAGING_WORKERS was rolled into the same mechanism.

Trustee is scheduled to be removed.  This patch separates out
MANAGING_WORKERS wait into per-pool mutex.  Workers use
mutex_trylock() to test for manager role and trustee uses mutex_lock()
to claim manager roles.

gcwq_claim/release_management() helpers are added to grab and release
manager roles of all pools on a global_cwq.  gcwq_claim_management()
always grabs pool manager mutexes in ascending pool index order and
uses pool index as lockdep subclass.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop @bind from create_worker()

Currently, create_worker()'s callers are responsible for deciding
whether the newly created worker should be bound to the associated CPU
and create_worker() sets WORKER_UNBOUND only for the workers for the
unbound global_cwq.  Creation during normal operation is always via
maybe_create_worker() and @bind is true.  For workers created during
hotplug, @bind is false.

Normal operation path is planned to be used even while the CPU is
going through hotplug operations or offline and this static decision
won't work.

Drop @bind from create_worker() and decide whether to bind by looking
at GCWQ_DISASSOCIATED.  create_worker() will also set WORKER_UNBOUND
autmatically if disassociated.  To avoid flipping GCWQ_DISASSOCIATED
while create_worker() is in progress, the flag is now allowed to be
changed only while holding all manager_mutexes on the global_cwq.

This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's
back.  CPU_ONLINE no longer clears DISASSOCIATED before flushing
trustee, which clears DISASSOCIATED before rebinding remaining workers
if asked to release.  For cases where trustee isn't around, CPU_ONLINE
clears DISASSOCIATED after flushing trustee.  Also, now, first_idle
has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE
while binding it.  These convolutions will soon be removed by further
simplification of CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: reimplement CPU online rebinding to handle idle workers

Currently, if there are left workers when a CPU is being brough back
online, the trustee kills all idle workers and scheduled rebind_work
so that they re-bind to the CPU after the currently executing work is
finished.  This works for busy workers because concurrency management
doesn't try to wake up them from scheduler callbacks, which require
the target task to be on the local run queue.  The busy worker bumps
concurrency counter appropriately as it clears WORKER_UNBOUND from the
rebind work item and it's bound to the CPU before returning to the
idle state.

To reduce CPU on/offlining overhead (as many embedded systems use it
for powersaving) and simplify the code path, workqueue is planned to
be modified to retain idle workers across CPU on/offlining.  This
patch reimplements CPU online rebinding such that it can also handle
idle workers.

As noted earlier, due to the local wakeup requirement, rebinding idle
workers is tricky.  All idle workers must be re-bound before scheduler
callbacks are enabled.  This is achieved by interlocking idle
re-binding.  Idle workers are requested to re-bind and then hold until
all idle re-binding is complete so that no bound worker starts
executing work item.  Only after all idle workers are re-bound and
parked, CPU_ONLINE proceeds to release them and queue rebind work item
to busy workers thus guaranteeing scheduler callbacks aren't invoked
until all idle workers are ready.

worker_rebind_fn() is renamed to busy_worker_rebind_fn() and
idle_worker_rebind() for idle workers is added.  Rebinding logic is
moved to rebind_workers() and now called from CPU_ONLINE after
flushing trustee.  While at it, add CPU sanity check in
worker_thread().

Note that now a worker may become idle or the manager between trustee
release and rebinding during CPU_ONLINE.  As the previous patch
updated create_worker() so that it can be used by regular manager
while unbound and this patch implements idle re-binding, this is safe.

This prepares for removal of trustee and keeping idle workers across
CPU hotplugs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: don't butcher idle workers on an offline CPU

Currently, during CPU offlining, after all pending work items are
drained, the trustee butchers all workers.  Also, on CPU onlining
failure, workqueue_cpu_callback() ensures that the first idle worker
is destroyed.  Combined, these guarantee that an offline CPU doesn't
have any worker for it once all the lingering work items are finished.

This guarantee isn't really necessary and makes CPU on/offlining more
expensive than needs to be, especially for platforms which use CPU
hotplug for powersaving.

This patch lets offline CPUs removes idle worker butchering from the
trustee and let a CPU which failed onlining keep the created first
worker.  The first worker is created if the CPU doesn't have any
during CPU_DOWN_PREPARE and started right away.  If onlining succeeds,
the rebind_workers() call in CPU_ONLINE will rebind it like any other
workers.  If onlining fails, the worker is left alone till the next
try.

This makes CPU hotplugs cheaper by allowing global_cwqs to keep
workers across them and simplifies code.

Note that trustee doesn't re-arm idle timer when it's done and thus
the disassociated global_cwq will keep all workers until it comes back
online.  This will be improved by further patches.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: remove CPU offline trustee

With the previous changes, a disassociated global_cwq now can run as
an unbound one on its own - it can create workers as necessary to
drain remaining works after the CPU has been brought down and manage
the number of workers using the usual idle timer mechanism making
trustee completely redundant except for the actual unbinding
operation.

This patch removes the trustee and let a disassociated global_cwq
manage itself.  Unbinding is moved to a work item (for CPU affinity)
which is scheduled and flushed from CPU_DONW_PREPARE.

This patch moves nr_running clearing outside gcwq and manager locks to
simplify the code.  As nr_running is unused at the point, this is
safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: simplify CPU hotplug code

With trustee gone, CPU hotplug code can be simplified.

* gcwq_claim/release_management() now grab and release gcwq lock too
  respectively and gained _and_lock and _and_unlock postfixes.

* All CPU hotplug logic was implemented in workqueue_cpu_callback()
  which was called by workqueue_cpu_up/down_callback() for the correct
  priority.  This was because up and down paths shared a lot of logic,
  which is no longer true.  Remove workqueue_cpu_callback() and move
  all hotplug logic into the two actual callbacks.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: fix spurious CPU locality WARN from process_one_work()

25511a4776 "workqueue: reimplement CPU online rebinding to handle idle
workers" added CPU locality sanity check in process_one_work().  It
triggers if a worker is executing on a different CPU without UNBOUND
or REBIND set.

This works for all normal workers but rescuers can trigger this
spuriously when they're serving the unbound or a disassociated
global_cwq - rescuers don't have either flag set and thus its
gcwq->cpu can be a different value including %WORK_CPU_UNBOUND.

Fix it by additionally testing %GCWQ_DISASSOCIATED.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Refence: <20120721213656.GA7783@linux.vnet.ibm.com>

workqueue: reorder queueing functions so that _on() variants are on top

Currently, queue/schedule[_delayed]_work_on() are located below the
counterpart without the _on postifx even though the latter is usually
implemented using the former.  Swap them.

This is cleanup and doesn't cause any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: make queueing functions return bool

All queueing functions return 1 on success, 0 if the work item was
already pending.  Update them to return bool instead.  This signifies
better that they don't return 0 / -errno.

This is cleanup and doesn't cause any functional difference.

While at it, fix comment opening for schedule_work_on().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add missing smp_wmb() in process_one_work()

WORK_STRUCT_PENDING is used to claim ownership of a work item and
process_one_work() releases it before starting execution.  When
someone else grabs PENDING, all pre-release updates to the work item
should be visible and all updates made by the new owner should happen
afterwards.

Grabbing PENDING uses test_and_set_bit() and thus has a full barrier;
however, clearing doesn't have a matching wmb.  Given the preceding
spin_unlock and use of clear_bit, I don't believe this can be a
problem on an actual machine and there hasn't been any related report
but it still is theretically possible for clear_pending to permeate
upwards and happen before work->entry update.

Add an explicit smp_wmb() before work_clear_pending().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org

workqueue: disable irq while manipulating PENDING

Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access
to the target work item.  They first try to claim the bit and proceed
with queueing only after that succeeds and there's a window between
PENDING being set and the actual queueing where the task can be
interrupted or preempted.

There's also a similar window in process_one_work() when clearing
PENDING.  A work item is dequeued, gcwq->lock is released and then
PENDING is cleared and the worker might get interrupted or preempted
between releasing gcwq->lock and clearing PENDING.

cancel[_delayed]_work_sync() tries to claim or steal PENDING.  The
function assumes that a work item with PENDING is either queued or in
the process of being [de]queued.  In the latter case, it busy-loops
until either the work item loses PENDING or is queued.  If canceling
coincides with the above described interrupts or preemptions, the
canceling task will busy-loop while the queueing or executing task is
preempted.

This patch keeps irq disabled across claiming PENDING and actual
queueing and moves PENDING clearing in process_one_work() inside
gcwq->lock so that busy looping from PENDING && !queued doesn't wait
for interrupted/preempted tasks.  Note that, in process_one_work(),
setting last CPU and clearing PENDING got merged into single
operation.

This removes possible long busy-loops and will allow using
try_to_grab_pending() from bh and irq contexts.

v2: __queue_work() was testing preempt_count() to ensure that the
    caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Disable irq instead of preemption.  IRQ will be disabled while
    grabbing gcwq->lock later anyway and this allows using
    try_to_grab_pending() from bh and irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: set delayed_work->timer function on initialization

delayed_work->timer.function is currently initialized during
queue_delayed_work_on().  Export delayed_work_timer_fn() and set
delayed_work timer function during delayed_work initialization
together with other fields.

This ensures the timer function is always valid on an initialized
delayed_work.  This is to help mod_delayed_work() implementation.

To detect delayed_work users which diddle with the internal timer,
trigger WARN if timer function doesn't match on queue.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: unify local CPU queueing handling

Queueing functions have been using different methods to determine the
local CPU.

* queue_work() superflously uses get/put_cpu() to acquire and hold the
  local CPU across queue_work_on().

* delayed_work_timer_fn() uses smp_processor_id().

* queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu
  which is interpreted as the local CPU.

* flush_delayed_work[_sync]() were using raw_smp_processor_id().

* __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the
  target workqueue is bound one but nobody uses this.

This patch converts all functions to uniformly use %WORK_CPU_UNBOUND
to indicate local CPU and use the local binding feature of
__queue_work().  unlikely() is dropped from %WORK_CPU_UNBOUND handling
in __queue_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix zero @delay handling of queue_delayed_work_on()

If @delay is zero and the dealyed_work is idle, queue_delayed_work()
queues it for immediate execution; however, queue_delayed_work_on()
lacks this logic and always goes through timer regardless of @delay.

This patch moves 0 @delay handling logic from queue_delayed_work() to
queue_delayed_work_on() so that both functions behave the same.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: move try_to_grab_pending() upwards

try_to_grab_pending() will be used by to-be-implemented
mod_delayed_work[_on]().  Move try_to_grab_pending() and related
functions above queueing functions.

This patch only moves functions around.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce WORK_OFFQ_FLAG_*

Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain
WORK_STRUCT_FLAG_* and flush color.  If the work item is queued, the
rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise,
WORK_STRUCT_CWQ is clear and the bits contain the last CPU number -
either a real CPU number or one of WORK_CPU_*.

Scheduled addition of mod_delayed_work[_on]() requires an additional
flag, which is used only while a work item is off queue.  There are
more than enough bits to represent off-queue CPU number on both 32 and
64bits.  This patch introduces WORK_OFFQ_FLAG_* which occupy the lower
part of the @work->data high bits while off queue.  This patch doesn't
define any actual OFFQ flag yet.

Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds
the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to
make room for OFFQ flags.

To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong
cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON()
to check that there are enough bits to accomodate off-queue CPU number
is added.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: factor out __queue_delayed_work() from queue_delayed_work_on()

This is to prepare for mod_delayed_work[_on]() and doesn't cause any
functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()

* Use bool @is_dwork instead of @timer and let try_to_grab_pending()
  use to_delayed_work() to determine the delayed_work address.

* Move timer handling from __cancel_work_timer() to
  try_to_grab_pending().

* Make try_to_grab_pending() use -EAGAIN instead of -1 for
  busy-looping and drop the ret local variable.

* Add proper function comment to try_to_grab_pending().

This makes the code a bit easier to understand and will ease further
changes.  This patch doesn't make any functional change.

v2: Use @is_dwork instead of @timer.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: mark a work item being canceled as such

There can be two reasons try_to_grab_pending() can fail with -EAGAIN.
One is when someone else is queueing or deqeueing the work item.  With
the previous patches, it is guaranteed that PENDING and queued state
will soon agree making it safe to busy-retry in this case.

The other is if multiple __cancel_work_timer() invocations are racing
one another.  __cancel_work_timer() grabs PENDING and then waits for
running instances of the target work item on all CPUs while holding
PENDING and !queued.  try_to_grab_pending() invoked from another task
will keep returning -EAGAIN while the current owner is waiting.

Not distinguishing the two cases is okay because __cancel_work_timer()
is the only user of try_to_grab_pending() and it invokes
wait_on_work() whenever grabbing fails.  For the first case, busy
looping should be fine but wait_on_work() doesn't cause any critical
problem.  For the latter case, the new contender usually waits for the
same condition as the current owner, so no unnecessarily extended
busy-looping happens.  Combined, these make __cancel_work_timer()
technically correct even without irq protection while grabbing PENDING
or distinguishing the two different cases.

While the current code is technically correct, not distinguishing the
two cases makes it difficult to use try_to_grab_pending() for other
purposes than canceling because it's impossible to tell whether it's
safe to busy-retry grabbing.

This patch adds a mechanism to mark a work item being canceled.
try_to_grab_pending() now disables irq on success and returns -EAGAIN
to indicate that grabbing failed but PENDING and queued states are
gonna agree soon and it's safe to busy-loop.  It returns -ENOENT if
the work item is being canceled and it may stay PENDING && !queued for
arbitrary amount of time.

__cancel_work_timer() is modified to mark the work canceling with
WORK_OFFQ_CANCELING after grabbing PENDING, thus making
try_to_grab_pending() fail with -ENOENT instead of -EAGAIN.  Also, it
invokes wait_on_work() iff grabbing failed with -ENOENT.  This isn't
necessary for correctness but makes it consistent with other future
users of try_to_grab_pending().

v2: try_to_grab_pending() was testing preempt_count() to ensure that
    the caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Updated so that try_to_grab_pending() disables irq on success
    rather than requiring preemption disabled by the caller.  This
    makes busy-looping easier and will allow try_to_grap_pending() to
    be used from bh/irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: implement mod_delayed_work[_on]()

Workqueue was lacking a mechanism to modify the timeout of an already
pending delayed_work.  delayed_work users have been working around
this using several methods - using an explicit timer + work item,
messing directly with delayed_work->timer, and canceling before
re-queueing, all of which are error-prone and/or ugly.

This patch implements mod_delayed_work[_on]() which behaves similarly
to mod_timer() - if the delayed_work is idle, it's queued with the
given delay; otherwise, its timeout is modified to the new value.
Zero @delay guarantees immediate execution.

v2: Updated to reflect try_to_grab_pending() changes.  Now safe to be
    called from bh context.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>

workqueue: fix CPU binding of flush_delayed_work[_sync]()

delayed_work encodes the workqueue to use and the last CPU in
delayed_work->work.data while it's on timer.  The target CPU is
implicitly recorded as the CPU the timer is queued on and
delayed_work_timer_fn() queues delayed_work->work to the CPU it is
running on.

Unfortunately, this leaves flush_delayed_work[_sync]() no way to find
out which CPU the delayed_work was queued for when they try to
re-queue after killing the timer.  Currently, it chooses the local CPU
flush is running on.  This can unexpectedly move a delayed_work queued
on a specific CPU to another CPU and lead to subtle errors.

There isn't much point in trying to save several bytes in struct
delayed_work, which is already close to a hundred bytes on 64bit with
all debug options turned off.  This patch adds delayed_work->cpu to
remember the CPU it's queued for.

Note that if the timer is migrated during CPU down, the work item
could be queued to the downed global_cwq after this change.  As a
detached global_cwq behaves like an unbound one, this doesn't change
much for the delayed_work.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: add missing wmb() in clear_work_data()

Any operation which clears PENDING should be preceded by a wmb to
guarantee that the next PENDING owner sees all the changes made before
PENDING release.

There are only two places where PENDING is cleared -
set_work_cpu_and_clear_pending() and clear_work_data().  The caller of
the former already does smp_wmb() but the latter doesn't have any.

Move the wmb above set_work_cpu_and_clear_pending() into it and add
one to clear_work_data().

There hasn't been any report related to this issue, and, given how
clear_work_data() is used, it is extremely unlikely to have caused any
actual problems on any architecture.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>

workqueue: use enum value to set array size of pools in gcwq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool
for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent
size of pools, definition of worker_pool in gcwq doesn't use it.
Using it makes code robust and prevent future mistakes.
So change code to use this enum value.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: correct req_cpu in trace_workqueue_queue_work()

When we do tracing workqueue_queue_work(), it records requested cpu.
But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND,
requested cpu is changed as local cpu.
In case of @wq->flag & WQ_UNBOUND, above change is not occured,
therefore it is reasonable to correct it.

Use temporary local variable for storing requested cpu.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: change value of lcpu in __queue_delayed_work_on()

We assign cpu id into work struct's data field in __queue_delayed_work_on().
In current implementation, when work is come in first time,
current running cpu id is assigned.
If we do __queue_delayed_work_on() with CPU A on CPU B,
__queue_work() invoked in delayed_work_timer_fn() go into
the following sub-optimal path in case of WQ_NON_REENTRANT.

	gcwq = get_gcwq(cpu);
	if (wq->flags & WQ_NON_REENTRANT &&
		(last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {

Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND.
It is sufficient to prevent to go into sub-optimal path.

tj: Slightly rephrased the comment.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce system_highpri_wq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool
for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker
or highpri worker. But, we don't consider this difference in rebind_workers(),
we use just system_wq for highpri worker. It makes mismatch between
cwq->pool and worker->pool.

It doesn't make error in current implementation, but possible in the future.
Now, we introduce system_highpri_wq to use proper cwq for highpri workers
in rebind_workers(). Following patch fix this issue properly.

tj: Even apart from rebinding, having system_highpri_wq generally
    makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for highpri workers in rebind_workers()

In rebind_workers(), we do inserting a work to rebind to cpu for busy workers.
Currently, in this case, we use only system_wq. This makes a possible
error situation as there is mismatch between cwq->pool and worker->pool.

To prevent this, we should use system_highpri_wq for highpri worker
to match theses. This implements it.

tj: Rephrased comment a bit.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for unbind_work

To speed cpu down processing up, use system_highpri_wq.
As scheduling priority of workers on it is higher than system_wq and
it is not contended by other normal works on this cpu, work on it
is processed faster than system_wq.

tj: CPU up/downs care quite a bit about latency these days.  This
    shouldn't hurt anything and makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix checkpatch issues

Fixed some checkpatch warnings.

tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit.

Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>

workqueue: make all workqueues non-reentrant

By default, each per-cpu part of a bound workqueue operates separately
and a work item may be executing concurrently on different CPUs.  The
behavior avoids some cross-cpu traffic but leads to subtle weirdities
and not-so-subtle contortions in the API.

* There's no sane usefulness in allowing a single work item to be
  executed concurrently on multiple CPUs.  People just get the
  behavior unintentionally and get surprised after learning about it.
  Most either explicitly synchronize or use non-reentrant/ordered
  workqueue but this is error-prone.

* flush_work() can't wait for multiple instances of the same work item
  on different CPUs.  If a work item is executing on cpu0 and then
  queued on cpu1, flush_work() can only wait for the one on cpu1.

  Unfortunately, work items can easily cross CPU boundaries
  unintentionally when the queueing thread gets migrated.  This means
  that if multiple queuers compete, flush_work() can't even guarantee
  that the instance queued right before it is finished before
  returning.

* flush_work_sync() was added to work around some of the deficiencies
  of flush_work().  In addition to the usual flushing, it ensures that
  all currently executing instances are finished before returning.
  This operation is expensive as it has to walk all CPUs and at the
  same time fails to address competing queuer case.

  Incorrectly using flush_work() when flush_work_sync() is necessary
  is an easy error to make and can lead to bugs which are difficult to
  reproduce.

* Similar problems exist for flush_delayed_work[_sync]().

Other than the cross-cpu access concern, there's no benefit in
allowing parallel execution and it's plain silly to have this level of
contortion for workqueue which is widely used from core code to
extremely obscure drivers.

This patch makes all workqueues non-reentrant.  If a work item is
executing on a different CPU when queueing is requested, it is always
queued to that CPU.  This guarantees that any given work item can be
executing on one CPU at maximum and if a work item is queued and
executing, both are on the same CPU.

The only behavior change which may affect workqueue users negatively
is that non-reentrancy overrides the affinity specified by
queue_work_on().  On a reentrant workqueue, the affinity specified by
queue_work_on() is always followed.  Now, if the work item is
executing on one of the CPUs, the work item will be queued there
regardless of the requested affinity.  I've reviewed all workqueue
users which request explicit affinity, and, fortunately, none seems to
be crazy enough to exploit parallel execution of the same work item.

This adds an additional busy_hash lookup if the work item was
previously queued on a different CPU.  This shouldn't be noticeable
under any sane workload.  Work item queueing isn't a very
high-frequency operation and they don't jump across CPUs all the time.
In a micro benchmark to exaggerate this difference - measuring the
time it takes for two work items to repeatedly jump between two CPUs a
number (10M) of times with busy_hash table densely populated, the
difference was around 3%.

While the overhead is measureable, it is only visible in pathological
cases and the difference isn't huge.  This change brings much needed
sanity to workqueue and makes its behavior consistent with timer.  I
think this is the right tradeoff to make.

This enables significant simplification of workqueue API.
Simplification patches will follow.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut flush[_delayed]_work_sync()

Now that all workqueues are non-reentrant, flush[_delayed]_work_sync()
are equivalent to flush[_delayed]_work().  Drop the separate
implementation and make them thin wrappers around
flush[_delayed]_work().

* start_flush_work() no longer takes @wait_executing as the only left
  user - flush_work() - always sets it to %true.

* __cancel_work_timer() uses flush_work() instead of wait_on_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut system_nrt[_freezable]_wq()

Now that all workqueues are non-reentrant, system[_freezable]_wq() are
equivalent to system_nrt[_freezable]_wq().  Replace the latter with
wrappers around system[_freezable]_wq().  The wrapping goes through
inline functions so that __deprecated can be added easily.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: cosmetic whitespace updates for macro definitions

Consistently use the last tab position for '\' line continuation in
complex macro definitions.  This is to help the following patches.

This patch is cosmetic.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()

workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so
hotcpu_notifier() fits better than cpu_notifier().

When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same.

When HOTPLUG_CPU=n, if we use cpu_notifier(),
workqueue_cpu_down_callback() will be called during boot to do
nothing, and the memory of workqueue_cpu_down_callback() and
gcwq_unbind_fn() will be discarded after boot.

If we use hotcpu_notifier(), we can avoid the no-op call of
workqueue_cpu_down_callback() and the memory of
workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at
build time:

$ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
-rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier
-rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier

$ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
   text	   data	    bss	    dec	    hex	filename
  18513	   2387	   1221	  22121	   5669	kernel/workqueue.o.cpu_notifier
  18082	   2355	   1221	  21658	   549a	kernel/workqueue.o.hotcpu_notifier

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()

cancel_delayed_work() can't be called from IRQ handlers due to its use
of del_timer_sync() and can't cancel work items which are already
transferred from timer to worklist.

Also, unlike other flush and cancel functions, a canceled delayed_work
would still point to the last associated cpu_workqueue.  If the
workqueue is destroyed afterwards and the work item is re-used on a
different workqueue, the queueing code can oops trying to dereference
already freed cpu_workqueue.

This patch reimplements cancel_delayed_work() using
try_to_grab_pending() and set_work_cpu_and_clear_pending().  This
allows the function to be called from IRQ handlers and makes its
behavior consistent with other flush / cancel functions.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic

The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function

This doesn't make any functional difference and is purely to help the
next patch to be simpler.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>

workqueue: fix possible deadlock in idle worker rebinding

Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked.  rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.

Unfortunately, this isn't enough.  The second wait from idle workers
is implemented as follows.

	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));

rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns.  If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.

This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning.  This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.

This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.

This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>

workqueue: restore POOL_MANAGING_WORKERS

This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".

There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management.  POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.

This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes.  The
next patch will update it.

Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress.  While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.

tj: Rewrote patch description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible idle worker depletion across CPU hotplug

To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress.  This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.

If someone else seems to be performing the manager role, workers
proceed to execute work items.  CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.

This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.

This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion.  For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used.  pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug.  The elected manager won't proceed
without holding pool->manager_mutex.

This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress.  It will block on
manager_mutex and perform management after CPU hotplug is complete.

Note that hotplug may happen while waiting for manager_mutex.  A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it.  Make the manager handle its own un/rebinding.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()

busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed
(CPU is down again).  This used to be okay because the flag wasn't
used for anything else.

However, after 25511a477 "workqueue: reimplement CPU online rebinding
to handle idle workers", WORKER_REBIND is also used to command idle
workers to rebind.  If not cleared, the worker may confuse the next
CPU_UP cycle by having REBIND spuriously set or oops / get stuck by
prematurely calling idle_worker_rebind().

  WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5
 00()
  Hardware name: Bochs
  Modules linked in: test_wq(O-)
  Pid: 33, comm: kworker/1:1 Tainted: G           O 3.6.0-rc1-work+ #3
  Call Trace:
   [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0
   [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20
   [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  ---[ end trace e977cf20f4661968 ]---
  BUG: unable to handle kernel NULL pointer dereference at           (null)
  IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500
  PGD 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: test_wq(O-)
  CPU 0
  Pid: 33, comm: kworker/1:1 Tainted: G        W  O 3.6.0-rc1-work+ #3 Bochs Bochs
  RIP: 0010:[<ffffffff810b3db0>]  [<ffffffff810b3db0>] worker_thread+0x360/0x500
  RSP: 0018:ffff88001e1c9de0  EFLAGS: 00010086
  RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009
  RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001
  R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580
  R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900
  FS:  0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900)
  Stack:
   ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010
   ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900
   ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340
  Call Trace:
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b
  RIP  [<ffffffff810b3db0>] worker_thread+0x360/0x500
   RSP <ffff88001e1c9de0>
  CR2: 0000000000000000

There was no reason to keep WORKER_REBIND on failure in the first
place - WORKER_UNBOUND is guaranteed to be set in such cases
preventing incorrectly activating concurrency management.  Always
clear WORKER_REBIND.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement idle worker rebinding

Currently rebind_workers() uses rebinds idle workers synchronously
before proceeding to requesting busy workers to rebind.  This is
necessary because all workers on @worker_pool->idle_list must be bound
before concurrency management local wake-ups from the busy workers
take place.

Unfortunately, the synchronous idle rebinding is quite complicated.
This patch reimplements idle rebinding to simplify the code path.

Rather than trying to make all idle workers bound before rebinding
busy workers, we simply remove all to-be-bound idle workers from the
idle list and let them add themselves back after completing rebinding
(successful or not).

As only workers which finished rebinding can on on the idle worker
list, the idle worker list is guaranteed to have only bound workers
unless CPU went down again and local wake-ups are safe.

After the change, @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list.  More specifically,
nr_idle may be non-zero while ->idle_list is empty.  All users of
->nr_idle and ->idle_list are audited.  The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.

After this patch, rebind_workers() no longer performs the nasty
idle-rebind retries which require temporary release of gcwq->lock, and
both unbinding and rebinding are atomic w.r.t. global_cwq->lock.

worker->idle_rebind and global_cwq->rebind_hold are now unnecessary
and removed along with the definition of struct idle_rebind.

Changed from V1:
	1) remove unlikely from too_many_workers(), ->idle_list can be empty
	   anytime, even before this patch, no reason to use unlikely.
	2) fix a small rebasing mistake.
	   (which is from rebasing the orignal fixing patch to for-next)
	3) add a lot of comments.
	4) clear WORKER_REBIND unconditionaly in idle_worker_rebind()

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for busy rebinding

Because the old unbind/rebinding implementation wasn't atomic w.r.t.
GCWQ_DISASSOCIATED manipulation which is protected by
global_cwq->lock, we had to use two flags, WORKER_UNBOUND and
WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with
back-to-back CPU hotplug operations; otherwise, completion of
rebinding while another unbinding is in progress could clear UNBIND
prematurely.

Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED,
there's no need to use two flags.  Just one is enough.  Don't use
WORKER_REBIND for busy rebinding.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for idle rebinding

Now both worker destruction and idle rebinding remove the worker from
idle list while it's still idle, so list_empty(&worker->entry) can be
used to test whether either is pending and WORKER_DIE to distinguish
between the two instead making WORKER_REBIND unnecessary.

Use list_empty(&worker->entry) to determine whether destruction or
rebinding is pending.  This simplifies worker state transitions.

WORKER_REBIND is not needed anymore.  Remove it.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: rename manager_mutex to assoc_mutex

Now that manager_mutex's role has changed from synchronizing manager
role to excluding hotplug against manager, the name is misleading.

As it is protecting the CPU-association of the gcwq now, rename it to
assoc_mutex.

This patch is pure rename and doesn't introduce any functional change.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use __cpuinit instead of __devinit for cpu callbacks

For workqueue hotplug callbacks, it makes less sense to use __devinit
which discards the memory after boot if !HOTPLUG.  __cpuinit, which
discards the memory after boot if !HOTPLUG_CPU fits better.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible stall on try_to_grab_pending() of a delayed work item

Currently, when try_to_grab_pending() grabs a delayed work item, it
leaves its linked work items alone on the delayed_works.  The linked
work items are always NO_COLOR and will cause future
cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and
may cause the whole cwq to stall.  For example,

state: cwq->max_active = 1, cwq->nr_active = 1
       one work in cwq->pool, many in cwq->delayed_works.

step1: try_to_grab_pending() removes a work item from delayed_works
       but leaves its NO_COLOR linked work items on it.

step2: Later on, cwq_activate_first_delayed() activates the linked
       work item increasing ->nr_active.

step3: cwq->nr_active = 1, but all activated work items of the cwq are
       NO_COLOR.  When they finish, cwq->nr_active will not be
       decreased due to NO_COLOR, and no further work items will be
       activated from cwq->delayed_works. the cwq stalls.

Fix it by ensuring the target work item is activated before stealing
PENDING in try_to_grab_pending().  This ensures that all the linked
work items are activated without incorrectly bumping cwq->nr_active.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org

workqueue: reimplement work_on_cpu() using system_wq

The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org

workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()

Using a helper instead of open code makes thaw_workqueues() clearer.
The helper will also be used by the next patch.

tj: Slight update to comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()

workqueue_set_max_active() may increase ->max_active without
activating delayed works and may make the activation order differ from
the queueing order.  Both aren't strictly bugs but the resulting
behavior could be a bit odd.

To make things more consistent, use cwq_set_max_active() helper which
immediately makes use of the newly increased max_mactive if there are
delayed work items and also keeps the activation order.

tj: Slight update to description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()

e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made
try_to_grab_pending() safe to use from irq context but forgot to
remove WARN_ON_ONCE(in_irq()).  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>

workqueue: cancel_delayed_work() should return %false if work item is idle

57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.

try_to_grab_pending() indicates that the target work item was idle by
zero return value.  Use it for return.  Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.

Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>

workqueue: exit rescuer_thread() as TASK_RUNNING

A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay

8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()")
implemented mod_delayed_work[_on]() using the improved
try_to_grab_pending().  The function is later used, among others, to
replace [__]candel_delayed_work() + queue_delayed_work() combinations.

Unfortunately, a delayed_work item w/ zero @delay is handled slightly
differently by mod_delayed_work_on() compared to
queue_delayed_work_on().  The latter skips timer altogether and
directly queues it using queue_work_on() while the former schedules
timer which will expire on the closest tick.  This means, when @delay
is zero, that [__]cancel_delayed_work() + queue_delayed_work_on()
makes the target item immediately executable while
mod_delayed_work_on() may induce delay of upto a full tick.

This somewhat subtle difference breaks some of the converted users.
e.g. block queue plugging uses delayed_work for deferred processing
and uses mod_delayed_work_on() when the queue needs to be immediately
unplugged.  The above problem manifested as noticeably higher number
of context switches under certain circumstances.

The difference in behavior was caused by missing special case handling
for 0 delay in mod_delayed_work_on() compared to
queue_delayed_work_on().  Joonsoo Kim posted a patch to add it -
("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1].
The patch was queued for 3.8 but it was described as optimization and
I missed that it was a correctness issue.

As both queue_delayed_work_on() and mod_delayed_work_on() use
__queue_delayed_work() for queueing, it seems that the better approach
is to move the 0 delay special handling to the function instead of
duplicating it in mod_delayed_work_on().

Fix the problem by moving 0 delay special case handling from
queue_delayed_work_on() to __queue_delayed_work().  This replaces
Joonsoo's patch.

[1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Anders Kaseorg <andersk@MIT.EDU>
Reported-and-tested-by: Zlatko Calusic <zlatko.calusic@iskon.hr>
LKML-Reference: <alpine.DEB.2.00.1211280953350.26602@dr-wily.mit.edu>
LKML-Reference: <50A78AA9.5040904@iskon.hr>
Cc: Joonsoo Kim <js1304@gmail.com>

workqueue: trivial fix for return statement in work_busy()

Return type of work_busy() is unsigned int.
There is return statement returning boolean value, 'false' in work_busy().
It is not problem, because 'false' may be treated '0'.
However, fixing it would make code robust.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up()

Recently, workqueue code has gone through some changes and we found
some bugs related to concurrency management operations happening on
the wrong CPU.  When a worker is concurrency managed
(!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and
woken up to that cpu.  Add WARN_ON_ONCE() to verify this.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s

8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().

Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work.  8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().

Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>

wq

Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229
Signed-off-by: franciscofranco <franciscofranco.1990@gmail.com>
SaiAvinash92 pushed a commit to SaiAvinash92/mako that referenced this pull request Jan 20, 2015
The offset must be multiplied by 4 to be sure to access the correct
32bit word in the stack scratch space.

For instance, a store at scratch memory cell aosp-mirror#1 was generating the
following:

st	r4, [sp, aosp-mirror#1]

While the correct code for this is:

st	r4, [sp, aosp-mirror#4]

To reproduce the bug (assuming your system has a NIC with the mac
address 52:54:00:12:34:56):

echo 0 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will capture packets as expected

echo 1 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will not.

This bug was present since the original inclusion of bpf_jit for ARM
(ddecdfc: ARM: 7259/3: net: JIT compiler for packet filters).

Signed-off-by: Nicolas Schichan <nschichan@freebox.fr>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
JSaiAvinash pushed a commit to JSaiAvinash/mako that referenced this pull request Jan 23, 2015
A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 aosp-mirror#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 aosp-mirror#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 aosp-mirror#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 aosp-mirror#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 aosp-mirror#5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 aosp-mirror#6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 aosp-mirror#7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 aosp-mirror#8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 aosp-mirror#9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Pranav Vashi <neobuddy89@gmail.com>
Signed-off-by: engstk <eng.stk@sapo.pt>
JSaiAvinash pushed a commit to JSaiAvinash/mako that referenced this pull request Jan 24, 2015
workqueue: change BUG_ON() to WARN_ON()

This BUG_ON() can be triggered if you call schedule_work() before
calling INIT_WORK().  It is a bug definitely, but it's nicer to just
print a stack trace and return.

Reported-by: Matt Renzelmann <mjr@cs.wisc.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: Catch more locking problems with flush_work()

If a workqueue is flushed with flush_work() lockdep checking can
be circumvented. For example:

 static DEFINE_MUTEX(mutex);

 static void my_work(struct work_struct *w)
 {
         mutex_lock(&mutex);
         mutex_unlock(&mutex);
 }

 static DECLARE_WORK(work, my_work);

 static int __init start_test_module(void)
 {
         schedule_work(&work);
         return 0;
 }
 module_init(start_test_module);

 static void __exit stop_test_module(void)
 {
         mutex_lock(&mutex);
         flush_work(&work);
         mutex_unlock(&mutex);
 }
 module_exit(stop_test_module);

would not always print a warning when flush_work() was called.
In this trivial example nothing could go wrong since we are
guaranteed module_init() and module_exit() don't run concurrently,
but if the work item is schedule asynchronously we could have a
scenario where the work item is running just at the time flush_work()
is called resulting in a classic ABBA locking problem.

Add a lockdep hint by acquiring and releasing the work item
lockdep_map in flush_work() so that we always catch this
potential deadlock scenario.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

lockdep: fix oops in processing workqueue

Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].

Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.

Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.

Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.

Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].

Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().

* Patch orginally from Peter.  Hugh modified it a bit and wrote the
  description.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: perform cpu down operations from low priority cpu_notifier()

Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers.  This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.

Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers.  This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.

However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress.  Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.

While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.

Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.

Workqueue cpu hotplug operations will soon go through further cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop CPU_DYING notifier operation

Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED.
This was necessary because workqueue's CPU_DOWN_PREPARE happened
before other DOWN_PREPARE notifiers and workqueue needed to stay
associated across the rest of DOWN_PREPARE.

After the previous patch, workqueue's DOWN_PREPARE happens after
others and can set GCWQ_DISASSOCIATED directly.  Drop CPU_DYING and
let the trustee set GCWQ_DISASSOCIATED after disabling concurrency
management.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: ROGUE workers are UNBOUND workers

Currently, WORKER_UNBOUND is used to mark workers for the unbound
global_cwq and WORKER_ROGUE is used to mark workers for disassociated
per-cpu global_cwqs.  Both are used to make the marked worker skip
concurrency management and the only place they make any difference is
in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling
idle timer, which can easily be replaced with trustee state testing.

This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops
WORKER_ROGUE.  This is to prepare for removing trustee and handling
disassociated global_cwqs as unbound.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: use mutex for global_cwq manager exclusion

POOL_MANAGING_WORKERS is used to ensure that at most one worker takes
the manager role at any given time on a given global_cwq.  Trustee
later hitched on it to assume manager adding blocking wait for the
bit.  As trustee already needed a custom wait mechanism, waiting for
MANAGING_WORKERS was rolled into the same mechanism.

Trustee is scheduled to be removed.  This patch separates out
MANAGING_WORKERS wait into per-pool mutex.  Workers use
mutex_trylock() to test for manager role and trustee uses mutex_lock()
to claim manager roles.

gcwq_claim/release_management() helpers are added to grab and release
manager roles of all pools on a global_cwq.  gcwq_claim_management()
always grabs pool manager mutexes in ascending pool index order and
uses pool index as lockdep subclass.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop @bind from create_worker()

Currently, create_worker()'s callers are responsible for deciding
whether the newly created worker should be bound to the associated CPU
and create_worker() sets WORKER_UNBOUND only for the workers for the
unbound global_cwq.  Creation during normal operation is always via
maybe_create_worker() and @bind is true.  For workers created during
hotplug, @bind is false.

Normal operation path is planned to be used even while the CPU is
going through hotplug operations or offline and this static decision
won't work.

Drop @bind from create_worker() and decide whether to bind by looking
at GCWQ_DISASSOCIATED.  create_worker() will also set WORKER_UNBOUND
autmatically if disassociated.  To avoid flipping GCWQ_DISASSOCIATED
while create_worker() is in progress, the flag is now allowed to be
changed only while holding all manager_mutexes on the global_cwq.

This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's
back.  CPU_ONLINE no longer clears DISASSOCIATED before flushing
trustee, which clears DISASSOCIATED before rebinding remaining workers
if asked to release.  For cases where trustee isn't around, CPU_ONLINE
clears DISASSOCIATED after flushing trustee.  Also, now, first_idle
has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE
while binding it.  These convolutions will soon be removed by further
simplification of CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: reimplement CPU online rebinding to handle idle workers

Currently, if there are left workers when a CPU is being brough back
online, the trustee kills all idle workers and scheduled rebind_work
so that they re-bind to the CPU after the currently executing work is
finished.  This works for busy workers because concurrency management
doesn't try to wake up them from scheduler callbacks, which require
the target task to be on the local run queue.  The busy worker bumps
concurrency counter appropriately as it clears WORKER_UNBOUND from the
rebind work item and it's bound to the CPU before returning to the
idle state.

To reduce CPU on/offlining overhead (as many embedded systems use it
for powersaving) and simplify the code path, workqueue is planned to
be modified to retain idle workers across CPU on/offlining.  This
patch reimplements CPU online rebinding such that it can also handle
idle workers.

As noted earlier, due to the local wakeup requirement, rebinding idle
workers is tricky.  All idle workers must be re-bound before scheduler
callbacks are enabled.  This is achieved by interlocking idle
re-binding.  Idle workers are requested to re-bind and then hold until
all idle re-binding is complete so that no bound worker starts
executing work item.  Only after all idle workers are re-bound and
parked, CPU_ONLINE proceeds to release them and queue rebind work item
to busy workers thus guaranteeing scheduler callbacks aren't invoked
until all idle workers are ready.

worker_rebind_fn() is renamed to busy_worker_rebind_fn() and
idle_worker_rebind() for idle workers is added.  Rebinding logic is
moved to rebind_workers() and now called from CPU_ONLINE after
flushing trustee.  While at it, add CPU sanity check in
worker_thread().

Note that now a worker may become idle or the manager between trustee
release and rebinding during CPU_ONLINE.  As the previous patch
updated create_worker() so that it can be used by regular manager
while unbound and this patch implements idle re-binding, this is safe.

This prepares for removal of trustee and keeping idle workers across
CPU hotplugs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: don't butcher idle workers on an offline CPU

Currently, during CPU offlining, after all pending work items are
drained, the trustee butchers all workers.  Also, on CPU onlining
failure, workqueue_cpu_callback() ensures that the first idle worker
is destroyed.  Combined, these guarantee that an offline CPU doesn't
have any worker for it once all the lingering work items are finished.

This guarantee isn't really necessary and makes CPU on/offlining more
expensive than needs to be, especially for platforms which use CPU
hotplug for powersaving.

This patch lets offline CPUs removes idle worker butchering from the
trustee and let a CPU which failed onlining keep the created first
worker.  The first worker is created if the CPU doesn't have any
during CPU_DOWN_PREPARE and started right away.  If onlining succeeds,
the rebind_workers() call in CPU_ONLINE will rebind it like any other
workers.  If onlining fails, the worker is left alone till the next
try.

This makes CPU hotplugs cheaper by allowing global_cwqs to keep
workers across them and simplifies code.

Note that trustee doesn't re-arm idle timer when it's done and thus
the disassociated global_cwq will keep all workers until it comes back
online.  This will be improved by further patches.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: remove CPU offline trustee

With the previous changes, a disassociated global_cwq now can run as
an unbound one on its own - it can create workers as necessary to
drain remaining works after the CPU has been brought down and manage
the number of workers using the usual idle timer mechanism making
trustee completely redundant except for the actual unbinding
operation.

This patch removes the trustee and let a disassociated global_cwq
manage itself.  Unbinding is moved to a work item (for CPU affinity)
which is scheduled and flushed from CPU_DONW_PREPARE.

This patch moves nr_running clearing outside gcwq and manager locks to
simplify the code.  As nr_running is unused at the point, this is
safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: simplify CPU hotplug code

With trustee gone, CPU hotplug code can be simplified.

* gcwq_claim/release_management() now grab and release gcwq lock too
  respectively and gained _and_lock and _and_unlock postfixes.

* All CPU hotplug logic was implemented in workqueue_cpu_callback()
  which was called by workqueue_cpu_up/down_callback() for the correct
  priority.  This was because up and down paths shared a lot of logic,
  which is no longer true.  Remove workqueue_cpu_callback() and move
  all hotplug logic into the two actual callbacks.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: fix spurious CPU locality WARN from process_one_work()

25511a4776 "workqueue: reimplement CPU online rebinding to handle idle
workers" added CPU locality sanity check in process_one_work().  It
triggers if a worker is executing on a different CPU without UNBOUND
or REBIND set.

This works for all normal workers but rescuers can trigger this
spuriously when they're serving the unbound or a disassociated
global_cwq - rescuers don't have either flag set and thus its
gcwq->cpu can be a different value including %WORK_CPU_UNBOUND.

Fix it by additionally testing %GCWQ_DISASSOCIATED.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Refence: <20120721213656.GA7783@linux.vnet.ibm.com>

workqueue: reorder queueing functions so that _on() variants are on top

Currently, queue/schedule[_delayed]_work_on() are located below the
counterpart without the _on postifx even though the latter is usually
implemented using the former.  Swap them.

This is cleanup and doesn't cause any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: make queueing functions return bool

All queueing functions return 1 on success, 0 if the work item was
already pending.  Update them to return bool instead.  This signifies
better that they don't return 0 / -errno.

This is cleanup and doesn't cause any functional difference.

While at it, fix comment opening for schedule_work_on().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add missing smp_wmb() in process_one_work()

WORK_STRUCT_PENDING is used to claim ownership of a work item and
process_one_work() releases it before starting execution.  When
someone else grabs PENDING, all pre-release updates to the work item
should be visible and all updates made by the new owner should happen
afterwards.

Grabbing PENDING uses test_and_set_bit() and thus has a full barrier;
however, clearing doesn't have a matching wmb.  Given the preceding
spin_unlock and use of clear_bit, I don't believe this can be a
problem on an actual machine and there hasn't been any related report
but it still is theretically possible for clear_pending to permeate
upwards and happen before work->entry update.

Add an explicit smp_wmb() before work_clear_pending().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org

workqueue: disable irq while manipulating PENDING

Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access
to the target work item.  They first try to claim the bit and proceed
with queueing only after that succeeds and there's a window between
PENDING being set and the actual queueing where the task can be
interrupted or preempted.

There's also a similar window in process_one_work() when clearing
PENDING.  A work item is dequeued, gcwq->lock is released and then
PENDING is cleared and the worker might get interrupted or preempted
between releasing gcwq->lock and clearing PENDING.

cancel[_delayed]_work_sync() tries to claim or steal PENDING.  The
function assumes that a work item with PENDING is either queued or in
the process of being [de]queued.  In the latter case, it busy-loops
until either the work item loses PENDING or is queued.  If canceling
coincides with the above described interrupts or preemptions, the
canceling task will busy-loop while the queueing or executing task is
preempted.

This patch keeps irq disabled across claiming PENDING and actual
queueing and moves PENDING clearing in process_one_work() inside
gcwq->lock so that busy looping from PENDING && !queued doesn't wait
for interrupted/preempted tasks.  Note that, in process_one_work(),
setting last CPU and clearing PENDING got merged into single
operation.

This removes possible long busy-loops and will allow using
try_to_grab_pending() from bh and irq contexts.

v2: __queue_work() was testing preempt_count() to ensure that the
    caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Disable irq instead of preemption.  IRQ will be disabled while
    grabbing gcwq->lock later anyway and this allows using
    try_to_grab_pending() from bh and irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: set delayed_work->timer function on initialization

delayed_work->timer.function is currently initialized during
queue_delayed_work_on().  Export delayed_work_timer_fn() and set
delayed_work timer function during delayed_work initialization
together with other fields.

This ensures the timer function is always valid on an initialized
delayed_work.  This is to help mod_delayed_work() implementation.

To detect delayed_work users which diddle with the internal timer,
trigger WARN if timer function doesn't match on queue.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: unify local CPU queueing handling

Queueing functions have been using different methods to determine the
local CPU.

* queue_work() superflously uses get/put_cpu() to acquire and hold the
  local CPU across queue_work_on().

* delayed_work_timer_fn() uses smp_processor_id().

* queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu
  which is interpreted as the local CPU.

* flush_delayed_work[_sync]() were using raw_smp_processor_id().

* __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the
  target workqueue is bound one but nobody uses this.

This patch converts all functions to uniformly use %WORK_CPU_UNBOUND
to indicate local CPU and use the local binding feature of
__queue_work().  unlikely() is dropped from %WORK_CPU_UNBOUND handling
in __queue_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix zero @delay handling of queue_delayed_work_on()

If @delay is zero and the dealyed_work is idle, queue_delayed_work()
queues it for immediate execution; however, queue_delayed_work_on()
lacks this logic and always goes through timer regardless of @delay.

This patch moves 0 @delay handling logic from queue_delayed_work() to
queue_delayed_work_on() so that both functions behave the same.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: move try_to_grab_pending() upwards

try_to_grab_pending() will be used by to-be-implemented
mod_delayed_work[_on]().  Move try_to_grab_pending() and related
functions above queueing functions.

This patch only moves functions around.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce WORK_OFFQ_FLAG_*

Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain
WORK_STRUCT_FLAG_* and flush color.  If the work item is queued, the
rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise,
WORK_STRUCT_CWQ is clear and the bits contain the last CPU number -
either a real CPU number or one of WORK_CPU_*.

Scheduled addition of mod_delayed_work[_on]() requires an additional
flag, which is used only while a work item is off queue.  There are
more than enough bits to represent off-queue CPU number on both 32 and
64bits.  This patch introduces WORK_OFFQ_FLAG_* which occupy the lower
part of the @work->data high bits while off queue.  This patch doesn't
define any actual OFFQ flag yet.

Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds
the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to
make room for OFFQ flags.

To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong
cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON()
to check that there are enough bits to accomodate off-queue CPU number
is added.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: factor out __queue_delayed_work() from queue_delayed_work_on()

This is to prepare for mod_delayed_work[_on]() and doesn't cause any
functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()

* Use bool @is_dwork instead of @timer and let try_to_grab_pending()
  use to_delayed_work() to determine the delayed_work address.

* Move timer handling from __cancel_work_timer() to
  try_to_grab_pending().

* Make try_to_grab_pending() use -EAGAIN instead of -1 for
  busy-looping and drop the ret local variable.

* Add proper function comment to try_to_grab_pending().

This makes the code a bit easier to understand and will ease further
changes.  This patch doesn't make any functional change.

v2: Use @is_dwork instead of @timer.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: mark a work item being canceled as such

There can be two reasons try_to_grab_pending() can fail with -EAGAIN.
One is when someone else is queueing or deqeueing the work item.  With
the previous patches, it is guaranteed that PENDING and queued state
will soon agree making it safe to busy-retry in this case.

The other is if multiple __cancel_work_timer() invocations are racing
one another.  __cancel_work_timer() grabs PENDING and then waits for
running instances of the target work item on all CPUs while holding
PENDING and !queued.  try_to_grab_pending() invoked from another task
will keep returning -EAGAIN while the current owner is waiting.

Not distinguishing the two cases is okay because __cancel_work_timer()
is the only user of try_to_grab_pending() and it invokes
wait_on_work() whenever grabbing fails.  For the first case, busy
looping should be fine but wait_on_work() doesn't cause any critical
problem.  For the latter case, the new contender usually waits for the
same condition as the current owner, so no unnecessarily extended
busy-looping happens.  Combined, these make __cancel_work_timer()
technically correct even without irq protection while grabbing PENDING
or distinguishing the two different cases.

While the current code is technically correct, not distinguishing the
two cases makes it difficult to use try_to_grab_pending() for other
purposes than canceling because it's impossible to tell whether it's
safe to busy-retry grabbing.

This patch adds a mechanism to mark a work item being canceled.
try_to_grab_pending() now disables irq on success and returns -EAGAIN
to indicate that grabbing failed but PENDING and queued states are
gonna agree soon and it's safe to busy-loop.  It returns -ENOENT if
the work item is being canceled and it may stay PENDING && !queued for
arbitrary amount of time.

__cancel_work_timer() is modified to mark the work canceling with
WORK_OFFQ_CANCELING after grabbing PENDING, thus making
try_to_grab_pending() fail with -ENOENT instead of -EAGAIN.  Also, it
invokes wait_on_work() iff grabbing failed with -ENOENT.  This isn't
necessary for correctness but makes it consistent with other future
users of try_to_grab_pending().

v2: try_to_grab_pending() was testing preempt_count() to ensure that
    the caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Updated so that try_to_grab_pending() disables irq on success
    rather than requiring preemption disabled by the caller.  This
    makes busy-looping easier and will allow try_to_grap_pending() to
    be used from bh/irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: implement mod_delayed_work[_on]()

Workqueue was lacking a mechanism to modify the timeout of an already
pending delayed_work.  delayed_work users have been working around
this using several methods - using an explicit timer + work item,
messing directly with delayed_work->timer, and canceling before
re-queueing, all of which are error-prone and/or ugly.

This patch implements mod_delayed_work[_on]() which behaves similarly
to mod_timer() - if the delayed_work is idle, it's queued with the
given delay; otherwise, its timeout is modified to the new value.
Zero @delay guarantees immediate execution.

v2: Updated to reflect try_to_grab_pending() changes.  Now safe to be
    called from bh context.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>

workqueue: fix CPU binding of flush_delayed_work[_sync]()

delayed_work encodes the workqueue to use and the last CPU in
delayed_work->work.data while it's on timer.  The target CPU is
implicitly recorded as the CPU the timer is queued on and
delayed_work_timer_fn() queues delayed_work->work to the CPU it is
running on.

Unfortunately, this leaves flush_delayed_work[_sync]() no way to find
out which CPU the delayed_work was queued for when they try to
re-queue after killing the timer.  Currently, it chooses the local CPU
flush is running on.  This can unexpectedly move a delayed_work queued
on a specific CPU to another CPU and lead to subtle errors.

There isn't much point in trying to save several bytes in struct
delayed_work, which is already close to a hundred bytes on 64bit with
all debug options turned off.  This patch adds delayed_work->cpu to
remember the CPU it's queued for.

Note that if the timer is migrated during CPU down, the work item
could be queued to the downed global_cwq after this change.  As a
detached global_cwq behaves like an unbound one, this doesn't change
much for the delayed_work.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: add missing wmb() in clear_work_data()

Any operation which clears PENDING should be preceded by a wmb to
guarantee that the next PENDING owner sees all the changes made before
PENDING release.

There are only two places where PENDING is cleared -
set_work_cpu_and_clear_pending() and clear_work_data().  The caller of
the former already does smp_wmb() but the latter doesn't have any.

Move the wmb above set_work_cpu_and_clear_pending() into it and add
one to clear_work_data().

There hasn't been any report related to this issue, and, given how
clear_work_data() is used, it is extremely unlikely to have caused any
actual problems on any architecture.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>

workqueue: use enum value to set array size of pools in gcwq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool
for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent
size of pools, definition of worker_pool in gcwq doesn't use it.
Using it makes code robust and prevent future mistakes.
So change code to use this enum value.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: correct req_cpu in trace_workqueue_queue_work()

When we do tracing workqueue_queue_work(), it records requested cpu.
But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND,
requested cpu is changed as local cpu.
In case of @wq->flag & WQ_UNBOUND, above change is not occured,
therefore it is reasonable to correct it.

Use temporary local variable for storing requested cpu.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: change value of lcpu in __queue_delayed_work_on()

We assign cpu id into work struct's data field in __queue_delayed_work_on().
In current implementation, when work is come in first time,
current running cpu id is assigned.
If we do __queue_delayed_work_on() with CPU A on CPU B,
__queue_work() invoked in delayed_work_timer_fn() go into
the following sub-optimal path in case of WQ_NON_REENTRANT.

	gcwq = get_gcwq(cpu);
	if (wq->flags & WQ_NON_REENTRANT &&
		(last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {

Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND.
It is sufficient to prevent to go into sub-optimal path.

tj: Slightly rephrased the comment.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce system_highpri_wq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool
for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker
or highpri worker. But, we don't consider this difference in rebind_workers(),
we use just system_wq for highpri worker. It makes mismatch between
cwq->pool and worker->pool.

It doesn't make error in current implementation, but possible in the future.
Now, we introduce system_highpri_wq to use proper cwq for highpri workers
in rebind_workers(). Following patch fix this issue properly.

tj: Even apart from rebinding, having system_highpri_wq generally
    makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for highpri workers in rebind_workers()

In rebind_workers(), we do inserting a work to rebind to cpu for busy workers.
Currently, in this case, we use only system_wq. This makes a possible
error situation as there is mismatch between cwq->pool and worker->pool.

To prevent this, we should use system_highpri_wq for highpri worker
to match theses. This implements it.

tj: Rephrased comment a bit.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for unbind_work

To speed cpu down processing up, use system_highpri_wq.
As scheduling priority of workers on it is higher than system_wq and
it is not contended by other normal works on this cpu, work on it
is processed faster than system_wq.

tj: CPU up/downs care quite a bit about latency these days.  This
    shouldn't hurt anything and makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix checkpatch issues

Fixed some checkpatch warnings.

tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit.

Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>

workqueue: make all workqueues non-reentrant

By default, each per-cpu part of a bound workqueue operates separately
and a work item may be executing concurrently on different CPUs.  The
behavior avoids some cross-cpu traffic but leads to subtle weirdities
and not-so-subtle contortions in the API.

* There's no sane usefulness in allowing a single work item to be
  executed concurrently on multiple CPUs.  People just get the
  behavior unintentionally and get surprised after learning about it.
  Most either explicitly synchronize or use non-reentrant/ordered
  workqueue but this is error-prone.

* flush_work() can't wait for multiple instances of the same work item
  on different CPUs.  If a work item is executing on cpu0 and then
  queued on cpu1, flush_work() can only wait for the one on cpu1.

  Unfortunately, work items can easily cross CPU boundaries
  unintentionally when the queueing thread gets migrated.  This means
  that if multiple queuers compete, flush_work() can't even guarantee
  that the instance queued right before it is finished before
  returning.

* flush_work_sync() was added to work around some of the deficiencies
  of flush_work().  In addition to the usual flushing, it ensures that
  all currently executing instances are finished before returning.
  This operation is expensive as it has to walk all CPUs and at the
  same time fails to address competing queuer case.

  Incorrectly using flush_work() when flush_work_sync() is necessary
  is an easy error to make and can lead to bugs which are difficult to
  reproduce.

* Similar problems exist for flush_delayed_work[_sync]().

Other than the cross-cpu access concern, there's no benefit in
allowing parallel execution and it's plain silly to have this level of
contortion for workqueue which is widely used from core code to
extremely obscure drivers.

This patch makes all workqueues non-reentrant.  If a work item is
executing on a different CPU when queueing is requested, it is always
queued to that CPU.  This guarantees that any given work item can be
executing on one CPU at maximum and if a work item is queued and
executing, both are on the same CPU.

The only behavior change which may affect workqueue users negatively
is that non-reentrancy overrides the affinity specified by
queue_work_on().  On a reentrant workqueue, the affinity specified by
queue_work_on() is always followed.  Now, if the work item is
executing on one of the CPUs, the work item will be queued there
regardless of the requested affinity.  I've reviewed all workqueue
users which request explicit affinity, and, fortunately, none seems to
be crazy enough to exploit parallel execution of the same work item.

This adds an additional busy_hash lookup if the work item was
previously queued on a different CPU.  This shouldn't be noticeable
under any sane workload.  Work item queueing isn't a very
high-frequency operation and they don't jump across CPUs all the time.
In a micro benchmark to exaggerate this difference - measuring the
time it takes for two work items to repeatedly jump between two CPUs a
number (10M) of times with busy_hash table densely populated, the
difference was around 3%.

While the overhead is measureable, it is only visible in pathological
cases and the difference isn't huge.  This change brings much needed
sanity to workqueue and makes its behavior consistent with timer.  I
think this is the right tradeoff to make.

This enables significant simplification of workqueue API.
Simplification patches will follow.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut flush[_delayed]_work_sync()

Now that all workqueues are non-reentrant, flush[_delayed]_work_sync()
are equivalent to flush[_delayed]_work().  Drop the separate
implementation and make them thin wrappers around
flush[_delayed]_work().

* start_flush_work() no longer takes @wait_executing as the only left
  user - flush_work() - always sets it to %true.

* __cancel_work_timer() uses flush_work() instead of wait_on_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut system_nrt[_freezable]_wq()

Now that all workqueues are non-reentrant, system[_freezable]_wq() are
equivalent to system_nrt[_freezable]_wq().  Replace the latter with
wrappers around system[_freezable]_wq().  The wrapping goes through
inline functions so that __deprecated can be added easily.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: cosmetic whitespace updates for macro definitions

Consistently use the last tab position for '\' line continuation in
complex macro definitions.  This is to help the following patches.

This patch is cosmetic.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()

workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so
hotcpu_notifier() fits better than cpu_notifier().

When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same.

When HOTPLUG_CPU=n, if we use cpu_notifier(),
workqueue_cpu_down_callback() will be called during boot to do
nothing, and the memory of workqueue_cpu_down_callback() and
gcwq_unbind_fn() will be discarded after boot.

If we use hotcpu_notifier(), we can avoid the no-op call of
workqueue_cpu_down_callback() and the memory of
workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at
build time:

$ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
-rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier
-rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier

$ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
   text	   data	    bss	    dec	    hex	filename
  18513	   2387	   1221	  22121	   5669	kernel/workqueue.o.cpu_notifier
  18082	   2355	   1221	  21658	   549a	kernel/workqueue.o.hotcpu_notifier

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()

cancel_delayed_work() can't be called from IRQ handlers due to its use
of del_timer_sync() and can't cancel work items which are already
transferred from timer to worklist.

Also, unlike other flush and cancel functions, a canceled delayed_work
would still point to the last associated cpu_workqueue.  If the
workqueue is destroyed afterwards and the work item is re-used on a
different workqueue, the queueing code can oops trying to dereference
already freed cpu_workqueue.

This patch reimplements cancel_delayed_work() using
try_to_grab_pending() and set_work_cpu_and_clear_pending().  This
allows the function to be called from IRQ handlers and makes its
behavior consistent with other flush / cancel functions.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic

The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function

This doesn't make any functional difference and is purely to help the
next patch to be simpler.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>

workqueue: fix possible deadlock in idle worker rebinding

Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked.  rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.

Unfortunately, this isn't enough.  The second wait from idle workers
is implemented as follows.

	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));

rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns.  If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.

This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning.  This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.

This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.

This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>

workqueue: restore POOL_MANAGING_WORKERS

This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".

There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management.  POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.

This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes.  The
next patch will update it.

Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress.  While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.

tj: Rewrote patch description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible idle worker depletion across CPU hotplug

To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress.  This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.

If someone else seems to be performing the manager role, workers
proceed to execute work items.  CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.

This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.

This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion.  For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used.  pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug.  The elected manager won't proceed
without holding pool->manager_mutex.

This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress.  It will block on
manager_mutex and perform management after CPU hotplug is complete.

Note that hotplug may happen while waiting for manager_mutex.  A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it.  Make the manager handle its own un/rebinding.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()

busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed
(CPU is down again).  This used to be okay because the flag wasn't
used for anything else.

However, after 25511a477 "workqueue: reimplement CPU online rebinding
to handle idle workers", WORKER_REBIND is also used to command idle
workers to rebind.  If not cleared, the worker may confuse the next
CPU_UP cycle by having REBIND spuriously set or oops / get stuck by
prematurely calling idle_worker_rebind().

  WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5
 00()
  Hardware name: Bochs
  Modules linked in: test_wq(O-)
  Pid: 33, comm: kworker/1:1 Tainted: G           O 3.6.0-rc1-work+ #3
  Call Trace:
   [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0
   [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20
   [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  ---[ end trace e977cf20f4661968 ]---
  BUG: unable to handle kernel NULL pointer dereference at           (null)
  IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500
  PGD 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: test_wq(O-)
  CPU 0
  Pid: 33, comm: kworker/1:1 Tainted: G        W  O 3.6.0-rc1-work+ #3 Bochs Bochs
  RIP: 0010:[<ffffffff810b3db0>]  [<ffffffff810b3db0>] worker_thread+0x360/0x500
  RSP: 0018:ffff88001e1c9de0  EFLAGS: 00010086
  RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009
  RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001
  R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580
  R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900
  FS:  0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900)
  Stack:
   ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010
   ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900
   ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340
  Call Trace:
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b
  RIP  [<ffffffff810b3db0>] worker_thread+0x360/0x500
   RSP <ffff88001e1c9de0>
  CR2: 0000000000000000

There was no reason to keep WORKER_REBIND on failure in the first
place - WORKER_UNBOUND is guaranteed to be set in such cases
preventing incorrectly activating concurrency management.  Always
clear WORKER_REBIND.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement idle worker rebinding

Currently rebind_workers() uses rebinds idle workers synchronously
before proceeding to requesting busy workers to rebind.  This is
necessary because all workers on @worker_pool->idle_list must be bound
before concurrency management local wake-ups from the busy workers
take place.

Unfortunately, the synchronous idle rebinding is quite complicated.
This patch reimplements idle rebinding to simplify the code path.

Rather than trying to make all idle workers bound before rebinding
busy workers, we simply remove all to-be-bound idle workers from the
idle list and let them add themselves back after completing rebinding
(successful or not).

As only workers which finished rebinding can on on the idle worker
list, the idle worker list is guaranteed to have only bound workers
unless CPU went down again and local wake-ups are safe.

After the change, @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list.  More specifically,
nr_idle may be non-zero while ->idle_list is empty.  All users of
->nr_idle and ->idle_list are audited.  The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.

After this patch, rebind_workers() no longer performs the nasty
idle-rebind retries which require temporary release of gcwq->lock, and
both unbinding and rebinding are atomic w.r.t. global_cwq->lock.

worker->idle_rebind and global_cwq->rebind_hold are now unnecessary
and removed along with the definition of struct idle_rebind.

Changed from V1:
	1) remove unlikely from too_many_workers(), ->idle_list can be empty
	   anytime, even before this patch, no reason to use unlikely.
	2) fix a small rebasing mistake.
	   (which is from rebasing the orignal fixing patch to for-next)
	3) add a lot of comments.
	4) clear WORKER_REBIND unconditionaly in idle_worker_rebind()

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for busy rebinding

Because the old unbind/rebinding implementation wasn't atomic w.r.t.
GCWQ_DISASSOCIATED manipulation which is protected by
global_cwq->lock, we had to use two flags, WORKER_UNBOUND and
WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with
back-to-back CPU hotplug operations; otherwise, completion of
rebinding while another unbinding is in progress could clear UNBIND
prematurely.

Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED,
there's no need to use two flags.  Just one is enough.  Don't use
WORKER_REBIND for busy rebinding.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for idle rebinding

Now both worker destruction and idle rebinding remove the worker from
idle list while it's still idle, so list_empty(&worker->entry) can be
used to test whether either is pending and WORKER_DIE to distinguish
between the two instead making WORKER_REBIND unnecessary.

Use list_empty(&worker->entry) to determine whether destruction or
rebinding is pending.  This simplifies worker state transitions.

WORKER_REBIND is not needed anymore.  Remove it.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: rename manager_mutex to assoc_mutex

Now that manager_mutex's role has changed from synchronizing manager
role to excluding hotplug against manager, the name is misleading.

As it is protecting the CPU-association of the gcwq now, rename it to
assoc_mutex.

This patch is pure rename and doesn't introduce any functional change.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use __cpuinit instead of __devinit for cpu callbacks

For workqueue hotplug callbacks, it makes less sense to use __devinit
which discards the memory after boot if !HOTPLUG.  __cpuinit, which
discards the memory after boot if !HOTPLUG_CPU fits better.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible stall on try_to_grab_pending() of a delayed work item

Currently, when try_to_grab_pending() grabs a delayed work item, it
leaves its linked work items alone on the delayed_works.  The linked
work items are always NO_COLOR and will cause future
cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and
may cause the whole cwq to stall.  For example,

state: cwq->max_active = 1, cwq->nr_active = 1
       one work in cwq->pool, many in cwq->delayed_works.

step1: try_to_grab_pending() removes a work item from delayed_works
       but leaves its NO_COLOR linked work items on it.

step2: Later on, cwq_activate_first_delayed() activates the linked
       work item increasing ->nr_active.

step3: cwq->nr_active = 1, but all activated work items of the cwq are
       NO_COLOR.  When they finish, cwq->nr_active will not be
       decreased due to NO_COLOR, and no further work items will be
       activated from cwq->delayed_works. the cwq stalls.

Fix it by ensuring the target work item is activated before stealing
PENDING in try_to_grab_pending().  This ensures that all the linked
work items are activated without incorrectly bumping cwq->nr_active.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org

workqueue: reimplement work_on_cpu() using system_wq

The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org

workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()

Using a helper instead of open code makes thaw_workqueues() clearer.
The helper will also be used by the next patch.

tj: Slight update to comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()

workqueue_set_max_active() may increase ->max_active without
activating delayed works and may make the activation order differ from
the queueing order.  Both aren't strictly bugs but the resulting
behavior could be a bit odd.

To make things more consistent, use cwq_set_max_active() helper which
immediately makes use of the newly increased max_mactive if there are
delayed work items and also keeps the activation order.

tj: Slight update to description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()

e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made
try_to_grab_pending() safe to use from irq context but forgot to
remove WARN_ON_ONCE(in_irq()).  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>

workqueue: cancel_delayed_work() should return %false if work item is idle

57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.

try_to_grab_pending() indicates that the target work item was idle by
zero return value.  Use it for return.  Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.

Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>

workqueue: exit rescuer_thread() as TASK_RUNNING

A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay

8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()")
implemented mod_delayed_work[_on]() using the improved
try_to_grab_pending().  The function is later used, among others, to
replace [__]candel_delayed_work() + queue_delayed_work() combinations.

Unfortunately, a delayed_work item w/ zero @delay is handled slightly
differently by mod_delayed_work_on() compared to
queue_delayed_work_on().  The latter skips timer altogether and
directly queues it using queue_work_on() while the former schedules
timer which will expire on the closest tick.  This means, when @delay
is zero, that [__]cancel_delayed_work() + queue_delayed_work_on()
makes the target item immediately executable while
mod_delayed_work_on() may induce delay of upto a full tick.

This somewhat subtle difference breaks some of the converted users.
e.g. block queue plugging uses delayed_work for deferred processing
and uses mod_delayed_work_on() when the queue needs to be immediately
unplugged.  The above problem manifested as noticeably higher number
of context switches under certain circumstances.

The difference in behavior was caused by missing special case handling
for 0 delay in mod_delayed_work_on() compared to
queue_delayed_work_on().  Joonsoo Kim posted a patch to add it -
("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1].
The patch was queued for 3.8 but it was described as optimization and
I missed that it was a correctness issue.

As both queue_delayed_work_on() and mod_delayed_work_on() use
__queue_delayed_work() for queueing, it seems that the better approach
is to move the 0 delay special handling to the function instead of
duplicating it in mod_delayed_work_on().

Fix the problem by moving 0 delay special case handling from
queue_delayed_work_on() to __queue_delayed_work().  This replaces
Joonsoo's patch.

[1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Anders Kaseorg <andersk@MIT.EDU>
Reported-and-tested-by: Zlatko Calusic <zlatko.calusic@iskon.hr>
LKML-Reference: <alpine.DEB.2.00.1211280953350.26602@dr-wily.mit.edu>
LKML-Reference: <50A78AA9.5040904@iskon.hr>
Cc: Joonsoo Kim <js1304@gmail.com>

workqueue: trivial fix for return statement in work_busy()

Return type of work_busy() is unsigned int.
There is return statement returning boolean value, 'false' in work_busy().
It is not problem, because 'false' may be treated '0'.
However, fixing it would make code robust.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up()

Recently, workqueue code has gone through some changes and we found
some bugs related to concurrency management operations happening on
the wrong CPU.  When a worker is concurrency managed
(!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and
woken up to that cpu.  Add WARN_ON_ONCE() to verify this.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s

8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().

Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work.  8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().

Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>

wq

Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229
Signed-off-by: franciscofranco <franciscofranco.1990@gmail.com>
JSaiAvinash pushed a commit to JSaiAvinash/mako that referenced this pull request Jan 24, 2015
The offset must be multiplied by 4 to be sure to access the correct
32bit word in the stack scratch space.

For instance, a store at scratch memory cell aosp-mirror#1 was generating the
following:

st	r4, [sp, aosp-mirror#1]

While the correct code for this is:

st	r4, [sp, aosp-mirror#4]

To reproduce the bug (assuming your system has a NIC with the mac
address 52:54:00:12:34:56):

echo 0 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will capture packets as expected

echo 1 > /proc/sys/net/core/bpf_jit_enable
tcpdump -ni eth0 "ether[1] + ether[2] - ether[3] * ether[4] - ether[5] \
	== -0x3AA" # this will not.

This bug was present since the original inclusion of bpf_jit for ARM
(ddecdfc: ARM: 7259/3: net: JIT compiler for packet filters).

Signed-off-by: Nicolas Schichan <nschichan@freebox.fr>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
arter97 pushed a commit to major91/Zeta_Chromium-L that referenced this pull request Jan 30, 2015
This moves ARM over to the asm-generic/unaligned.h header. This has the
benefit of better code generated especially for ARMv7 on gcc 4.7+
compilers.

As Arnd Bergmann, points out: The asm-generic version uses the "struct"
version for native-endian unaligned access and the "byteshift" version
for the opposite endianess. The current ARM version however uses the
"byteshift" implementation for both.

Thanks to Nicolas Pitre for the excellent analysis:

Test case:

int foo (int *x) { return get_unaligned(x); }
long long bar (long long *x) { return get_unaligned(x); }

With the current ARM version:

foo:
	ldrb	r3, [r0, aosp-mirror#2]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B]
	ldrb	r1, [r0, aosp-mirror#1]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B]
	ldrb	r2, [r0, #0]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)]
	mov	r3, r3, asl #16	@ tmp154, MEM[(const u8 *)x_1(D) + 2B],
	ldrb	r0, [r0, aosp-mirror#3]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B]
	orr	r3, r3, r1, asl aosp-mirror#8	@, tmp155, tmp154, MEM[(const u8 *)x_1(D) + 1B],
	orr	r3, r3, r2	@ tmp157, tmp155, MEM[(const u8 *)x_1(D)]
	orr	r0, r3, r0, asl #24	@,, tmp157, MEM[(const u8 *)x_1(D) + 3B],
	bx	lr	@

bar:
	stmfd	sp!, {r4, r5, r6, r7}	@,
	mov	r2, #0	@ tmp184,
	ldrb	r5, [r0, aosp-mirror#6]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 6B], MEM[(const u8 *)x_1(D) + 6B]
	ldrb	r4, [r0, aosp-mirror#5]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 5B], MEM[(const u8 *)x_1(D) + 5B]
	ldrb	ip, [r0, aosp-mirror#2]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 2B], MEM[(const u8 *)x_1(D) + 2B]
	ldrb	r1, [r0, aosp-mirror#4]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 4B], MEM[(const u8 *)x_1(D) + 4B]
	mov	r5, r5, asl #16	@ tmp175, MEM[(const u8 *)x_1(D) + 6B],
	ldrb	r7, [r0, aosp-mirror#1]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 1B], MEM[(const u8 *)x_1(D) + 1B]
	orr	r5, r5, r4, asl aosp-mirror#8	@, tmp176, tmp175, MEM[(const u8 *)x_1(D) + 5B],
	ldrb	r6, [r0, aosp-mirror#7]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 7B], MEM[(const u8 *)x_1(D) + 7B]
	orr	r5, r5, r1	@ tmp178, tmp176, MEM[(const u8 *)x_1(D) + 4B]
	ldrb	r4, [r0, #0]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D)], MEM[(const u8 *)x_1(D)]
	mov	ip, ip, asl #16	@ tmp188, MEM[(const u8 *)x_1(D) + 2B],
	ldrb	r1, [r0, aosp-mirror#3]	@ zero_extendqisi2	@ MEM[(const u8 *)x_1(D) + 3B], MEM[(const u8 *)x_1(D) + 3B]
	orr	ip, ip, r7, asl aosp-mirror#8	@, tmp189, tmp188, MEM[(const u8 *)x_1(D) + 1B],
	orr	r3, r5, r6, asl #24	@,, tmp178, MEM[(const u8 *)x_1(D) + 7B],
	orr	ip, ip, r4	@ tmp191, tmp189, MEM[(const u8 *)x_1(D)]
	orr	ip, ip, r1, asl #24	@, tmp194, tmp191, MEM[(const u8 *)x_1(D) + 3B],
	mov	r1, r3	@,
	orr	r0, r2, ip	@ tmp171, tmp184, tmp194
	ldmfd	sp!, {r4, r5, r6, r7}
	bx	lr

In both cases the code is slightly suboptimal.  One may wonder why
wasting r2 with the constant 0 in the second case for example.  And all
the mov's could be folded in subsequent orr's, etc.

Now with the asm-generic version:

foo:
	ldr	r0, [r0, #0]	@ unaligned	@,* x
	bx	lr	@

bar:
	mov	r3, r0	@ x, x
	ldr	r0, [r0, #0]	@ unaligned	@,* x
	ldr	r1, [r3, aosp-mirror#4]	@ unaligned	@,
	bx	lr	@

This is way better of course, but only because this was compiled for
ARMv7. In this case the compiler knows that the hardware can do
unaligned word access.  This isn't that obvious for foo(), but if we
remove the get_unaligned() from bar as follows:

long long bar (long long *x) {return *x; }

then the resulting code is:

bar:
	ldmia	r0, {r0, r1}	@ x,,
	bx	lr	@

So this proves that the presumed aligned vs unaligned cases does have
influence on the instructions the compiler may use and that the above
unaligned code results are not just an accident.

Still... this isn't fully conclusive without at least looking at the
resulting assembly fron a pre ARMv6 compilation.  Let's see with an
ARMv5 target:

foo:
	ldrb	r3, [r0, #0]	@ zero_extendqisi2	@ tmp139,* x
	ldrb	r1, [r0, aosp-mirror#1]	@ zero_extendqisi2	@ tmp140,
	ldrb	r2, [r0, aosp-mirror#2]	@ zero_extendqisi2	@ tmp143,
	ldrb	r0, [r0, aosp-mirror#3]	@ zero_extendqisi2	@ tmp146,
	orr	r3, r3, r1, asl aosp-mirror#8	@, tmp142, tmp139, tmp140,
	orr	r3, r3, r2, asl #16	@, tmp145, tmp142, tmp143,
	orr	r0, r3, r0, asl #24	@,, tmp145, tmp146,
	bx	lr	@

bar:
	stmfd	sp!, {r4, r5, r6, r7}	@,
	ldrb	r2, [r0, #0]	@ zero_extendqisi2	@ tmp139,* x
	ldrb	r7, [r0, aosp-mirror#1]	@ zero_extendqisi2	@ tmp140,
	ldrb	r3, [r0, aosp-mirror#4]	@ zero_extendqisi2	@ tmp149,
	ldrb	r6, [r0, aosp-mirror#5]	@ zero_extendqisi2	@ tmp150,
	ldrb	r5, [r0, aosp-mirror#2]	@ zero_extendqisi2	@ tmp143,
	ldrb	r4, [r0, aosp-mirror#6]	@ zero_extendqisi2	@ tmp153,
	ldrb	r1, [r0, aosp-mirror#7]	@ zero_extendqisi2	@ tmp156,
	ldrb	ip, [r0, aosp-mirror#3]	@ zero_extendqisi2	@ tmp146,
	orr	r2, r2, r7, asl aosp-mirror#8	@, tmp142, tmp139, tmp140,
	orr	r3, r3, r6, asl aosp-mirror#8	@, tmp152, tmp149, tmp150,
	orr	r2, r2, r5, asl #16	@, tmp145, tmp142, tmp143,
	orr	r3, r3, r4, asl #16	@, tmp155, tmp152, tmp153,
	orr	r0, r2, ip, asl #24	@,, tmp145, tmp146,
	orr	r1, r3, r1, asl #24	@,, tmp155, tmp156,
	ldmfd	sp!, {r4, r5, r6, r7}
	bx	lr

Compared to the initial results, this is really nicely optimized and I
couldn't do much better if I were to hand code it myself.

Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
arter97 pushed a commit to major91/Zeta_Chromium-L that referenced this pull request Feb 1, 2015
commit 71abdc1 upstream.

When kswapd exits, it can end up taking locks that were previously held
by allocating tasks while they waited for reclaim.  Lockdep currently
warns about this:

On Wed, May 28, 2014 at 06:06:34PM +0800, Gu Zheng wrote:
>  inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-R} usage.
>  kswapd2/1151 [HC0[0]:SC0[0]:HE1:SE1] takes:
>   (&sig->group_rwsem){+++++?}, at: exit_signals+0x24/0x130
>  {RECLAIM_FS-ON-W} state was registered at:
>     mark_held_locks+0xb9/0x140
>     lockdep_trace_alloc+0x7a/0xe0
>     kmem_cache_alloc_trace+0x37/0x240
>     flex_array_alloc+0x99/0x1a0
>     cgroup_attach_task+0x63/0x430
>     attach_task_by_pid+0x210/0x280
>     cgroup_procs_write+0x16/0x20
>     cgroup_file_write+0x120/0x2c0
>     vfs_write+0xc0/0x1f0
>     SyS_write+0x4c/0xa0
>     tracesys+0xdd/0xe2
>  irq event stamp: 49
>  hardirqs last  enabled at (49):  _raw_spin_unlock_irqrestore+0x36/0x70
>  hardirqs last disabled at (48):  _raw_spin_lock_irqsave+0x2b/0xa0
>  softirqs last  enabled at (0):  copy_process.part.24+0x627/0x15f0
>  softirqs last disabled at (0):            (null)
>
>  other info that might help us debug this:
>   Possible unsafe locking scenario:
>
>         CPU0
>         ----
>    lock(&sig->group_rwsem);
>    <Interrupt>
>      lock(&sig->group_rwsem);
>
>   *** DEADLOCK ***
>
>  no locks held by kswapd2/1151.
>
>  stack backtrace:
>  CPU: 30 PID: 1151 Comm: kswapd2 Not tainted 3.10.39+ aosp-mirror#4
>  Call Trace:
>    dump_stack+0x19/0x1b
>    print_usage_bug+0x1f7/0x208
>    mark_lock+0x21d/0x2a0
>    __lock_acquire+0x52a/0xb60
>    lock_acquire+0xa2/0x140
>    down_read+0x51/0xa0
>    exit_signals+0x24/0x130
>    do_exit+0xb5/0xa50
>    kthread+0xdb/0x100
>    ret_from_fork+0x7c/0xb0

This is because the kswapd thread is still marked as a reclaimer at the
time of exit.  But because it is exiting, nobody is actually waiting on
it to make reclaim progress anymore, and it's nothing but a regular
thread at this point.  Be tidy and strip it of all its powers
(PF_MEMALLOC, PF_SWAPWRITE, PF_KSWAPD, and the lockdep reclaim state)
before returning from the thread function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
arter97 pushed a commit to major91/Zeta_Chromium-L that referenced this pull request Feb 1, 2015
commit 504d587 upstream.

clockevents_increase_min_delta() calls printk() from under
hrtimer_bases.lock. That causes lock inversion on scheduler locks because
printk() can call into the scheduler. Lockdep puts it as:

======================================================
[ INFO: possible circular locking dependency detected ]
3.15.0-rc8-06195-g939f04b aosp-mirror#2 Not tainted
-------------------------------------------------------
trinity-main/74 is trying to acquire lock:
 (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c

but task is already holding lock:
 (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> aosp-mirror#5 (hrtimer_bases.lock){-.-...}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197
       [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85
       [<81080792>] task_clock_event_start+0x3a/0x3f
       [<810807a4>] task_clock_event_add+0xd/0x14
       [<8108259a>] event_sched_in+0xb6/0x17a
       [<810826a2>] group_sched_in+0x44/0x122
       [<81082885>] ctx_sched_in.isra.67+0x105/0x11f
       [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b
       [<81082bf6>] __perf_install_in_context+0x8b/0xa3
       [<8107eb8e>] remote_function+0x12/0x2a
       [<8105f5af>] smp_call_function_single+0x2d/0x53
       [<8107e17d>] task_function_call+0x30/0x36
       [<8107fb82>] perf_install_in_context+0x87/0xbb
       [<810852c9>] SYSC_perf_event_open+0x5c6/0x701
       [<810856f9>] SyS_perf_event_open+0x17/0x19
       [<8142f8ee>] syscall_call+0x7/0xb

-> aosp-mirror#4 (&ctx->lock){......}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f04c>] _raw_spin_lock+0x21/0x30
       [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
       [<8142cacc>] __schedule+0x4c6/0x4cb
       [<8142cae0>] schedule+0xf/0x11
       [<8142f9a6>] work_resched+0x5/0x30

-> aosp-mirror#3 (&rq->lock){-.-.-.}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f04c>] _raw_spin_lock+0x21/0x30
       [<81040873>] __task_rq_lock+0x33/0x3a
       [<8104184c>] wake_up_new_task+0x25/0xc2
       [<8102474b>] do_fork+0x15c/0x2a0
       [<810248a9>] kernel_thread+0x1a/0x1f
       [<814232a2>] rest_init+0x1a/0x10e
       [<817af949>] start_kernel+0x303/0x308
       [<817af2ab>] i386_start_kernel+0x79/0x7d

-> aosp-mirror#2 (&p->pi_lock){-.-...}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<810413dd>] try_to_wake_up+0x1d/0xd6
       [<810414cd>] default_wake_function+0xb/0xd
       [<810461f3>] __wake_up_common+0x39/0x59
       [<81046346>] __wake_up+0x29/0x3b
       [<811b8733>] tty_wakeup+0x49/0x51
       [<811c3568>] uart_write_wakeup+0x17/0x19
       [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
       [<811c5f28>] serial8250_handle_irq+0x54/0x6a
       [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
       [<811c56d8>] serial8250_interrupt+0x38/0x9e
       [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
       [<81051296>] handle_irq_event+0x2c/0x43
       [<81052cee>] handle_level_irq+0x57/0x80
       [<81002a72>] handle_irq+0x46/0x5c
       [<810027df>] do_IRQ+0x32/0x89
       [<8143036e>] common_interrupt+0x2e/0x33
       [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
       [<811c25a4>] uart_start+0x2d/0x32
       [<811c2c04>] uart_write+0xc7/0xd6
       [<811bc6f6>] n_tty_write+0xb8/0x35e
       [<811b9beb>] tty_write+0x163/0x1e4
       [<811b9cd9>] redirected_tty_write+0x6d/0x75
       [<810b6ed6>] vfs_write+0x75/0xb0
       [<810b7265>] SyS_write+0x44/0x77
       [<8142f8ee>] syscall_call+0x7/0xb

-> aosp-mirror#1 (&tty->write_wait){-.....}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<81046332>] __wake_up+0x15/0x3b
       [<811b8733>] tty_wakeup+0x49/0x51
       [<811c3568>] uart_write_wakeup+0x17/0x19
       [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
       [<811c5f28>] serial8250_handle_irq+0x54/0x6a
       [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
       [<811c56d8>] serial8250_interrupt+0x38/0x9e
       [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
       [<81051296>] handle_irq_event+0x2c/0x43
       [<81052cee>] handle_level_irq+0x57/0x80
       [<81002a72>] handle_irq+0x46/0x5c
       [<810027df>] do_IRQ+0x32/0x89
       [<8143036e>] common_interrupt+0x2e/0x33
       [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
       [<811c25a4>] uart_start+0x2d/0x32
       [<811c2c04>] uart_write+0xc7/0xd6
       [<811bc6f6>] n_tty_write+0xb8/0x35e
       [<811b9beb>] tty_write+0x163/0x1e4
       [<811b9cd9>] redirected_tty_write+0x6d/0x75
       [<810b6ed6>] vfs_write+0x75/0xb0
       [<810b7265>] SyS_write+0x44/0x77
       [<8142f8ee>] syscall_call+0x7/0xb

-> #0 (&port_lock_key){-.....}:
       [<8104a62d>] __lock_acquire+0x9ea/0xc6d
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<811c60be>] serial8250_console_write+0x8c/0x10c
       [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
       [<8104f5d5>] console_unlock+0x1d7/0x398
       [<8104fb70>] vprintk_emit+0x3da/0x3e4
       [<81425f76>] printk+0x17/0x19
       [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
       [<8105c548>] clockevents_program_event+0xe7/0xf3
       [<8105cc1c>] tick_program_event+0x1e/0x23
       [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
       [<8103c49e>] __remove_hrtimer+0x5b/0x79
       [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
       [<8103cb4b>] hrtimer_cancel+0xd/0x18
       [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
       [<81080705>] task_clock_event_stop+0x20/0x64
       [<81080756>] task_clock_event_del+0xd/0xf
       [<81081350>] event_sched_out+0xab/0x11e
       [<810813e0>] group_sched_out+0x1d/0x66
       [<81081682>] ctx_sched_out+0xaf/0xbf
       [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
       [<8142cacc>] __schedule+0x4c6/0x4cb
       [<8142cae0>] schedule+0xf/0x11
       [<8142f9a6>] work_resched+0x5/0x30

other info that might help us debug this:

Chain exists of:
  &port_lock_key --> &ctx->lock --> hrtimer_bases.lock

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(hrtimer_bases.lock);
                               lock(&ctx->lock);
                               lock(hrtimer_bases.lock);
  lock(&port_lock_key);

 *** DEADLOCK ***

4 locks held by trinity-main/74:
 #0:  (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb
 aosp-mirror#1:  (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
 aosp-mirror#2:  (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
 aosp-mirror#3:  (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4

stack backtrace:
CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b aosp-mirror#2
 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570
 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0
 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003
Call Trace:
 [<81426f69>] dump_stack+0x16/0x18
 [<81425a99>] print_circular_bug+0x18f/0x19c
 [<8104a62d>] __lock_acquire+0x9ea/0xc6d
 [<8104a942>] lock_acquire+0x92/0x101
 [<811c60be>] ? serial8250_console_write+0x8c/0x10c
 [<811c6032>] ? wait_for_xmitr+0x76/0x76
 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
 [<811c60be>] ? serial8250_console_write+0x8c/0x10c
 [<811c60be>] serial8250_console_write+0x8c/0x10c
 [<8104af87>] ? lock_release+0x191/0x223
 [<811c6032>] ? wait_for_xmitr+0x76/0x76
 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
 [<8104f5d5>] console_unlock+0x1d7/0x398
 [<8104fb70>] vprintk_emit+0x3da/0x3e4
 [<81425f76>] printk+0x17/0x19
 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
 [<8105cc1c>] tick_program_event+0x1e/0x23
 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
 [<8103c49e>] __remove_hrtimer+0x5b/0x79
 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
 [<8103cb4b>] hrtimer_cancel+0xd/0x18
 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
 [<81080705>] task_clock_event_stop+0x20/0x64
 [<81080756>] task_clock_event_del+0xd/0xf
 [<81081350>] event_sched_out+0xab/0x11e
 [<810813e0>] group_sched_out+0x1d/0x66
 [<81081682>] ctx_sched_out+0xaf/0xbf
 [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
 [<8104416d>] ? __dequeue_entity+0x23/0x27
 [<81044505>] ? pick_next_task_fair+0xb1/0x120
 [<8142cacc>] __schedule+0x4c6/0x4cb
 [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108
 [<810475b0>] ? trace_hardirqs_off+0xb/0xd
 [<81056346>] ? rcu_irq_exit+0x64/0x77

Fix the problem by using printk_deferred() which does not call into the
scheduler.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
victormlourenco pushed a commit to victormlourenco/kernel_msm that referenced this pull request Apr 15, 2015
workqueue: change BUG_ON() to WARN_ON()

This BUG_ON() can be triggered if you call schedule_work() before
calling INIT_WORK().  It is a bug definitely, but it's nicer to just
print a stack trace and return.

Reported-by: Matt Renzelmann <mjr@cs.wisc.edu>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: Catch more locking problems with flush_work()

If a workqueue is flushed with flush_work() lockdep checking can
be circumvented. For example:

 static DEFINE_MUTEX(mutex);

 static void my_work(struct work_struct *w)
 {
         mutex_lock(&mutex);
         mutex_unlock(&mutex);
 }

 static DECLARE_WORK(work, my_work);

 static int __init start_test_module(void)
 {
         schedule_work(&work);
         return 0;
 }
 module_init(start_test_module);

 static void __exit stop_test_module(void)
 {
         mutex_lock(&mutex);
         flush_work(&work);
         mutex_unlock(&mutex);
 }
 module_exit(stop_test_module);

would not always print a warning when flush_work() was called.
In this trivial example nothing could go wrong since we are
guaranteed module_init() and module_exit() don't run concurrently,
but if the work item is schedule asynchronously we could have a
scenario where the work item is running just at the time flush_work()
is called resulting in a classic ABBA locking problem.

Add a lockdep hint by acquiring and releasing the work item
lockdep_map in flush_work() so that we always catch this
potential deadlock scenario.

Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

lockdep: fix oops in processing workqueue

Under memory load, on x86_64, with lockdep enabled, the workqueue's
process_one_work() has been seen to oops in __lock_acquire(), barfing
on a 0xffffffff00000000 pointer in the lockdep_map's class_cache[].

Because it's permissible to free a work_struct from its callout function,
the map used is an onstack copy of the map given in the work_struct: and
that copy is made without any locking.

Surprisingly, gcc (4.5.1 in Hugh's case) uses "rep movsl" rather than
"rep movsq" for that structure copy: which might race with a workqueue
user's wait_on_work() doing lock_map_acquire() on the source of the
copy, putting a pointer into the class_cache[], but only in time for
the top half of that pointer to be copied to the destination map.

Boom when process_one_work() subsequently does lock_map_acquire()
on its onstack copy of the lockdep_map.

Fix this, and a similar instance in call_timer_fn(), with a
lockdep_copy_map() function which additionally NULLs the class_cache[].

Note: this oops was actually seen on 3.4-next, where flush_work() newly
does the racing lock_map_acquire(); but Tejun points out that 3.4 and
earlier are already vulnerable to the same through wait_on_work().

* Patch orginally from Peter.  Hugh modified it a bit and wrote the
  description.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Hugh Dickins <hughd@google.com>
LKML-Reference: <alpine.LSU.2.00.1205070951170.1544@eggly.anvils>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: perform cpu down operations from low priority cpu_notifier()

Currently, all workqueue cpu hotplug operations run off
CPU_PRI_WORKQUEUE which is higher than normal notifiers.  This is to
ensure that workqueue is up and running while bringing up a CPU before
other notifiers try to use workqueue on the CPU.

Per-cpu workqueues are supposed to remain working and bound to the CPU
for normal CPU_DOWN_PREPARE notifiers.  This holds mostly true even
with workqueue offlining running with higher priority because
workqueue CPU_DOWN_PREPARE only creates a bound trustee thread which
runs the per-cpu workqueue without concurrency management without
explicitly detaching the existing workers.

However, if the trustee needs to create new workers, it creates
unbound workers which may wander off to other CPUs while
CPU_DOWN_PREPARE notifiers are in progress.  Furthermore, if the CPU
down is cancelled, the per-CPU workqueue may end up with workers which
aren't bound to the CPU.

While reliably reproducible with a convoluted artificial test-case
involving scheduling and flushing CPU burning work items from CPU down
notifiers, this isn't very likely to happen in the wild, and, even
when it happens, the effects are likely to be hidden by the following
successful CPU down.

Fix it by using different priorities for up and down notifiers - high
priority for up operations and low priority for down operations.

Workqueue cpu hotplug operations will soon go through further cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop CPU_DYING notifier operation

Workqueue used CPU_DYING notification to mark GCWQ_DISASSOCIATED.
This was necessary because workqueue's CPU_DOWN_PREPARE happened
before other DOWN_PREPARE notifiers and workqueue needed to stay
associated across the rest of DOWN_PREPARE.

After the previous patch, workqueue's DOWN_PREPARE happens after
others and can set GCWQ_DISASSOCIATED directly.  Drop CPU_DYING and
let the trustee set GCWQ_DISASSOCIATED after disabling concurrency
management.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: ROGUE workers are UNBOUND workers

Currently, WORKER_UNBOUND is used to mark workers for the unbound
global_cwq and WORKER_ROGUE is used to mark workers for disassociated
per-cpu global_cwqs.  Both are used to make the marked worker skip
concurrency management and the only place they make any difference is
in worker_enter_idle() where WORKER_ROGUE is used to skip scheduling
idle timer, which can easily be replaced with trustee state testing.

This patch replaces WORKER_ROGUE with WORKER_UNBOUND and drops
WORKER_ROGUE.  This is to prepare for removing trustee and handling
disassociated global_cwqs as unbound.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: use mutex for global_cwq manager exclusion

POOL_MANAGING_WORKERS is used to ensure that at most one worker takes
the manager role at any given time on a given global_cwq.  Trustee
later hitched on it to assume manager adding blocking wait for the
bit.  As trustee already needed a custom wait mechanism, waiting for
MANAGING_WORKERS was rolled into the same mechanism.

Trustee is scheduled to be removed.  This patch separates out
MANAGING_WORKERS wait into per-pool mutex.  Workers use
mutex_trylock() to test for manager role and trustee uses mutex_lock()
to claim manager roles.

gcwq_claim/release_management() helpers are added to grab and release
manager roles of all pools on a global_cwq.  gcwq_claim_management()
always grabs pool manager mutexes in ascending pool index order and
uses pool index as lockdep subclass.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: drop @bind from create_worker()

Currently, create_worker()'s callers are responsible for deciding
whether the newly created worker should be bound to the associated CPU
and create_worker() sets WORKER_UNBOUND only for the workers for the
unbound global_cwq.  Creation during normal operation is always via
maybe_create_worker() and @bind is true.  For workers created during
hotplug, @bind is false.

Normal operation path is planned to be used even while the CPU is
going through hotplug operations or offline and this static decision
won't work.

Drop @bind from create_worker() and decide whether to bind by looking
at GCWQ_DISASSOCIATED.  create_worker() will also set WORKER_UNBOUND
autmatically if disassociated.  To avoid flipping GCWQ_DISASSOCIATED
while create_worker() is in progress, the flag is now allowed to be
changed only while holding all manager_mutexes on the global_cwq.

This requires that GCWQ_DISASSOCIATED is not cleared behind trustee's
back.  CPU_ONLINE no longer clears DISASSOCIATED before flushing
trustee, which clears DISASSOCIATED before rebinding remaining workers
if asked to release.  For cases where trustee isn't around, CPU_ONLINE
clears DISASSOCIATED after flushing trustee.  Also, now, first_idle
has UNBOUND set on creation which is explicitly cleared by CPU_ONLINE
while binding it.  These convolutions will soon be removed by further
simplification of CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: reimplement CPU online rebinding to handle idle workers

Currently, if there are left workers when a CPU is being brough back
online, the trustee kills all idle workers and scheduled rebind_work
so that they re-bind to the CPU after the currently executing work is
finished.  This works for busy workers because concurrency management
doesn't try to wake up them from scheduler callbacks, which require
the target task to be on the local run queue.  The busy worker bumps
concurrency counter appropriately as it clears WORKER_UNBOUND from the
rebind work item and it's bound to the CPU before returning to the
idle state.

To reduce CPU on/offlining overhead (as many embedded systems use it
for powersaving) and simplify the code path, workqueue is planned to
be modified to retain idle workers across CPU on/offlining.  This
patch reimplements CPU online rebinding such that it can also handle
idle workers.

As noted earlier, due to the local wakeup requirement, rebinding idle
workers is tricky.  All idle workers must be re-bound before scheduler
callbacks are enabled.  This is achieved by interlocking idle
re-binding.  Idle workers are requested to re-bind and then hold until
all idle re-binding is complete so that no bound worker starts
executing work item.  Only after all idle workers are re-bound and
parked, CPU_ONLINE proceeds to release them and queue rebind work item
to busy workers thus guaranteeing scheduler callbacks aren't invoked
until all idle workers are ready.

worker_rebind_fn() is renamed to busy_worker_rebind_fn() and
idle_worker_rebind() for idle workers is added.  Rebinding logic is
moved to rebind_workers() and now called from CPU_ONLINE after
flushing trustee.  While at it, add CPU sanity check in
worker_thread().

Note that now a worker may become idle or the manager between trustee
release and rebinding during CPU_ONLINE.  As the previous patch
updated create_worker() so that it can be used by regular manager
while unbound and this patch implements idle re-binding, this is safe.

This prepares for removal of trustee and keeping idle workers across
CPU hotplugs.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: don't butcher idle workers on an offline CPU

Currently, during CPU offlining, after all pending work items are
drained, the trustee butchers all workers.  Also, on CPU onlining
failure, workqueue_cpu_callback() ensures that the first idle worker
is destroyed.  Combined, these guarantee that an offline CPU doesn't
have any worker for it once all the lingering work items are finished.

This guarantee isn't really necessary and makes CPU on/offlining more
expensive than needs to be, especially for platforms which use CPU
hotplug for powersaving.

This patch lets offline CPUs removes idle worker butchering from the
trustee and let a CPU which failed onlining keep the created first
worker.  The first worker is created if the CPU doesn't have any
during CPU_DOWN_PREPARE and started right away.  If onlining succeeds,
the rebind_workers() call in CPU_ONLINE will rebind it like any other
workers.  If onlining fails, the worker is left alone till the next
try.

This makes CPU hotplugs cheaper by allowing global_cwqs to keep
workers across them and simplifies code.

Note that trustee doesn't re-arm idle timer when it's done and thus
the disassociated global_cwq will keep all workers until it comes back
online.  This will be improved by further patches.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: remove CPU offline trustee

With the previous changes, a disassociated global_cwq now can run as
an unbound one on its own - it can create workers as necessary to
drain remaining works after the CPU has been brought down and manage
the number of workers using the usual idle timer mechanism making
trustee completely redundant except for the actual unbinding
operation.

This patch removes the trustee and let a disassociated global_cwq
manage itself.  Unbinding is moved to a work item (for CPU affinity)
which is scheduled and flushed from CPU_DONW_PREPARE.

This patch moves nr_running clearing outside gcwq and manager locks to
simplify the code.  As nr_running is unused at the point, this is
safe.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: simplify CPU hotplug code

With trustee gone, CPU hotplug code can be simplified.

* gcwq_claim/release_management() now grab and release gcwq lock too
  respectively and gained _and_lock and _and_unlock postfixes.

* All CPU hotplug logic was implemented in workqueue_cpu_callback()
  which was called by workqueue_cpu_up/down_callback() for the correct
  priority.  This was because up and down paths shared a lot of logic,
  which is no longer true.  Remove workqueue_cpu_callback() and move
  all hotplug logic into the two actual callbacks.

This patch doesn't make any functional changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: "Rafael J. Wysocki" <rjw@sisk.pl>

workqueue: fix spurious CPU locality WARN from process_one_work()

25511a4776 "workqueue: reimplement CPU online rebinding to handle idle
workers" added CPU locality sanity check in process_one_work().  It
triggers if a worker is executing on a different CPU without UNBOUND
or REBIND set.

This works for all normal workers but rescuers can trigger this
spuriously when they're serving the unbound or a disassociated
global_cwq - rescuers don't have either flag set and thus its
gcwq->cpu can be a different value including %WORK_CPU_UNBOUND.

Fix it by additionally testing %GCWQ_DISASSOCIATED.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
LKML-Refence: <20120721213656.GA7783@linux.vnet.ibm.com>

workqueue: reorder queueing functions so that _on() variants are on top

Currently, queue/schedule[_delayed]_work_on() are located below the
counterpart without the _on postifx even though the latter is usually
implemented using the former.  Swap them.

This is cleanup and doesn't cause any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: make queueing functions return bool

All queueing functions return 1 on success, 0 if the work item was
already pending.  Update them to return bool instead.  This signifies
better that they don't return 0 / -errno.

This is cleanup and doesn't cause any functional difference.

While at it, fix comment opening for schedule_work_on().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add missing smp_wmb() in process_one_work()

WORK_STRUCT_PENDING is used to claim ownership of a work item and
process_one_work() releases it before starting execution.  When
someone else grabs PENDING, all pre-release updates to the work item
should be visible and all updates made by the new owner should happen
afterwards.

Grabbing PENDING uses test_and_set_bit() and thus has a full barrier;
however, clearing doesn't have a matching wmb.  Given the preceding
spin_unlock and use of clear_bit, I don't believe this can be a
problem on an actual machine and there hasn't been any related report
but it still is theretically possible for clear_pending to permeate
upwards and happen before work->entry update.

Add an explicit smp_wmb() before work_clear_pending().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: stable@vger.kernel.org

workqueue: disable irq while manipulating PENDING

Queueing operations use WORK_STRUCT_PENDING_BIT to synchronize access
to the target work item.  They first try to claim the bit and proceed
with queueing only after that succeeds and there's a window between
PENDING being set and the actual queueing where the task can be
interrupted or preempted.

There's also a similar window in process_one_work() when clearing
PENDING.  A work item is dequeued, gcwq->lock is released and then
PENDING is cleared and the worker might get interrupted or preempted
between releasing gcwq->lock and clearing PENDING.

cancel[_delayed]_work_sync() tries to claim or steal PENDING.  The
function assumes that a work item with PENDING is either queued or in
the process of being [de]queued.  In the latter case, it busy-loops
until either the work item loses PENDING or is queued.  If canceling
coincides with the above described interrupts or preemptions, the
canceling task will busy-loop while the queueing or executing task is
preempted.

This patch keeps irq disabled across claiming PENDING and actual
queueing and moves PENDING clearing in process_one_work() inside
gcwq->lock so that busy looping from PENDING && !queued doesn't wait
for interrupted/preempted tasks.  Note that, in process_one_work(),
setting last CPU and clearing PENDING got merged into single
operation.

This removes possible long busy-loops and will allow using
try_to_grab_pending() from bh and irq contexts.

v2: __queue_work() was testing preempt_count() to ensure that the
    caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Disable irq instead of preemption.  IRQ will be disabled while
    grabbing gcwq->lock later anyway and this allows using
    try_to_grab_pending() from bh and irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: set delayed_work->timer function on initialization

delayed_work->timer.function is currently initialized during
queue_delayed_work_on().  Export delayed_work_timer_fn() and set
delayed_work timer function during delayed_work initialization
together with other fields.

This ensures the timer function is always valid on an initialized
delayed_work.  This is to help mod_delayed_work() implementation.

To detect delayed_work users which diddle with the internal timer,
trigger WARN if timer function doesn't match on queue.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: unify local CPU queueing handling

Queueing functions have been using different methods to determine the
local CPU.

* queue_work() superflously uses get/put_cpu() to acquire and hold the
  local CPU across queue_work_on().

* delayed_work_timer_fn() uses smp_processor_id().

* queue_delayed_work() calls queue_delayed_work_on() with -1 @cpu
  which is interpreted as the local CPU.

* flush_delayed_work[_sync]() were using raw_smp_processor_id().

* __queue_work() interprets %WORK_CPU_UNBOUND as local CPU if the
  target workqueue is bound one but nobody uses this.

This patch converts all functions to uniformly use %WORK_CPU_UNBOUND
to indicate local CPU and use the local binding feature of
__queue_work().  unlikely() is dropped from %WORK_CPU_UNBOUND handling
in __queue_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix zero @delay handling of queue_delayed_work_on()

If @delay is zero and the dealyed_work is idle, queue_delayed_work()
queues it for immediate execution; however, queue_delayed_work_on()
lacks this logic and always goes through timer regardless of @delay.

This patch moves 0 @delay handling logic from queue_delayed_work() to
queue_delayed_work_on() so that both functions behave the same.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: move try_to_grab_pending() upwards

try_to_grab_pending() will be used by to-be-implemented
mod_delayed_work[_on]().  Move try_to_grab_pending() and related
functions above queueing functions.

This patch only moves functions around.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce WORK_OFFQ_FLAG_*

Low WORK_STRUCT_FLAG_BITS bits of work_struct->data contain
WORK_STRUCT_FLAG_* and flush color.  If the work item is queued, the
rest point to the cpu_workqueue with WORK_STRUCT_CWQ set; otherwise,
WORK_STRUCT_CWQ is clear and the bits contain the last CPU number -
either a real CPU number or one of WORK_CPU_*.

Scheduled addition of mod_delayed_work[_on]() requires an additional
flag, which is used only while a work item is off queue.  There are
more than enough bits to represent off-queue CPU number on both 32 and
64bits.  This patch introduces WORK_OFFQ_FLAG_* which occupy the lower
part of the @work->data high bits while off queue.  This patch doesn't
define any actual OFFQ flag yet.

Off-queue CPU number is now shifted by WORK_OFFQ_CPU_SHIFT, which adds
the number of bits used by OFFQ flags to WORK_STRUCT_FLAG_SHIFT, to
make room for OFFQ flags.

To avoid shift width warning with large WORK_OFFQ_FLAG_BITS, ulong
cast is added to WORK_STRUCT_NO_CPU and, just in case, BUILD_BUG_ON()
to check that there are enough bits to accomodate off-queue CPU number
is added.

This patch doesn't make any functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: factor out __queue_delayed_work() from queue_delayed_work_on()

This is to prepare for mod_delayed_work[_on]() and doesn't cause any
functional difference.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reorganize try_to_grab_pending() and __cancel_timer_work()

* Use bool @is_dwork instead of @timer and let try_to_grab_pending()
  use to_delayed_work() to determine the delayed_work address.

* Move timer handling from __cancel_work_timer() to
  try_to_grab_pending().

* Make try_to_grab_pending() use -EAGAIN instead of -1 for
  busy-looping and drop the ret local variable.

* Add proper function comment to try_to_grab_pending().

This makes the code a bit easier to understand and will ease further
changes.  This patch doesn't make any functional change.

v2: Use @is_dwork instead of @timer.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: mark a work item being canceled as such

There can be two reasons try_to_grab_pending() can fail with -EAGAIN.
One is when someone else is queueing or deqeueing the work item.  With
the previous patches, it is guaranteed that PENDING and queued state
will soon agree making it safe to busy-retry in this case.

The other is if multiple __cancel_work_timer() invocations are racing
one another.  __cancel_work_timer() grabs PENDING and then waits for
running instances of the target work item on all CPUs while holding
PENDING and !queued.  try_to_grab_pending() invoked from another task
will keep returning -EAGAIN while the current owner is waiting.

Not distinguishing the two cases is okay because __cancel_work_timer()
is the only user of try_to_grab_pending() and it invokes
wait_on_work() whenever grabbing fails.  For the first case, busy
looping should be fine but wait_on_work() doesn't cause any critical
problem.  For the latter case, the new contender usually waits for the
same condition as the current owner, so no unnecessarily extended
busy-looping happens.  Combined, these make __cancel_work_timer()
technically correct even without irq protection while grabbing PENDING
or distinguishing the two different cases.

While the current code is technically correct, not distinguishing the
two cases makes it difficult to use try_to_grab_pending() for other
purposes than canceling because it's impossible to tell whether it's
safe to busy-retry grabbing.

This patch adds a mechanism to mark a work item being canceled.
try_to_grab_pending() now disables irq on success and returns -EAGAIN
to indicate that grabbing failed but PENDING and queued states are
gonna agree soon and it's safe to busy-loop.  It returns -ENOENT if
the work item is being canceled and it may stay PENDING && !queued for
arbitrary amount of time.

__cancel_work_timer() is modified to mark the work canceling with
WORK_OFFQ_CANCELING after grabbing PENDING, thus making
try_to_grab_pending() fail with -ENOENT instead of -EAGAIN.  Also, it
invokes wait_on_work() iff grabbing failed with -ENOENT.  This isn't
necessary for correctness but makes it consistent with other future
users of try_to_grab_pending().

v2: try_to_grab_pending() was testing preempt_count() to ensure that
    the caller has disabled preemption.  This triggers spuriously if
    !CONFIG_PREEMPT_COUNT.  Use preemptible() instead.  Reported by
    Fengguang Wu.

v3: Updated so that try_to_grab_pending() disables irq on success
    rather than requiring preemption disabled by the caller.  This
    makes busy-looping easier and will allow try_to_grap_pending() to
    be used from bh/irq contexts.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Fengguang Wu <fengguang.wu@intel.com>

workqueue: implement mod_delayed_work[_on]()

Workqueue was lacking a mechanism to modify the timeout of an already
pending delayed_work.  delayed_work users have been working around
this using several methods - using an explicit timer + work item,
messing directly with delayed_work->timer, and canceling before
re-queueing, all of which are error-prone and/or ugly.

This patch implements mod_delayed_work[_on]() which behaves similarly
to mod_timer() - if the delayed_work is idle, it's queued with the
given delay; otherwise, its timeout is modified to the new value.
Zero @delay guarantees immediate execution.

v2: Updated to reflect try_to_grab_pending() changes.  Now safe to be
    called from bh context.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>

workqueue: fix CPU binding of flush_delayed_work[_sync]()

delayed_work encodes the workqueue to use and the last CPU in
delayed_work->work.data while it's on timer.  The target CPU is
implicitly recorded as the CPU the timer is queued on and
delayed_work_timer_fn() queues delayed_work->work to the CPU it is
running on.

Unfortunately, this leaves flush_delayed_work[_sync]() no way to find
out which CPU the delayed_work was queued for when they try to
re-queue after killing the timer.  Currently, it chooses the local CPU
flush is running on.  This can unexpectedly move a delayed_work queued
on a specific CPU to another CPU and lead to subtle errors.

There isn't much point in trying to save several bytes in struct
delayed_work, which is already close to a hundred bytes on 64bit with
all debug options turned off.  This patch adds delayed_work->cpu to
remember the CPU it's queued for.

Note that if the timer is migrated during CPU down, the work item
could be queued to the downed global_cwq after this change.  As a
detached global_cwq behaves like an unbound one, this doesn't change
much for the delayed_work.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: add missing wmb() in clear_work_data()

Any operation which clears PENDING should be preceded by a wmb to
guarantee that the next PENDING owner sees all the changes made before
PENDING release.

There are only two places where PENDING is cleared -
set_work_cpu_and_clear_pending() and clear_work_data().  The caller of
the former already does smp_wmb() but the latter doesn't have any.

Move the wmb above set_work_cpu_and_clear_pending() into it and add
one to clear_work_data().

There hasn't been any report related to this issue, and, given how
clear_work_data() is used, it is extremely unlikely to have caused any
actual problems on any architecture.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>

workqueue: use enum value to set array size of pools in gcwq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker_pool
for HIGHPRI. Although there is NR_WORKER_POOLS enum value which represent
size of pools, definition of worker_pool in gcwq doesn't use it.
Using it makes code robust and prevent future mistakes.
So change code to use this enum value.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: correct req_cpu in trace_workqueue_queue_work()

When we do tracing workqueue_queue_work(), it records requested cpu.
But, if !(@wq->flag & WQ_UNBOUND) and @cpu is WORK_CPU_UNBOUND,
requested cpu is changed as local cpu.
In case of @wq->flag & WQ_UNBOUND, above change is not occured,
therefore it is reasonable to correct it.

Use temporary local variable for storing requested cpu.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: change value of lcpu in __queue_delayed_work_on()

We assign cpu id into work struct's data field in __queue_delayed_work_on().
In current implementation, when work is come in first time,
current running cpu id is assigned.
If we do __queue_delayed_work_on() with CPU A on CPU B,
__queue_work() invoked in delayed_work_timer_fn() go into
the following sub-optimal path in case of WQ_NON_REENTRANT.

	gcwq = get_gcwq(cpu);
	if (wq->flags & WQ_NON_REENTRANT &&
		(last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {

Change lcpu to @cpu and rechange lcpu to local cpu if lcpu is WORK_CPU_UNBOUND.
It is sufficient to prevent to go into sub-optimal path.

tj: Slightly rephrased the comment.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: introduce system_highpri_wq

Commit 3270476a6c0ce322354df8679652f060d66526dc ('workqueue: reimplement
WQ_HIGHPRI using a separate worker_pool') introduce separate worker pool
for HIGHPRI. When we handle busyworkers for gcwq, it can be normal worker
or highpri worker. But, we don't consider this difference in rebind_workers(),
we use just system_wq for highpri worker. It makes mismatch between
cwq->pool and worker->pool.

It doesn't make error in current implementation, but possible in the future.
Now, we introduce system_highpri_wq to use proper cwq for highpri workers
in rebind_workers(). Following patch fix this issue properly.

tj: Even apart from rebinding, having system_highpri_wq generally
    makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for highpri workers in rebind_workers()

In rebind_workers(), we do inserting a work to rebind to cpu for busy workers.
Currently, in this case, we use only system_wq. This makes a possible
error situation as there is mismatch between cwq->pool and worker->pool.

To prevent this, we should use system_highpri_wq for highpri worker
to match theses. This implements it.

tj: Rephrased comment a bit.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use system_highpri_wq for unbind_work

To speed cpu down processing up, use system_highpri_wq.
As scheduling priority of workers on it is higher than system_wq and
it is not contended by other normal works on this cpu, work on it
is processed faster than system_wq.

tj: CPU up/downs care quite a bit about latency these days.  This
    shouldn't hurt anything and makes sense.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix checkpatch issues

Fixed some checkpatch warnings.

tj: adapted to wq/for-3.7 and massaged pr_xxx() format strings a bit.

Signed-off-by: Valentin Ilie <valentin.ilie@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <1345326762-21747-1-git-send-email-valentin.ilie@gmail.com>

workqueue: make all workqueues non-reentrant

By default, each per-cpu part of a bound workqueue operates separately
and a work item may be executing concurrently on different CPUs.  The
behavior avoids some cross-cpu traffic but leads to subtle weirdities
and not-so-subtle contortions in the API.

* There's no sane usefulness in allowing a single work item to be
  executed concurrently on multiple CPUs.  People just get the
  behavior unintentionally and get surprised after learning about it.
  Most either explicitly synchronize or use non-reentrant/ordered
  workqueue but this is error-prone.

* flush_work() can't wait for multiple instances of the same work item
  on different CPUs.  If a work item is executing on cpu0 and then
  queued on cpu1, flush_work() can only wait for the one on cpu1.

  Unfortunately, work items can easily cross CPU boundaries
  unintentionally when the queueing thread gets migrated.  This means
  that if multiple queuers compete, flush_work() can't even guarantee
  that the instance queued right before it is finished before
  returning.

* flush_work_sync() was added to work around some of the deficiencies
  of flush_work().  In addition to the usual flushing, it ensures that
  all currently executing instances are finished before returning.
  This operation is expensive as it has to walk all CPUs and at the
  same time fails to address competing queuer case.

  Incorrectly using flush_work() when flush_work_sync() is necessary
  is an easy error to make and can lead to bugs which are difficult to
  reproduce.

* Similar problems exist for flush_delayed_work[_sync]().

Other than the cross-cpu access concern, there's no benefit in
allowing parallel execution and it's plain silly to have this level of
contortion for workqueue which is widely used from core code to
extremely obscure drivers.

This patch makes all workqueues non-reentrant.  If a work item is
executing on a different CPU when queueing is requested, it is always
queued to that CPU.  This guarantees that any given work item can be
executing on one CPU at maximum and if a work item is queued and
executing, both are on the same CPU.

The only behavior change which may affect workqueue users negatively
is that non-reentrancy overrides the affinity specified by
queue_work_on().  On a reentrant workqueue, the affinity specified by
queue_work_on() is always followed.  Now, if the work item is
executing on one of the CPUs, the work item will be queued there
regardless of the requested affinity.  I've reviewed all workqueue
users which request explicit affinity, and, fortunately, none seems to
be crazy enough to exploit parallel execution of the same work item.

This adds an additional busy_hash lookup if the work item was
previously queued on a different CPU.  This shouldn't be noticeable
under any sane workload.  Work item queueing isn't a very
high-frequency operation and they don't jump across CPUs all the time.
In a micro benchmark to exaggerate this difference - measuring the
time it takes for two work items to repeatedly jump between two CPUs a
number (10M) of times with busy_hash table densely populated, the
difference was around 3%.

While the overhead is measureable, it is only visible in pathological
cases and the difference isn't huge.  This change brings much needed
sanity to workqueue and makes its behavior consistent with timer.  I
think this is the right tradeoff to make.

This enables significant simplification of workqueue API.
Simplification patches will follow.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut flush[_delayed]_work_sync()

Now that all workqueues are non-reentrant, flush[_delayed]_work_sync()
are equivalent to flush[_delayed]_work().  Drop the separate
implementation and make them thin wrappers around
flush[_delayed]_work().

* start_flush_work() no longer takes @wait_executing as the only left
  user - flush_work() - always sets it to %true.

* __cancel_work_timer() uses flush_work() instead of wait_on_work().

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: gut system_nrt[_freezable]_wq()

Now that all workqueues are non-reentrant, system[_freezable]_wq() are
equivalent to system_nrt[_freezable]_wq().  Replace the latter with
wrappers around system[_freezable]_wq().  The wrapping goes through
inline functions so that __deprecated can be added easily.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: cosmetic whitespace updates for macro definitions

Consistently use the last tab position for '\' line continuation in
complex macro definitions.  This is to help the following patches.

This patch is cosmetic.

Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use hotcpu_notifier() for workqueue_cpu_down_callback()

workqueue_cpu_down_callback() is used only if HOTPLUG_CPU=y, so
hotcpu_notifier() fits better than cpu_notifier().

When HOTPLUG_CPU=y, hotcpu_notifier() and cpu_notifier() are the same.

When HOTPLUG_CPU=n, if we use cpu_notifier(),
workqueue_cpu_down_callback() will be called during boot to do
nothing, and the memory of workqueue_cpu_down_callback() and
gcwq_unbind_fn() will be discarded after boot.

If we use hotcpu_notifier(), we can avoid the no-op call of
workqueue_cpu_down_callback() and the memory of
workqueue_cpu_down_callback() and gcwq_unbind_fn() will be discard at
build time:

$ ls -l kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
-rw-rw-r-- 1 laijs laijs 484080 Sep 15 11:31 kernel/workqueue.o.cpu_notifier
-rw-rw-r-- 1 laijs laijs 478240 Sep 15 11:31 kernel/workqueue.o.hotcpu_notifier

$ size kernel/workqueue.o.cpu_notifier kernel/workqueue.o.hotcpu_notifier
   text	   data	    bss	    dec	    hex	filename
  18513	   2387	   1221	  22121	   5669	kernel/workqueue.o.cpu_notifier
  18082	   2355	   1221	  21658	   549a	kernel/workqueue.o.hotcpu_notifier

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement cancel_delayed_work() using try_to_grab_pending()

cancel_delayed_work() can't be called from IRQ handlers due to its use
of del_timer_sync() and can't cancel work items which are already
transferred from timer to worklist.

Also, unlike other flush and cancel functions, a canceled delayed_work
would still point to the last associated cpu_workqueue.  If the
workqueue is destroyed afterwards and the work item is re-used on a
different workqueue, the queueing code can oops trying to dereference
already freed cpu_workqueue.

This patch reimplements cancel_delayed_work() using
try_to_grab_pending() and set_work_cpu_and_clear_pending().  This
allows the function to be called from IRQ handlers and makes its
behavior consistent with other flush / cancel functions.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>

workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic

The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Change-Id: I9b95f51d146c40c31ba028668d6f412bd74c6026
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function

This doesn't make any functional difference and is purely to help the
next patch to be simpler.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>

workqueue: fix possible deadlock in idle worker rebinding

Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked.  rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.

Unfortunately, this isn't enough.  The second wait from idle workers
is implemented as follows.

	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));

rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns.  If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.

This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning.  This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.

This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.

This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>

workqueue: restore POOL_MANAGING_WORKERS

This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".

There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management.  POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.

This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes.  The
next patch will update it.

Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress.  While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.

tj: Rewrote patch description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible idle worker depletion across CPU hotplug

To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress.  This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.

If someone else seems to be performing the manager role, workers
proceed to execute work items.  CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.

This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.

This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion.  For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used.  pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug.  The elected manager won't proceed
without holding pool->manager_mutex.

This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress.  It will block on
manager_mutex and perform management after CPU hotplug is complete.

Note that hotplug may happen while waiting for manager_mutex.  A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it.  Make the manager handle its own un/rebinding.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()

busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed
(CPU is down again).  This used to be okay because the flag wasn't
used for anything else.

However, after 25511a477 "workqueue: reimplement CPU online rebinding
to handle idle workers", WORKER_REBIND is also used to command idle
workers to rebind.  If not cleared, the worker may confuse the next
CPU_UP cycle by having REBIND spuriously set or oops / get stuck by
prematurely calling idle_worker_rebind().

  WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5
 00()
  Hardware name: Bochs
  Modules linked in: test_wq(O-)
  Pid: 33, comm: kworker/1:1 Tainted: G           O 3.6.0-rc1-work+ #3
  Call Trace:
   [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0
   [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20
   [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  ---[ end trace e977cf20f4661968 ]---
  BUG: unable to handle kernel NULL pointer dereference at           (null)
  IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500
  PGD 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: test_wq(O-)
  CPU 0
  Pid: 33, comm: kworker/1:1 Tainted: G        W  O 3.6.0-rc1-work+ #3 Bochs Bochs
  RIP: 0010:[<ffffffff810b3db0>]  [<ffffffff810b3db0>] worker_thread+0x360/0x500
  RSP: 0018:ffff88001e1c9de0  EFLAGS: 00010086
  RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009
  RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001
  R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580
  R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900
  FS:  0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900)
  Stack:
   ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010
   ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900
   ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340
  Call Trace:
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b
  RIP  [<ffffffff810b3db0>] worker_thread+0x360/0x500
   RSP <ffff88001e1c9de0>
  CR2: 0000000000000000

There was no reason to keep WORKER_REBIND on failure in the first
place - WORKER_UNBOUND is guaranteed to be set in such cases
preventing incorrectly activating concurrency management.  Always
clear WORKER_REBIND.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: reimplement idle worker rebinding

Currently rebind_workers() uses rebinds idle workers synchronously
before proceeding to requesting busy workers to rebind.  This is
necessary because all workers on @worker_pool->idle_list must be bound
before concurrency management local wake-ups from the busy workers
take place.

Unfortunately, the synchronous idle rebinding is quite complicated.
This patch reimplements idle rebinding to simplify the code path.

Rather than trying to make all idle workers bound before rebinding
busy workers, we simply remove all to-be-bound idle workers from the
idle list and let them add themselves back after completing rebinding
(successful or not).

As only workers which finished rebinding can on on the idle worker
list, the idle worker list is guaranteed to have only bound workers
unless CPU went down again and local wake-ups are safe.

After the change, @worker_pool->nr_idle may deviate than the actual
number of idle workers on @worker_pool->idle_list.  More specifically,
nr_idle may be non-zero while ->idle_list is empty.  All users of
->nr_idle and ->idle_list are audited.  The only affected one is
too_many_workers() which is updated to check %false if ->idle_list is
empty regardless of ->nr_idle.

After this patch, rebind_workers() no longer performs the nasty
idle-rebind retries which require temporary release of gcwq->lock, and
both unbinding and rebinding are atomic w.r.t. global_cwq->lock.

worker->idle_rebind and global_cwq->rebind_hold are now unnecessary
and removed along with the definition of struct idle_rebind.

Changed from V1:
	1) remove unlikely from too_many_workers(), ->idle_list can be empty
	   anytime, even before this patch, no reason to use unlikely.
	2) fix a small rebasing mistake.
	   (which is from rebasing the orignal fixing patch to for-next)
	3) add a lot of comments.
	4) clear WORKER_REBIND unconditionaly in idle_worker_rebind()

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for busy rebinding

Because the old unbind/rebinding implementation wasn't atomic w.r.t.
GCWQ_DISASSOCIATED manipulation which is protected by
global_cwq->lock, we had to use two flags, WORKER_UNBOUND and
WORKER_REBIND, to avoid incorrectly losing all NOT_RUNNING bits with
back-to-back CPU hotplug operations; otherwise, completion of
rebinding while another unbinding is in progress could clear UNBIND
prematurely.

Now that both unbind/rebinding are atomic w.r.t. GCWQ_DISASSOCIATED,
there's no need to use two flags.  Just one is enough.  Don't use
WORKER_REBIND for busy rebinding.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: WORKER_REBIND is no longer necessary for idle rebinding

Now both worker destruction and idle rebinding remove the worker from
idle list while it's still idle, so list_empty(&worker->entry) can be
used to test whether either is pending and WORKER_DIE to distinguish
between the two instead making WORKER_REBIND unnecessary.

Use list_empty(&worker->entry) to determine whether destruction or
rebinding is pending.  This simplifies worker state transitions.

WORKER_REBIND is not needed anymore.  Remove it.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: rename manager_mutex to assoc_mutex

Now that manager_mutex's role has changed from synchronizing manager
role to excluding hotplug against manager, the name is misleading.

As it is protecting the CPU-association of the gcwq now, rename it to
assoc_mutex.

This patch is pure rename and doesn't introduce any functional change.

tj: Updated comments and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use __cpuinit instead of __devinit for cpu callbacks

For workqueue hotplug callbacks, it makes less sense to use __devinit
which discards the memory after boot if !HOTPLUG.  __cpuinit, which
discards the memory after boot if !HOTPLUG_CPU fits better.

tj: Updated description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: fix possible stall on try_to_grab_pending() of a delayed work item

Currently, when try_to_grab_pending() grabs a delayed work item, it
leaves its linked work items alone on the delayed_works.  The linked
work items are always NO_COLOR and will cause future
cwq_activate_first_delayed() increase cwq->nr_active incorrectly, and
may cause the whole cwq to stall.  For example,

state: cwq->max_active = 1, cwq->nr_active = 1
       one work in cwq->pool, many in cwq->delayed_works.

step1: try_to_grab_pending() removes a work item from delayed_works
       but leaves its NO_COLOR linked work items on it.

step2: Later on, cwq_activate_first_delayed() activates the linked
       work item increasing ->nr_active.

step3: cwq->nr_active = 1, but all activated work items of the cwq are
       NO_COLOR.  When they finish, cwq->nr_active will not be
       decreased due to NO_COLOR, and no further work items will be
       activated from cwq->delayed_works. the cwq stalls.

Fix it by ensuring the target work item is activated before stealing
PENDING in try_to_grab_pending().  This ensures that all the linked
work items are activated without incorrectly bumping cwq->nr_active.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@kernel.org

workqueue: reimplement work_on_cpu() using system_wq

The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org

workqueue: introduce cwq_set_max_active() helper for thaw_workqueues()

Using a helper instead of open code makes thaw_workqueues() clearer.
The helper will also be used by the next patch.

tj: Slight update to comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: use cwq_set_max_active() helper for workqueue_set_max_active()

workqueue_set_max_active() may increase ->max_active without
activating delayed works and may make the activation order differ from
the queueing order.  Both aren't strictly bugs but the resulting
behavior could be a bit odd.

To make things more consistent, use cwq_set_max_active() helper which
immediately makes use of the newly increased max_mactive if there are
delayed work items and also keeps the activation order.

tj: Slight update to description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: remove spurious WARN_ON_ONCE(in_irq()) from try_to_grab_pending()

e0aecdd874 ("workqueue: use irqsafe timer for delayed_work") made
try_to_grab_pending() safe to use from irq context but forgot to
remove WARN_ON_ONCE(in_irq()).  Remove it.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>

workqueue: cancel_delayed_work() should return %false if work item is idle

57b30ae77b ("workqueue: reimplement cancel_delayed_work() using
try_to_grab_pending()") made cancel_delayed_work() always return %true
unless someone else is also trying to cancel the work item, which is
broken - if the target work item is idle, the return value should be
%false.

try_to_grab_pending() indicates that the target work item was idle by
zero return value.  Use it for return.  Note that this brings
cancel_delayed_work() in line with __cancel_work_timer() in return
value handling.

Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
LKML-Reference: <444a6439-b1a4-4740-9e7e-bc37267cfe73@default>

workqueue: exit rescuer_thread() as TASK_RUNNING

A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 #1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 #2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 #3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 #4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 #5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 #6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 #7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 #8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 #9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org

workqueue: mod_delayed_work_on() shouldn't queue timer on 0 delay

8376fe22c7 ("workqueue: implement mod_delayed_work[_on]()")
implemented mod_delayed_work[_on]() using the improved
try_to_grab_pending().  The function is later used, among others, to
replace [__]candel_delayed_work() + queue_delayed_work() combinations.

Unfortunately, a delayed_work item w/ zero @delay is handled slightly
differently by mod_delayed_work_on() compared to
queue_delayed_work_on().  The latter skips timer altogether and
directly queues it using queue_work_on() while the former schedules
timer which will expire on the closest tick.  This means, when @delay
is zero, that [__]cancel_delayed_work() + queue_delayed_work_on()
makes the target item immediately executable while
mod_delayed_work_on() may induce delay of upto a full tick.

This somewhat subtle difference breaks some of the converted users.
e.g. block queue plugging uses delayed_work for deferred processing
and uses mod_delayed_work_on() when the queue needs to be immediately
unplugged.  The above problem manifested as noticeably higher number
of context switches under certain circumstances.

The difference in behavior was caused by missing special case handling
for 0 delay in mod_delayed_work_on() compared to
queue_delayed_work_on().  Joonsoo Kim posted a patch to add it -
("workqueue: optimize mod_delayed_work_on() when @delay == 0")[1].
The patch was queued for 3.8 but it was described as optimization and
I missed that it was a correctness issue.

As both queue_delayed_work_on() and mod_delayed_work_on() use
__queue_delayed_work() for queueing, it seems that the better approach
is to move the 0 delay special handling to the function instead of
duplicating it in mod_delayed_work_on().

Fix the problem by moving 0 delay special case handling from
queue_delayed_work_on() to __queue_delayed_work().  This replaces
Joonsoo's patch.

[1] http://thread.gmane.org/gmane.linux.kernel/1379011/focus=1379012

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Anders Kaseorg <andersk@MIT.EDU>
Reported-and-tested-by: Zlatko Calusic <zlatko.calusic@iskon.hr>
LKML-Reference: <alpine.DEB.2.00.1211280953350.26602@dr-wily.mit.edu>
LKML-Reference: <50A78AA9.5040904@iskon.hr>
Cc: Joonsoo Kim <js1304@gmail.com>

workqueue: trivial fix for return statement in work_busy()

Return type of work_busy() is unsigned int.
There is return statement returning boolean value, 'false' in work_busy().
It is not problem, because 'false' may be treated '0'.
However, fixing it would make code robust.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: add WARN_ON_ONCE() on CPU number to wq_worker_waking_up()

Recently, workqueue code has gone through some changes and we found
some bugs related to concurrency management operations happening on
the wrong CPU.  When a worker is concurrency managed
(!WORKER_NOT_RUNNIG), it should be bound to its associated cpu and
woken up to that cpu.  Add WARN_ON_ONCE() to verify this.

Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>

workqueue: convert BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s

8852aac25e ("workqueue: mod_delayed_work_on() shouldn't queue timer on
0 delay") unexpectedly uncovered a very nasty abuse of delayed_work in
megaraid - it allocated work_struct, casted it to delayed_work and
then pass that into queue_delayed_work().

Previously, this was okay because 0 @delay short-circuited to
queue_work() before doing anything with delayed_work.  8852aac25e
moved 0 @delay test into __queue_delayed_work() after sanity check on
delayed_work making megaraid trigger BUG_ON().

Although megaraid is already fixed by c1d390d8e6 ("megaraid: fix
BUG_ON() from incorrect use of delayed work"), this patch converts
BUG_ON()s in __queue_delayed_work() to WARN_ON_ONCE()s so that such
abusers, if there are more, trigger warning but don't crash the
machine.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Xiaotian Feng <xtfeng@gmail.com>

wq

Change-Id: Ia3c507777a995f32bf6b40dc8318203e53134229
Signed-off-by: franciscofranco <franciscofranco.1990@gmail.com>

Conflicts:
	kernel/workqueue.c
stratosk pushed a commit to stratosk/kernel_msm that referenced this pull request Apr 20, 2015
commit ce75145 upstream.

It is possible for ata_sff_flush_pio_task() to set ap->hsm_task_state to
HSM_ST_IDLE in between the time __ata_sff_port_intr() checks for HSM_ST_IDLE
and before it calls ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().

This problem is hard to reproduce making this patch hard to verify, but this
fix will prevent the race.

I have not been able to reproduce the problem, but here is a crash dump from
a 2.6.32 kernel.

On examining the ata port's state, its hsm_task_state field has a value of HSM_ST_IDLE:

crash> struct ata_port.hsm_task_state ffff881c1121c000
  hsm_task_state = 0

Normally, this should not be possible as ata_sff_hsm_move() was called from ata_sff_host_intr(),
which checks hsm_task_state and won't call ata_sff_hsm_move() if it has a HSM_ST_IDLE value.

PID: 11053  TASK: ffff8816e846cae0  CPU: 0   COMMAND: "sshd"
 #0 [ffff88008ba03960] machine_kexec at ffffffff81038f3b
 #1 [ffff88008ba039c0] crash_kexec at ffffffff810c5d92
 #2 [ffff88008ba03a90] oops_end at ffffffff8152b510
 #3 [ffff88008ba03ac0] die at ffffffff81010e0b
 aosp-mirror#4 [ffff88008ba03af0] do_trap at ffffffff8152ad74
 aosp-mirror#5 [ffff88008ba03b50] do_invalid_op at ffffffff8100cf95
 aosp-mirror#6 [ffff88008ba03bf0] invalid_op at ffffffff8100bf9b
    [exception RIP: ata_sff_hsm_move+317]
    RIP: ffffffff813a77ad  RSP: ffff88008ba03ca0  RFLAGS: 00010097
    RAX: 0000000000000000  RBX: ffff881c1121dc60  RCX: 0000000000000000
    RDX: ffff881c1121dd10  RSI: ffff881c1121dc60  RDI: ffff881c1121c000
    RBP: ffff88008ba03d00   R8: 0000000000000000   R9: 000000000000002e
    R10: 000000000001003f  R11: 000000000000009b  R12: ffff881c1121c000
    R13: 0000000000000000  R14: 0000000000000050  R15: ffff881c1121dd78
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 aosp-mirror#7 [ffff88008ba03d08] ata_sff_host_intr at ffffffff813a7fbd
 aosp-mirror#8 [ffff88008ba03d38] ata_sff_interrupt at ffffffff813a821e
 aosp-mirror#9 [ffff88008ba03d78] handle_IRQ_event at ffffffff810e6ec0
Crostantin pushed a commit to BoostPop/kernel_lge_hammerhead that referenced this pull request Apr 28, 2015
commit 71abdc1 upstream.

When kswapd exits, it can end up taking locks that were previously held
by allocating tasks while they waited for reclaim.  Lockdep currently
warns about this:

On Wed, May 28, 2014 at 06:06:34PM +0800, Gu Zheng wrote:
>  inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-R} usage.
>  kswapd2/1151 [HC0[0]:SC0[0]:HE1:SE1] takes:
>   (&sig->group_rwsem){+++++?}, at: exit_signals+0x24/0x130
>  {RECLAIM_FS-ON-W} state was registered at:
>     mark_held_locks+0xb9/0x140
>     lockdep_trace_alloc+0x7a/0xe0
>     kmem_cache_alloc_trace+0x37/0x240
>     flex_array_alloc+0x99/0x1a0
>     cgroup_attach_task+0x63/0x430
>     attach_task_by_pid+0x210/0x280
>     cgroup_procs_write+0x16/0x20
>     cgroup_file_write+0x120/0x2c0
>     vfs_write+0xc0/0x1f0
>     SyS_write+0x4c/0xa0
>     tracesys+0xdd/0xe2
>  irq event stamp: 49
>  hardirqs last  enabled at (49):  _raw_spin_unlock_irqrestore+0x36/0x70
>  hardirqs last disabled at (48):  _raw_spin_lock_irqsave+0x2b/0xa0
>  softirqs last  enabled at (0):  copy_process.part.24+0x627/0x15f0
>  softirqs last disabled at (0):            (null)
>
>  other info that might help us debug this:
>   Possible unsafe locking scenario:
>
>         CPU0
>         ----
>    lock(&sig->group_rwsem);
>    <Interrupt>
>      lock(&sig->group_rwsem);
>
>   *** DEADLOCK ***
>
>  no locks held by kswapd2/1151.
>
>  stack backtrace:
>  CPU: 30 PID: 1151 Comm: kswapd2 Not tainted 3.10.39+ aosp-mirror#4
>  Call Trace:
>    dump_stack+0x19/0x1b
>    print_usage_bug+0x1f7/0x208
>    mark_lock+0x21d/0x2a0
>    __lock_acquire+0x52a/0xb60
>    lock_acquire+0xa2/0x140
>    down_read+0x51/0xa0
>    exit_signals+0x24/0x130
>    do_exit+0xb5/0xa50
>    kthread+0xdb/0x100
>    ret_from_fork+0x7c/0xb0

This is because the kswapd thread is still marked as a reclaimer at the
time of exit.  But because it is exiting, nobody is actually waiting on
it to make reclaim progress anymore, and it's nothing but a regular
thread at this point.  Be tidy and strip it of all its powers
(PF_MEMALLOC, PF_SWAPWRITE, PF_KSWAPD, and the lockdep reclaim state)
before returning from the thread function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
binkybear pushed a commit to binkybear/kernel_msm that referenced this pull request Aug 12, 2015
…optimizations

Recent GCC versions (e.g. GCC-4.7.2) perform optimizations based on
assumptions about the implementation of memset and similar functions.
The current ARM optimized memset code does not return the value of
its first argument, as is usually expected from standard implementations.

For instance in the following function:

void debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter)
{
	memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter));
	waiter->magic = waiter;
	INIT_LIST_HEAD(&waiter->list);
}

compiled as:

800554d0 <debug_mutex_lock_common>:
800554d0:       e92d4008        push    {r3, lr}
800554d4:       e1a00001        mov     r0, r1
800554d8:       e3a02010        mov     r2, #16 ; 0x10
800554dc:       e3a01011        mov     r1, #17 ; 0x11
800554e0:       eb04426e        bl      80165ea0 <memset>
800554e4:       e1a03000        mov     r3, r0
800554e8:       e583000c        str     r0, [r3, #12]
800554ec:       e5830000        str     r0, [r3]
800554f0:       e5830004        str     r0, [r3, aosp-mirror#4]
800554f4:       e8bd8008        pop     {r3, pc}

GCC assumes memset returns the value of pointer 'waiter' in register r0; causing
register/memory corruptions.

This patch fixes the return value of the assembly version of memset.
It adds a 'mov' instruction and merges an additional load+store into
existing load/store instructions.
For ease of review, here is a breakdown of the patch into 4 simple steps:

Step 1
======
Perform the following substitutions:
ip -> r8, then
r0 -> ip,
and insert 'mov ip, r0' as the first statement of the function.
At this point, we have a memset() implementation returning the proper result,
but corrupting r8 on some paths (the ones that were using ip).

Step 2
======
Make sure r8 is saved and restored when (! CALGN(1)+0) == 1:

save r8:
-       str     lr, [sp, #-4]!
+       stmfd   sp!, {r8, lr}

and restore r8 on both exit paths:
-       ldmeqfd sp!, {pc}               @ Now <64 bytes to go.
+       ldmeqfd sp!, {r8, pc}           @ Now <64 bytes to go.
(...)
        tst     r2, #16
        stmneia ip!, {r1, r3, r8, lr}
-       ldr     lr, [sp], aosp-mirror#4
+       ldmfd   sp!, {r8, lr}

Step 3
======
Make sure r8 is saved and restored when (! CALGN(1)+0) == 0:

save r8:
-       stmfd   sp!, {r4-r7, lr}
+       stmfd   sp!, {r4-r8, lr}

and restore r8 on both exit paths:
        bgt     3b
-       ldmeqfd sp!, {r4-r7, pc}
+       ldmeqfd sp!, {r4-r8, pc}
(...)
        tst     r2, #16
        stmneia ip!, {r4-r7}
-       ldmfd   sp!, {r4-r7, lr}
+       ldmfd   sp!, {r4-r8, lr}

Step 4
======
Rewrite register list "r4-r7, r8" as "r4-r8".

Change-Id: I79a0d6897572b693d50f8ea8a94aa331bfcc59f8
Git-Commit: 455bd4c
Git-Repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Signed-off-by: Ivan Djelic <ivan.djelic@parrot.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Dirk Behme <dirk.behme@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Stepan Moskovchenko <stepanm@codeaurora.org>
Signed-off-by: flar2 <asegaert@gmail.com>
stratosk pushed a commit to stratosk/kernel_msm that referenced this pull request Sep 24, 2015
commit d744194 upstream.

Sebastian reported a crash caused by a jump label mismatch after resume.
This happens because we do not save the kernel text section during suspend
and therefore also do not restore it during resume, but use the kernel image
that restores the old system.

This means that after a suspend/resume cycle we lost all modifications done
to the kernel text section.
The reason for this is the pfn_is_nosave() function, which incorrectly
returns that read-only pages don't need to be saved. This is incorrect since
we mark the kernel text section read-only.
We still need to make sure to not save and restore pages contained within
NSS and DCSS segment.
To fix this add an extra case for the kernel text section and only save
those pages if they are not contained within an NSS segment.

Fixes the following crash (and the above bugs as well):

Jump label code mismatch at netif_receive_skb_internal+0x28/0xd0
Found:    c0 04 00 00 00 00
Expected: c0 f4 00 00 00 11
New:      c0 04 00 00 00 00
Kernel panic - not syncing: Corrupted kernel text
CPU: 0 PID: 9 Comm: migration/0 Not tainted 3.19.0-01975-gb1b096e70f23 aosp-mirror#4
Call Trace:
  [<0000000000113972>] show_stack+0x72/0xf0
  [<000000000081f15e>] dump_stack+0x6e/0x90
  [<000000000081c4e8>] panic+0x108/0x2b0
  [<000000000081be64>] jump_label_bug.isra.2+0x104/0x108
  [<0000000000112176>] __jump_label_transform+0x9e/0xd0
  [<00000000001121e6>] __sm_arch_jump_label_transform+0x3e/0x50
  [<00000000001d1136>] multi_cpu_stop+0x12e/0x170
  [<00000000001d1472>] cpu_stopper_thread+0xb2/0x168
  [<000000000015d2ac>] smpboot_thread_fn+0x134/0x1b0
  [<0000000000158baa>] kthread+0x10a/0x110
  [<0000000000824a86>] kernel_thread_starter+0x6/0xc

Reported-and-tested-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[lizf: Backported to 3.4: add necessary includes]
Signed-off-by: Zefan Li <lizefan@huawei.com>
idjelic added a commit that referenced this pull request Oct 5, 2015
…optimizations

Recent GCC versions (e.g. GCC-4.7.2) perform optimizations based on
assumptions about the implementation of memset and similar functions.
The current ARM optimized memset code does not return the value of
its first argument, as is usually expected from standard implementations.

For instance in the following function:

void debug_mutex_lock_common(struct mutex *lock, struct mutex_waiter *waiter)
{
	memset(waiter, MUTEX_DEBUG_INIT, sizeof(*waiter));
	waiter->magic = waiter;
	INIT_LIST_HEAD(&waiter->list);
}

compiled as:

800554d0 <debug_mutex_lock_common>:
800554d0:       e92d4008        push    {r3, lr}
800554d4:       e1a00001        mov     r0, r1
800554d8:       e3a02010        mov     r2, #16 ; 0x10
800554dc:       e3a01011        mov     r1, #17 ; 0x11
800554e0:       eb04426e        bl      80165ea0 <memset>
800554e4:       e1a03000        mov     r3, r0
800554e8:       e583000c        str     r0, [r3, #12]
800554ec:       e5830000        str     r0, [r3]
800554f0:       e5830004        str     r0, [r3, #4]
800554f4:       e8bd8008        pop     {r3, pc}

GCC assumes memset returns the value of pointer 'waiter' in register r0; causing
register/memory corruptions.

This patch fixes the return value of the assembly version of memset.
It adds a 'mov' instruction and merges an additional load+store into
existing load/store instructions.
For ease of review, here is a breakdown of the patch into 4 simple steps:

Step 1
======
Perform the following substitutions:
ip -> r8, then
r0 -> ip,
and insert 'mov ip, r0' as the first statement of the function.
At this point, we have a memset() implementation returning the proper result,
but corrupting r8 on some paths (the ones that were using ip).

Step 2
======
Make sure r8 is saved and restored when (! CALGN(1)+0) == 1:

save r8:
-       str     lr, [sp, #-4]!
+       stmfd   sp!, {r8, lr}

and restore r8 on both exit paths:
-       ldmeqfd sp!, {pc}               @ Now <64 bytes to go.
+       ldmeqfd sp!, {r8, pc}           @ Now <64 bytes to go.
(...)
        tst     r2, #16
        stmneia ip!, {r1, r3, r8, lr}
-       ldr     lr, [sp], #4
+       ldmfd   sp!, {r8, lr}

Step 3
======
Make sure r8 is saved and restored when (! CALGN(1)+0) == 0:

save r8:
-       stmfd   sp!, {r4-r7, lr}
+       stmfd   sp!, {r4-r8, lr}

and restore r8 on both exit paths:
        bgt     3b
-       ldmeqfd sp!, {r4-r7, pc}
+       ldmeqfd sp!, {r4-r8, pc}
(...)
        tst     r2, #16
        stmneia ip!, {r4-r7}
-       ldmfd   sp!, {r4-r7, lr}
+       ldmfd   sp!, {r4-r8, lr}

Step 4
======
Rewrite register list "r4-r7, r8" as "r4-r8".

Change-Id: I79a0d6897572b693d50f8ea8a94aa331bfcc59f8
Git-Commit: 455bd4c
Git-Repo: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Signed-off-by: Ivan Djelic <ivan.djelic@parrot.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Dirk Behme <dirk.behme@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Stepan Moskovchenko <stepanm@codeaurora.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
commit 2c0c2a0 upstream.

While traversing the linked list of open file handles, if the identfied
file handle is invalid, a reopen is attempted and if it fails, we
resume traversing where we stopped and cifs can oops while accessing
invalid next element, for list might have changed.

So mark the invalid file handle and attempt reopen if no
valid file handle is found in rest of the list.
If reopen fails, move the invalid file handle to the end of the list
and start traversing the list again from the begining.
Repeat this four times before giving up and returning an error if
file reopen keeps failing.

Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
commit e5851da upstream.

Remove spinlock as atomic_t can be used instead. Note we use only 16
lower bits, upper bits are changed but we impilcilty cast to u16.

This fix possible deadlock on IBSS mode reproted by lockdep:

=================================
[ INFO: inconsistent lock state ]
3.4.0-wl+ aosp-mirror#4 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kworker/u:2/30374 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (&(&intf->seqlock)->rlock){+.?...}, at: [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
{IN-SOFTIRQ-W} state was registered at:
  [<c04978ab>] __lock_acquire+0x47b/0x1050
  [<c0498504>] lock_acquire+0x84/0xf0
  [<c0835733>] _raw_spin_lock+0x33/0x40
  [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
  [<f9979f2a>] rt2x00queue_write_tx_frame+0x1a/0x300 [rt2x00lib]
  [<f997834f>] rt2x00mac_tx+0x7f/0x380 [rt2x00lib]
  [<f98fe363>] __ieee80211_tx+0x1b3/0x300 [mac80211]
  [<f98ffdf5>] ieee80211_tx+0x105/0x130 [mac80211]
  [<f99000dd>] ieee80211_xmit+0xad/0x100 [mac80211]
  [<f9900519>] ieee80211_subif_start_xmit+0x2d9/0x930 [mac80211]
  [<c0782e87>] dev_hard_start_xmit+0x307/0x660
  [<c079bb71>] sch_direct_xmit+0xa1/0x1e0
  [<c0784bb3>] dev_queue_xmit+0x183/0x730
  [<c078c27a>] neigh_resolve_output+0xfa/0x1e0
  [<c07b436a>] ip_finish_output+0x24a/0x460
  [<c07b4897>] ip_output+0xb7/0x100
  [<c07b2d60>] ip_local_out+0x20/0x60
  [<c07e01ff>] igmpv3_sendpack+0x4f/0x60
  [<c07e108f>] igmp_ifc_timer_expire+0x29f/0x330
  [<c04520fc>] run_timer_softirq+0x15c/0x2f0
  [<c0449e3e>] __do_softirq+0xae/0x1e0
irq event stamp: 18380437
hardirqs last  enabled at (18380437): [<c0526027>] __slab_alloc.clone.3+0x67/0x5f0
hardirqs last disabled at (18380436): [<c0525ff3>] __slab_alloc.clone.3+0x33/0x5f0
softirqs last  enabled at (18377616): [<c0449eb3>] __do_softirq+0x123/0x1e0
softirqs last disabled at (18377611): [<c041278d>] do_softirq+0x9d/0xe0

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&(&intf->seqlock)->rlock);
  <Interrupt>
    lock(&(&intf->seqlock)->rlock);

 *** DEADLOCK ***

4 locks held by kworker/u:2/30374:
 #0:  (wiphy_name(local->hw.wiphy)){++++.+}, at: [<c045cf99>] process_one_work+0x109/0x3f0
 aosp-mirror#1:  ((&sdata->work)){+.+.+.}, at: [<c045cf99>] process_one_work+0x109/0x3f0
 aosp-mirror#2:  (&ifibss->mtx){+.+.+.}, at: [<f98f005b>] ieee80211_ibss_work+0x1b/0x470 [mac80211]
 aosp-mirror#3:  (&intf->beacon_skb_mutex){+.+...}, at: [<f997a644>] rt2x00queue_update_beacon+0x24/0x50 [rt2x00lib]

stack backtrace:
Pid: 30374, comm: kworker/u:2 Not tainted 3.4.0-wl+ aosp-mirror#4
Call Trace:
 [<c04962a6>] print_usage_bug+0x1f6/0x220
 [<c0496a12>] mark_lock+0x2c2/0x300
 [<c0495ff0>] ? check_usage_forwards+0xc0/0xc0
 [<c04978ec>] __lock_acquire+0x4bc/0x1050
 [<c0527890>] ? __kmalloc_track_caller+0x1c0/0x1d0
 [<c0777fb6>] ? copy_skb_header+0x26/0x90
 [<c0498504>] lock_acquire+0x84/0xf0
 [<f9979a20>] ? rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<c0835733>] _raw_spin_lock+0x33/0x40
 [<f9979a20>] ? rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<f997a5cf>] rt2x00queue_update_beacon_locked+0x5f/0xb0 [rt2x00lib]
 [<f997a64d>] rt2x00queue_update_beacon+0x2d/0x50 [rt2x00lib]
 [<f9977e3a>] rt2x00mac_bss_info_changed+0x1ca/0x200 [rt2x00lib]
 [<f9977c70>] ? rt2x00mac_remove_interface+0x70/0x70 [rt2x00lib]
 [<f98e4dd0>] ieee80211_bss_info_change_notify+0xe0/0x1d0 [mac80211]
 [<f98ef7b8>] __ieee80211_sta_join_ibss+0x3b8/0x610 [mac80211]
 [<c0496ab4>] ? mark_held_locks+0x64/0xc0
 [<c0440012>] ? virt_efi_query_capsule_caps+0x12/0x50
 [<f98efb09>] ieee80211_sta_join_ibss+0xf9/0x140 [mac80211]
 [<f98f0456>] ieee80211_ibss_work+0x416/0x470 [mac80211]
 [<c0496d8b>] ? trace_hardirqs_on+0xb/0x10
 [<c077683b>] ? skb_dequeue+0x4b/0x70
 [<f98f207f>] ieee80211_iface_work+0x13f/0x230 [mac80211]
 [<c045cf99>] ? process_one_work+0x109/0x3f0
 [<c045d015>] process_one_work+0x185/0x3f0
 [<c045cf99>] ? process_one_work+0x109/0x3f0
 [<f98f1f40>] ? ieee80211_teardown_sdata+0xa0/0xa0 [mac80211]
 [<c045ed86>] worker_thread+0x116/0x270
 [<c045ec70>] ? manage_workers+0x1e0/0x1e0
 [<c0462f64>] kthread+0x84/0x90
 [<c0462ee0>] ? __init_kthread_worker+0x60/0x60
 [<c083d382>] kernel_thread_helper+0x6/0x10

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Helmut Schaa <helmut.schaa@googlemail.com>
Acked-by: Gertjan van Wingerde <gwingerde@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
…condition

commit 26c1917 upstream.

When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.

PID: 11679  TASK: f06e8000  CPU: 3   COMMAND: "do_race_2_panic"
 #0 [f06a9dd8] crash_kexec at c049b5ec
 aosp-mirror#1 [f06a9e2c] oops_end at c083d1c2
 aosp-mirror#2 [f06a9e40] no_context at c0433ded
 aosp-mirror#3 [f06a9e64] bad_area_nosemaphore at c043401a
 aosp-mirror#4 [f06a9e6c] __do_page_fault at c0434493
 aosp-mirror#5 [f06a9eec] do_page_fault at c083eb45
 aosp-mirror#6 [f06a9f04] error_code (via page_fault) at c083c5d5
    EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
    00000000
    DS:  007b     ESI: 9e201000 ES:  007b     EDI: 01fb4700 GS:  00e0
    CS:  0060     EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
 aosp-mirror#7 [f06a9f38] _spin_lock at c083bc14
 aosp-mirror#8 [f06a9f44] sys_mincore at c0507b7d
 aosp-mirror#9 [f06a9fb0] system_call at c083becd
                         start           len
    EAX: ffffffda  EBX: 9e200000  ECX: 00001000  EDX: 6228537f
    DS:  007b      ESI: 00000000  ES:  007b      EDI: 003d0f00
    SS:  007b      ESP: 62285354  EBP: 62285388  GS:  0033
    CS:  0073      EIP: 00291416  ERR: 000000da  EFLAGS: 00000286

This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.

With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.

This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.

Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.

NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.

This bug was discovered and fully debugged by Ulrich, quote:

----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.

    496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
    *pmd)
    497 {
    498         /* depend on compiler for an atomic pmd read */
    499         pmd_t pmdval = *pmd;

                                // edi = pmd pointer
0xc0507a74 <sys_mincore+548>:   mov    0x8(%esp),%edi
...
                                // edx = PTE page table high address
0xc0507a84 <sys_mincore+564>:   mov    0x4(%edi),%edx
...
                                // eax = PTE page table low address
0xc0507a8e <sys_mincore+574>:   mov    (%edi),%eax

[..]

Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.

-  The PMD entry {high|low} is 0x0000000000000000.
   The "mov" at 0xc0507a84 loads 0x00000000 into edx.

-  A page fault (on another CPU) sneaks in between the two "mov"
   instructions and instantiates the PMD.

-  The PMD entry {high|low} is now 0x00000003fda38067.
   The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----

Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
commit 3cf003c upstream.

[The async read code was broadened to include uncached reads in 3.5, so
the mainline patch did not apply directly. This patch is just a backport
to account for that change.]

Jian found that when he ran fsx on a 32 bit arch with a large wsize the
process and one of the bdi writeback kthreads would sometimes deadlock
with a stack trace like this:

crash> bt
PID: 2789   TASK: f02edaa0  CPU: 3   COMMAND: "fsx"
 #0 [eed63cbc] schedule at c083c5b3
 aosp-mirror#1 [eed63d80] kmap_high at c0500ec8
 aosp-mirror#2 [eed63db0] cifs_async_writev at f7fabcd7 [cifs]
 aosp-mirror#3 [eed63df0] cifs_writepages at f7fb7f5c [cifs]
 aosp-mirror#4 [eed63e50] do_writepages at c04f3e32
 aosp-mirror#5 [eed63e54] __filemap_fdatawrite_range at c04e152a
 aosp-mirror#6 [eed63ea4] filemap_fdatawrite at c04e1b3e
 aosp-mirror#7 [eed63eb4] cifs_file_aio_write at f7fa111a [cifs]
 aosp-mirror#8 [eed63ecc] do_sync_write at c052d202
 aosp-mirror#9 [eed63f74] vfs_write at c052d4ee
#10 [eed63f94] sys_write at c052df4c
#11 [eed63fb0] ia32_sysenter_target at c0409a98
    EAX: 00000004  EBX: 00000003  ECX: abd73b73  EDX: 012a65c6
    DS:  007b      ESI: 012a65c6  ES:  007b      EDI: 00000000
    SS:  007b      ESP: bf8db178  EBP: bf8db1f8  GS:  0033
    CS:  0073      EIP: 40000424  ERR: 00000004  EFLAGS: 00000246

Each task would kmap part of its address array before getting stuck, but
not enough to actually issue the write.

This patch fixes this by serializing the marshal_iov operations for
async reads and writes. The idea here is to ensure that cifs
aggressively tries to populate a request before attempting to fulfill
another one. As soon as all of the pages are kmapped for a request, then
we can unlock and allow another one to proceed.

There's no need to do this serialization on non-CONFIG_HIGHMEM arches
however, so optimize all of this out when CONFIG_HIGHMEM isn't set.

Reported-by: Jian Li <jiali@redhat.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
…d reasons

commit 5cf02d0 upstream.

We've had some reports of a deadlock where rpciod ends up with a stack
trace like this:

    PID: 2507   TASK: ffff88103691ab40  CPU: 14  COMMAND: "rpciod/14"
     #0 [ffff8810343bf2f0] schedule at ffffffff814dabd9
     aosp-mirror#1 [ffff8810343bf3b8] nfs_wait_bit_killable at ffffffffa038fc04 [nfs]
     aosp-mirror#2 [ffff8810343bf3c8] __wait_on_bit at ffffffff814dbc2f
     aosp-mirror#3 [ffff8810343bf418] out_of_line_wait_on_bit at ffffffff814dbcd8
     aosp-mirror#4 [ffff8810343bf488] nfs_commit_inode at ffffffffa039e0c1 [nfs]
     aosp-mirror#5 [ffff8810343bf4f8] nfs_release_page at ffffffffa038bef6 [nfs]
     aosp-mirror#6 [ffff8810343bf528] try_to_release_page at ffffffff8110c670
     aosp-mirror#7 [ffff8810343bf538] shrink_page_list.clone.0 at ffffffff81126271
     aosp-mirror#8 [ffff8810343bf668] shrink_inactive_list at ffffffff81126638
     aosp-mirror#9 [ffff8810343bf818] shrink_zone at ffffffff8112788f
    #10 [ffff8810343bf8c8] do_try_to_free_pages at ffffffff81127b1e
    #11 [ffff8810343bf958] try_to_free_pages at ffffffff8112812f
    #12 [ffff8810343bfa08] __alloc_pages_nodemask at ffffffff8111fdad
    #13 [ffff8810343bfb28] kmem_getpages at ffffffff81159942
    #14 [ffff8810343bfb58] fallback_alloc at ffffffff8115a55a
    #15 [ffff8810343bfbd8] ____cache_alloc_node at ffffffff8115a2d9
    #16 [ffff8810343bfc38] kmem_cache_alloc at ffffffff8115b09b
    #17 [ffff8810343bfc78] sk_prot_alloc at ffffffff81411808
    #18 [ffff8810343bfcb8] sk_alloc at ffffffff8141197c
    #19 [ffff8810343bfce8] inet_create at ffffffff81483ba6
    #20 [ffff8810343bfd38] __sock_create at ffffffff8140b4a7
    #21 [ffff8810343bfd98] xs_create_sock at ffffffffa01f649b [sunrpc]
    #22 [ffff8810343bfdd8] xs_tcp_setup_socket at ffffffffa01f6965 [sunrpc]
    #23 [ffff8810343bfe38] worker_thread at ffffffff810887d0
    #24 [ffff8810343bfee8] kthread at ffffffff8108dd96
    #25 [ffff8810343bff48] kernel_thread at ffffffff8100c1ca

rpciod is trying to allocate memory for a new socket to talk to the
server. The VM ends up calling ->releasepage to get more memory, and it
tries to do a blocking commit. That commit can't succeed however without
a connected socket, so we deadlock.

Fix this by setting PF_FSTRANS on the workqueue task prior to doing the
socket allocation, and having nfs_release_page check for that flag when
deciding whether to do a commit call. Also, set PF_FSTRANS
unconditionally in rpc_async_schedule since that function can also do
allocations sometimes.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
commit eb48c07 upstream.

Each page mapped in a process's address space must be correctly
accounted for in _mapcount.  Normally the rules for this are
straightforward but hugetlbfs page table sharing is different.  The page
table pages at the PMD level are reference counted while the mapcount
remains the same.

If this accounting is wrong, it causes bugs like this one reported by
Larry Woodman:

  kernel BUG at mm/filemap.c:135!
  invalid opcode: 0000 [aosp-mirror#1] SMP
  CPU 22
  Modules linked in: bridge stp llc sunrpc binfmt_misc dcdbas microcode pcspkr acpi_pad acpi]
  Pid: 18001, comm: mpitest Tainted: G        W    3.3.0+ aosp-mirror#4 Dell Inc. PowerEdge R620/07NDJ2
  RIP: 0010:[<ffffffff8112cfed>]  [<ffffffff8112cfed>] __delete_from_page_cache+0x15d/0x170
  Process mpitest (pid: 18001, threadinfo ffff880428972000, task ffff880428b5cc20)
  Call Trace:
    delete_from_page_cache+0x40/0x80
    truncate_hugepages+0x115/0x1f0
    hugetlbfs_evict_inode+0x18/0x30
    evict+0x9f/0x1b0
    iput_final+0xe3/0x1e0
    iput+0x3e/0x50
    d_kill+0xf8/0x110
    dput+0xe2/0x1b0
    __fput+0x162/0x240

During fork(), copy_hugetlb_page_range() detects if huge_pte_alloc()
shared page tables with the check dst_pte == src_pte.  The logic is if
the PMD page is the same, they must be shared.  This assumes that the
sharing is between the parent and child.  However, if the sharing is
with a different process entirely then this check fails as in this
diagram:

  parent
    |
    ------------>pmd
                 src_pte----------> data page
                                        ^
  other--------->pmd--------------------|
                  ^
  child-----------|
                 dst_pte

For this situation to occur, it must be possible for Parent and Other to
have faulted and failed to share page tables with each other.  This is
possible due to the following style of race.

  PROC A                                          PROC B
  copy_hugetlb_page_range                         copy_hugetlb_page_range
    src_pte == huge_pte_offset                      src_pte == huge_pte_offset
    !src_pte so no sharing                          !src_pte so no sharing

  (time passes)

  hugetlb_fault                                   hugetlb_fault
    huge_pte_alloc                                  huge_pte_alloc
      huge_pmd_share                                 huge_pmd_share
        LOCK(i_mmap_mutex)
        find nothing, no sharing
        UNLOCK(i_mmap_mutex)
                                                      LOCK(i_mmap_mutex)
                                                      find nothing, no sharing
                                                      UNLOCK(i_mmap_mutex)
      pmd_alloc                                       pmd_alloc
      LOCK(instantiation_mutex)
      fault
      UNLOCK(instantiation_mutex)
                                                  LOCK(instantiation_mutex)
                                                  fault
                                                  UNLOCK(instantiation_mutex)

These two processes are not poing to the same data page but are not
sharing page tables because the opportunity was missed.  When either
process later forks, the src_pte == dst pte is potentially insufficient.
As the check falls through, the wrong PTE information is copied in
(harmless but wrong) and the mapcount is bumped for a page mapped by a
shared page table leading to the BUG_ON.

This patch addresses the issue by moving pmd_alloc into huge_pmd_share
which guarantees that the shared pud is populated in the same critical
section as pmd.  This also means that huge_pte_offset test in
huge_pmd_share is serialized correctly now which in turn means that the
success of the sharing will be higher as the racing tasks see the pud
and pmd populated together.

Race identified and changelog written mostly by Mel Gorman.

{akpm@linux-foundation.org: attempt to make the huge_pmd_share() comment comprehensible, clean up coding style]
Reported-by: Larry Woodman <lwoodman@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 2, 2015
commit bea6832 upstream.

On architectures where cputime_t is 64 bit type, is possible to trigger
divide by zero on do_div(temp, (__force u32) total) line, if total is a
non zero number but has lower 32 bit's zeroed. Removing casting is not
a good solution since some do_div() implementations do cast to u32
internally.

This problem can be triggered in practice on very long lived processes:

  PID: 2331   TASK: ffff880472814b00  CPU: 2   COMMAND: "oraagent.bin"
   #0 [ffff880472a51b70] machine_kexec at ffffffff8103214b
   aosp-mirror#1 [ffff880472a51bd0] crash_kexec at ffffffff810b91c2
   aosp-mirror#2 [ffff880472a51ca0] oops_end at ffffffff814f0b00
   aosp-mirror#3 [ffff880472a51cd0] die at ffffffff8100f26b
   aosp-mirror#4 [ffff880472a51d00] do_trap at ffffffff814f03f4
   aosp-mirror#5 [ffff880472a51d60] do_divide_error at ffffffff8100cfff
   aosp-mirror#6 [ffff880472a51e00] divide_error at ffffffff8100be7b
      [exception RIP: thread_group_times+0x56]
      RIP: ffffffff81056a16  RSP: ffff880472a51eb8  RFLAGS: 00010046
      RAX: bc3572c9fe12d194  RBX: ffff880874150800  RCX: 0000000110266fad
      RDX: 0000000000000000  RSI: ffff880472a51eb8  RDI: 001038ae7d9633dc
      RBP: ffff880472a51ef8   R8: 00000000b10a3a64   R9: ffff880874150800
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: ffff880472a51f08
      R13: ffff880472a51f10  R14: 0000000000000000  R15: 0000000000000007
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   aosp-mirror#7 [ffff880472a51f00] do_sys_times at ffffffff8108845d
   aosp-mirror#8 [ffff880472a51f40] sys_times at ffffffff81088524
   aosp-mirror#9 [ffff880472a51f80] system_call_fastpath at ffffffff8100b0f2
      RIP: 0000003808caac3a  RSP: 00007fcba27ab6d8  RFLAGS: 00000202
      RAX: 0000000000000064  RBX: ffffffff8100b0f2  RCX: 0000000000000000
      RDX: 00007fcba27ab6e0  RSI: 000000000076d58e  RDI: 00007fcba27ab6e0
      RBP: 00007fcba27ab700   R8: 0000000000000020   R9: 000000000000091b
      R10: 00007fcba27ab680  R11: 0000000000000202  R12: 00007fff9ca41940
      R13: 0000000000000000  R14: 00007fcba27ac9c0  R15: 00007fff9ca41940
      ORIG_RAX: 0000000000000064  CS: 0033  SS: 002b

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120808092714.GA3580@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 3, 2015
commit 2c0c2a0 upstream.

While traversing the linked list of open file handles, if the identfied
file handle is invalid, a reopen is attempted and if it fails, we
resume traversing where we stopped and cifs can oops while accessing
invalid next element, for list might have changed.

So mark the invalid file handle and attempt reopen if no
valid file handle is found in rest of the list.
If reopen fails, move the invalid file handle to the end of the list
and start traversing the list again from the begining.
Repeat this four times before giving up and returning an error if
file reopen keeps failing.

Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <sfrench@us.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 4, 2015
commit e5851da upstream.

Remove spinlock as atomic_t can be used instead. Note we use only 16
lower bits, upper bits are changed but we impilcilty cast to u16.

This fix possible deadlock on IBSS mode reproted by lockdep:

=================================
[ INFO: inconsistent lock state ]
3.4.0-wl+ aosp-mirror#4 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kworker/u:2/30374 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (&(&intf->seqlock)->rlock){+.?...}, at: [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
{IN-SOFTIRQ-W} state was registered at:
  [<c04978ab>] __lock_acquire+0x47b/0x1050
  [<c0498504>] lock_acquire+0x84/0xf0
  [<c0835733>] _raw_spin_lock+0x33/0x40
  [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
  [<f9979f2a>] rt2x00queue_write_tx_frame+0x1a/0x300 [rt2x00lib]
  [<f997834f>] rt2x00mac_tx+0x7f/0x380 [rt2x00lib]
  [<f98fe363>] __ieee80211_tx+0x1b3/0x300 [mac80211]
  [<f98ffdf5>] ieee80211_tx+0x105/0x130 [mac80211]
  [<f99000dd>] ieee80211_xmit+0xad/0x100 [mac80211]
  [<f9900519>] ieee80211_subif_start_xmit+0x2d9/0x930 [mac80211]
  [<c0782e87>] dev_hard_start_xmit+0x307/0x660
  [<c079bb71>] sch_direct_xmit+0xa1/0x1e0
  [<c0784bb3>] dev_queue_xmit+0x183/0x730
  [<c078c27a>] neigh_resolve_output+0xfa/0x1e0
  [<c07b436a>] ip_finish_output+0x24a/0x460
  [<c07b4897>] ip_output+0xb7/0x100
  [<c07b2d60>] ip_local_out+0x20/0x60
  [<c07e01ff>] igmpv3_sendpack+0x4f/0x60
  [<c07e108f>] igmp_ifc_timer_expire+0x29f/0x330
  [<c04520fc>] run_timer_softirq+0x15c/0x2f0
  [<c0449e3e>] __do_softirq+0xae/0x1e0
irq event stamp: 18380437
hardirqs last  enabled at (18380437): [<c0526027>] __slab_alloc.clone.3+0x67/0x5f0
hardirqs last disabled at (18380436): [<c0525ff3>] __slab_alloc.clone.3+0x33/0x5f0
softirqs last  enabled at (18377616): [<c0449eb3>] __do_softirq+0x123/0x1e0
softirqs last disabled at (18377611): [<c041278d>] do_softirq+0x9d/0xe0

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&(&intf->seqlock)->rlock);
  <Interrupt>
    lock(&(&intf->seqlock)->rlock);

 *** DEADLOCK ***

4 locks held by kworker/u:2/30374:
 #0:  (wiphy_name(local->hw.wiphy)){++++.+}, at: [<c045cf99>] process_one_work+0x109/0x3f0
 aosp-mirror#1:  ((&sdata->work)){+.+.+.}, at: [<c045cf99>] process_one_work+0x109/0x3f0
 aosp-mirror#2:  (&ifibss->mtx){+.+.+.}, at: [<f98f005b>] ieee80211_ibss_work+0x1b/0x470 [mac80211]
 aosp-mirror#3:  (&intf->beacon_skb_mutex){+.+...}, at: [<f997a644>] rt2x00queue_update_beacon+0x24/0x50 [rt2x00lib]

stack backtrace:
Pid: 30374, comm: kworker/u:2 Not tainted 3.4.0-wl+ aosp-mirror#4
Call Trace:
 [<c04962a6>] print_usage_bug+0x1f6/0x220
 [<c0496a12>] mark_lock+0x2c2/0x300
 [<c0495ff0>] ? check_usage_forwards+0xc0/0xc0
 [<c04978ec>] __lock_acquire+0x4bc/0x1050
 [<c0527890>] ? __kmalloc_track_caller+0x1c0/0x1d0
 [<c0777fb6>] ? copy_skb_header+0x26/0x90
 [<c0498504>] lock_acquire+0x84/0xf0
 [<f9979a20>] ? rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<c0835733>] _raw_spin_lock+0x33/0x40
 [<f9979a20>] ? rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<f9979a20>] rt2x00queue_create_tx_descriptor+0x380/0x490 [rt2x00lib]
 [<f997a5cf>] rt2x00queue_update_beacon_locked+0x5f/0xb0 [rt2x00lib]
 [<f997a64d>] rt2x00queue_update_beacon+0x2d/0x50 [rt2x00lib]
 [<f9977e3a>] rt2x00mac_bss_info_changed+0x1ca/0x200 [rt2x00lib]
 [<f9977c70>] ? rt2x00mac_remove_interface+0x70/0x70 [rt2x00lib]
 [<f98e4dd0>] ieee80211_bss_info_change_notify+0xe0/0x1d0 [mac80211]
 [<f98ef7b8>] __ieee80211_sta_join_ibss+0x3b8/0x610 [mac80211]
 [<c0496ab4>] ? mark_held_locks+0x64/0xc0
 [<c0440012>] ? virt_efi_query_capsule_caps+0x12/0x50
 [<f98efb09>] ieee80211_sta_join_ibss+0xf9/0x140 [mac80211]
 [<f98f0456>] ieee80211_ibss_work+0x416/0x470 [mac80211]
 [<c0496d8b>] ? trace_hardirqs_on+0xb/0x10
 [<c077683b>] ? skb_dequeue+0x4b/0x70
 [<f98f207f>] ieee80211_iface_work+0x13f/0x230 [mac80211]
 [<c045cf99>] ? process_one_work+0x109/0x3f0
 [<c045d015>] process_one_work+0x185/0x3f0
 [<c045cf99>] ? process_one_work+0x109/0x3f0
 [<f98f1f40>] ? ieee80211_teardown_sdata+0xa0/0xa0 [mac80211]
 [<c045ed86>] worker_thread+0x116/0x270
 [<c045ec70>] ? manage_workers+0x1e0/0x1e0
 [<c0462f64>] kthread+0x84/0x90
 [<c0462ee0>] ? __init_kthread_worker+0x60/0x60
 [<c083d382>] kernel_thread_helper+0x6/0x10

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Acked-by: Helmut Schaa <helmut.schaa@googlemail.com>
Acked-by: Gertjan van Wingerde <gwingerde@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 4, 2015
…condition

commit 26c1917 upstream.

When holding the mmap_sem for reading, pmd_offset_map_lock should only
run on a pmd_t that has been read atomically from the pmdp pointer,
otherwise we may read only half of it leading to this crash.

PID: 11679  TASK: f06e8000  CPU: 3   COMMAND: "do_race_2_panic"
 #0 [f06a9dd8] crash_kexec at c049b5ec
 aosp-mirror#1 [f06a9e2c] oops_end at c083d1c2
 aosp-mirror#2 [f06a9e40] no_context at c0433ded
 aosp-mirror#3 [f06a9e64] bad_area_nosemaphore at c043401a
 aosp-mirror#4 [f06a9e6c] __do_page_fault at c0434493
 aosp-mirror#5 [f06a9eec] do_page_fault at c083eb45
 aosp-mirror#6 [f06a9f04] error_code (via page_fault) at c083c5d5
    EAX: 01fb470c EBX: fff35000 ECX: 00000003 EDX: 00000100 EBP:
    00000000
    DS:  007b     ESI: 9e201000 ES:  007b     EDI: 01fb4700 GS:  00e0
    CS:  0060     EIP: c083bc14 ERR: ffffffff EFLAGS: 00010246
 aosp-mirror#7 [f06a9f38] _spin_lock at c083bc14
 aosp-mirror#8 [f06a9f44] sys_mincore at c0507b7d
 aosp-mirror#9 [f06a9fb0] system_call at c083becd
                         start           len
    EAX: ffffffda  EBX: 9e200000  ECX: 00001000  EDX: 6228537f
    DS:  007b      ESI: 00000000  ES:  007b      EDI: 003d0f00
    SS:  007b      ESP: 62285354  EBP: 62285388  GS:  0033
    CS:  0073      EIP: 00291416  ERR: 000000da  EFLAGS: 00000286

This should be a longstanding bug affecting x86 32bit PAE without THP.
Only archs with 64bit large pmd_t and 32bit unsigned long should be
affected.

With THP enabled the barrier() in pmd_none_or_trans_huge_or_clear_bad()
would partly hide the bug when the pmd transition from none to stable,
by forcing a re-read of the *pmd in pmd_offset_map_lock, but when THP is
enabled a new set of problem arises by the fact could then transition
freely in any of the none, pmd_trans_huge or pmd_trans_stable states.
So making the barrier in pmd_none_or_trans_huge_or_clear_bad()
unconditional isn't good idea and it would be a flakey solution.

This should be fully fixed by introducing a pmd_read_atomic that reads
the pmd in order with THP disabled, or by reading the pmd atomically
with cmpxchg8b with THP enabled.

Luckily this new race condition only triggers in the places that must
already be covered by pmd_none_or_trans_huge_or_clear_bad() so the fix
is localized there but this bug is not related to THP.

NOTE: this can trigger on x86 32bit systems with PAE enabled with more
than 4G of ram, otherwise the high part of the pmd will never risk to be
truncated because it would be zero at all times, in turn so hiding the
SMP race.

This bug was discovered and fully debugged by Ulrich, quote:

----
[..]
pmd_none_or_trans_huge_or_clear_bad() loads the content of edx and
eax.

    496 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
    *pmd)
    497 {
    498         /* depend on compiler for an atomic pmd read */
    499         pmd_t pmdval = *pmd;

                                // edi = pmd pointer
0xc0507a74 <sys_mincore+548>:   mov    0x8(%esp),%edi
...
                                // edx = PTE page table high address
0xc0507a84 <sys_mincore+564>:   mov    0x4(%edi),%edx
...
                                // eax = PTE page table low address
0xc0507a8e <sys_mincore+574>:   mov    (%edi),%eax

[..]

Please note that the PMD is not read atomically. These are two "mov"
instructions where the high order bits of the PMD entry are fetched
first. Hence, the above machine code is prone to the following race.

-  The PMD entry {high|low} is 0x0000000000000000.
   The "mov" at 0xc0507a84 loads 0x00000000 into edx.

-  A page fault (on another CPU) sneaks in between the two "mov"
   instructions and instantiates the PMD.

-  The PMD entry {high|low} is now 0x00000003fda38067.
   The "mov" at 0xc0507a8e loads 0xfda38067 into eax.
----

Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Petr Matousek <pmatouse@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
nasty007 pushed a commit to nasty007/kernel_msm that referenced this pull request Nov 4, 2015
commit 3cf003c upstream.

[The async read code was broadened to include uncached reads in 3.5, so
the mainline patch did not apply directly. This patch is just a backport
to account for that change.]

Jian found that when he ran fsx on a 32 bit arch with a large wsize the
process and one of the bdi writeback kthreads would sometimes deadlock
with a stack trace like this:

crash> bt
PID: 2789   TASK: f02edaa0  CPU: 3   COMMAND: "fsx"
 #0 [eed63cbc] schedule at c083c5b3
 aosp-mirror#1 [eed63d80] kmap_high at c0500ec8
 aosp-mirror#2 [eed63db0] cifs_async_writev at f7fabcd7 [cifs]
 aosp-mirror#3 [eed63df0] cifs_writepages at f7fb7f5c [cifs]
 aosp-mirror#4 [eed63e50] do_writepages at c04f3e32
 aosp-mirror#5 [eed63e54] __filemap_fdatawrite_range at c04e152a
 aosp-mirror#6 [eed63ea4] filemap_fdatawrite at c04e1b3e
 aosp-mirror#7 [eed63eb4] cifs_file_aio_write at f7fa111a [cifs]
 aosp-mirror#8 [eed63ecc] do_sync_write at c052d202
 aosp-mirror#9 [eed63f74] vfs_write at c052d4ee
#10 [eed63f94] sys_write at c052df4c
#11 [eed63fb0] ia32_sysenter_target at c0409a98
    EAX: 00000004  EBX: 00000003  ECX: abd73b73  EDX: 012a65c6
    DS:  007b      ESI: 012a65c6  ES:  007b      EDI: 00000000
    SS:  007b      ESP: bf8db178  EBP: bf8db1f8  GS:  0033
    CS:  0073      EIP: 40000424  ERR: 00000004  EFLAGS: 00000246

Each task would kmap part of its address array before getting stuck, but
not enough to actually issue the write.

This patch fixes this by serializing the marshal_iov operations for
async reads and writes. The idea here is to ensure that cifs
aggressively tries to populate a request before attempting to fulfill
another one. As soon as all of the pages are kmapped for a request, then
we can unlock and allow another one to proceed.

There's no need to do this serialization on non-CONFIG_HIGHMEM arches
however, so optimize all of this out when CONFIG_HIGHMEM isn't set.

Reported-by: Jian Li <jiali@redhat.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Dec 27, 2017
[ Upstream commit ec4fbd6 ]

Dmitry reported a lockdep splat [1] (false positive) that we can fix
by releasing the spinlock before calling icmp_send() from ip_expire()

This is a false positive because sending an ICMP message can not
possibly re-enter the IP frag engine.

[1]
[ INFO: possible circular locking dependency detected ]
4.10.0+ #29 Not tainted
-------------------------------------------------------
modprobe/12392 is trying to acquire lock:
 (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>] spin_lock
include/linux/spinlock.h:299 [inline]
 (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>] __netif_tx_lock
include/linux/netdevice.h:3486 [inline]
 (_xmit_ETHER#2){+.-...}, at: [<ffffffff837a8182>]
sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180

but task is already holding lock:
 (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] spin_lock
include/linux/spinlock.h:299 [inline]
 (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>]
ip_expire+0x51/0x6c0 net/ipv4/ip_fragment.c:201

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&(&q->lock)->rlock){+.-...}:
       validate_chain kernel/locking/lockdep.c:2267 [inline]
       __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340
       lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755
       __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
       _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151
       spin_lock include/linux/spinlock.h:299 [inline]
       ip_defrag+0x3a2/0x4130 net/ipv4/ip_fragment.c:669
       ip_check_defrag+0x4e3/0x8b0 net/ipv4/ip_fragment.c:713
       packet_rcv_fanout+0x282/0x800 net/packet/af_packet.c:1459
       deliver_skb net/core/dev.c:1834 [inline]
       dev_queue_xmit_nit+0x294/0xa90 net/core/dev.c:1890
       xmit_one net/core/dev.c:2903 [inline]
       dev_hard_start_xmit+0x16b/0xab0 net/core/dev.c:2923
       sch_direct_xmit+0x31f/0x6d0 net/sched/sch_generic.c:182
       __dev_xmit_skb net/core/dev.c:3092 [inline]
       __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358
       dev_queue_xmit+0x17/0x20 net/core/dev.c:3423
       neigh_resolve_output+0x6b9/0xb10 net/core/neighbour.c:1308
       neigh_output include/net/neighbour.h:478 [inline]
       ip_finish_output2+0x8b8/0x15a0 net/ipv4/ip_output.c:228
       ip_do_fragment+0x1d93/0x2720 net/ipv4/ip_output.c:672
       ip_fragment.constprop.54+0x145/0x200 net/ipv4/ip_output.c:545
       ip_finish_output+0x82d/0xe10 net/ipv4/ip_output.c:314
       NF_HOOK_COND include/linux/netfilter.h:246 [inline]
       ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404
       dst_output include/net/dst.h:486 [inline]
       ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124
       ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492
       ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512
       raw_sendmsg+0x26de/0x3a00 net/ipv4/raw.c:655
       inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:761
       sock_sendmsg_nosec net/socket.c:633 [inline]
       sock_sendmsg+0xca/0x110 net/socket.c:643
       ___sys_sendmsg+0x4a3/0x9f0 net/socket.c:1985
       __sys_sendmmsg+0x25c/0x750 net/socket.c:2075
       SYSC_sendmmsg net/socket.c:2106 [inline]
       SyS_sendmmsg+0x35/0x60 net/socket.c:2101
       do_syscall_64+0x2e8/0x930 arch/x86/entry/common.c:281
       return_from_SYSCALL_64+0x0/0x7a

-> #0 (_xmit_ETHER#2){+.-...}:
       check_prev_add kernel/locking/lockdep.c:1830 [inline]
       check_prevs_add+0xa8f/0x19f0 kernel/locking/lockdep.c:1940
       validate_chain kernel/locking/lockdep.c:2267 [inline]
       __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340
       lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755
       __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
       _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151
       spin_lock include/linux/spinlock.h:299 [inline]
       __netif_tx_lock include/linux/netdevice.h:3486 [inline]
       sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180
       __dev_xmit_skb net/core/dev.c:3092 [inline]
       __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358
       dev_queue_xmit+0x17/0x20 net/core/dev.c:3423
       neigh_hh_output include/net/neighbour.h:468 [inline]
       neigh_output include/net/neighbour.h:476 [inline]
       ip_finish_output2+0xf6c/0x15a0 net/ipv4/ip_output.c:228
       ip_finish_output+0xa29/0xe10 net/ipv4/ip_output.c:316
       NF_HOOK_COND include/linux/netfilter.h:246 [inline]
       ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404
       dst_output include/net/dst.h:486 [inline]
       ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124
       ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492
       ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512
       icmp_push_reply+0x372/0x4d0 net/ipv4/icmp.c:394
       icmp_send+0x156c/0x1c80 net/ipv4/icmp.c:754
       ip_expire+0x40e/0x6c0 net/ipv4/ip_fragment.c:239
       call_timer_fn+0x241/0x820 kernel/time/timer.c:1268
       expire_timers kernel/time/timer.c:1307 [inline]
       __run_timers+0x960/0xcf0 kernel/time/timer.c:1601
       run_timer_softirq+0x21/0x80 kernel/time/timer.c:1614
       __do_softirq+0x31f/0xbe7 kernel/softirq.c:284
       invoke_softirq kernel/softirq.c:364 [inline]
       irq_exit+0x1cc/0x200 kernel/softirq.c:405
       exiting_irq arch/x86/include/asm/apic.h:657 [inline]
       smp_apic_timer_interrupt+0x76/0xa0 arch/x86/kernel/apic/apic.c:962
       apic_timer_interrupt+0x93/0xa0 arch/x86/entry/entry_64.S:707
       __read_once_size include/linux/compiler.h:254 [inline]
       atomic_read arch/x86/include/asm/atomic.h:26 [inline]
       rcu_dynticks_curr_cpu_in_eqs kernel/rcu/tree.c:350 [inline]
       __rcu_is_watching kernel/rcu/tree.c:1133 [inline]
       rcu_is_watching+0x83/0x110 kernel/rcu/tree.c:1147
       rcu_read_lock_held+0x87/0xc0 kernel/rcu/update.c:293
       radix_tree_deref_slot include/linux/radix-tree.h:238 [inline]
       filemap_map_pages+0x6d4/0x1570 mm/filemap.c:2335
       do_fault_around mm/memory.c:3231 [inline]
       do_read_fault mm/memory.c:3265 [inline]
       do_fault+0xbd5/0x2080 mm/memory.c:3370
       handle_pte_fault mm/memory.c:3600 [inline]
       __handle_mm_fault+0x1062/0x2cb0 mm/memory.c:3714
       handle_mm_fault+0x1e2/0x480 mm/memory.c:3751
       __do_page_fault+0x4f6/0xb60 arch/x86/mm/fault.c:1397
       do_page_fault+0x54/0x70 arch/x86/mm/fault.c:1460
       page_fault+0x28/0x30 arch/x86/entry/entry_64.S:1011

other info that might help us debug this:

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&(&q->lock)->rlock);
                               lock(_xmit_ETHER#2);
                               lock(&(&q->lock)->rlock);
  lock(_xmit_ETHER#2);

 *** DEADLOCK ***

10 locks held by modprobe/12392:
 #0:  (&mm->mmap_sem){++++++}, at: [<ffffffff81329758>]
__do_page_fault+0x2b8/0xb60 arch/x86/mm/fault.c:1336
 #1:  (rcu_read_lock){......}, at: [<ffffffff8188cab6>]
filemap_map_pages+0x1e6/0x1570 mm/filemap.c:2324
 #2:  (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>]
spin_lock include/linux/spinlock.h:299 [inline]
 #2:  (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>]
pte_alloc_one_map mm/memory.c:2944 [inline]
 #2:  (&(ptlock_ptr(page))->rlock#2){+.+...}, at: [<ffffffff81984a78>]
alloc_set_pte+0x13b8/0x1b90 mm/memory.c:3072
 #3:  (((&q->timer))){+.-...}, at: [<ffffffff81627e72>]
lockdep_copy_map include/linux/lockdep.h:175 [inline]
 #3:  (((&q->timer))){+.-...}, at: [<ffffffff81627e72>]
call_timer_fn+0x1c2/0x820 kernel/time/timer.c:1258
 #4:  (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>] spin_lock
include/linux/spinlock.h:299 [inline]
 #4:  (&(&q->lock)->rlock){+.-...}, at: [<ffffffff8389a4d1>]
ip_expire+0x51/0x6c0 net/ipv4/ip_fragment.c:201
 #5:  (rcu_read_lock){......}, at: [<ffffffff8389a633>]
ip_expire+0x1b3/0x6c0 net/ipv4/ip_fragment.c:216
 #6:  (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>] spin_trylock
include/linux/spinlock.h:309 [inline]
 #6:  (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>] icmp_xmit_lock
net/ipv4/icmp.c:219 [inline]
 #6:  (slock-AF_INET){+.-...}, at: [<ffffffff839b3313>]
icmp_send+0x803/0x1c80 net/ipv4/icmp.c:681
 #7:  (rcu_read_lock_bh){......}, at: [<ffffffff838ab9a1>]
ip_finish_output2+0x2c1/0x15a0 net/ipv4/ip_output.c:198
 #8:  (rcu_read_lock_bh){......}, at: [<ffffffff836d1dee>]
__dev_queue_xmit+0x23e/0x1e60 net/core/dev.c:3324
 #9:  (dev->qdisc_running_key ?: &qdisc_running_key){+.....}, at:
[<ffffffff836d3a27>] dev_queue_xmit+0x17/0x20 net/core/dev.c:3423

stack backtrace:
CPU: 0 PID: 12392 Comm: modprobe Not tainted 4.10.0+ #29
Hardware name: Google Google Compute Engine/Google Compute Engine,
BIOS Google 01/01/2011
Call Trace:
 <IRQ>
 __dump_stack lib/dump_stack.c:16 [inline]
 dump_stack+0x2ee/0x3ef lib/dump_stack.c:52
 print_circular_bug+0x307/0x3b0 kernel/locking/lockdep.c:1204
 check_prev_add kernel/locking/lockdep.c:1830 [inline]
 check_prevs_add+0xa8f/0x19f0 kernel/locking/lockdep.c:1940
 validate_chain kernel/locking/lockdep.c:2267 [inline]
 __lock_acquire+0x2149/0x3430 kernel/locking/lockdep.c:3340
 lock_acquire+0x2a1/0x630 kernel/locking/lockdep.c:3755
 __raw_spin_lock include/linux/spinlock_api_smp.h:142 [inline]
 _raw_spin_lock+0x33/0x50 kernel/locking/spinlock.c:151
 spin_lock include/linux/spinlock.h:299 [inline]
 __netif_tx_lock include/linux/netdevice.h:3486 [inline]
 sch_direct_xmit+0x282/0x6d0 net/sched/sch_generic.c:180
 __dev_xmit_skb net/core/dev.c:3092 [inline]
 __dev_queue_xmit+0x13e5/0x1e60 net/core/dev.c:3358
 dev_queue_xmit+0x17/0x20 net/core/dev.c:3423
 neigh_hh_output include/net/neighbour.h:468 [inline]
 neigh_output include/net/neighbour.h:476 [inline]
 ip_finish_output2+0xf6c/0x15a0 net/ipv4/ip_output.c:228
 ip_finish_output+0xa29/0xe10 net/ipv4/ip_output.c:316
 NF_HOOK_COND include/linux/netfilter.h:246 [inline]
 ip_output+0x1f0/0x7a0 net/ipv4/ip_output.c:404
 dst_output include/net/dst.h:486 [inline]
 ip_local_out+0x95/0x170 net/ipv4/ip_output.c:124
 ip_send_skb+0x3c/0xc0 net/ipv4/ip_output.c:1492
 ip_push_pending_frames+0x64/0x80 net/ipv4/ip_output.c:1512
 icmp_push_reply+0x372/0x4d0 net/ipv4/icmp.c:394
 icmp_send+0x156c/0x1c80 net/ipv4/icmp.c:754
 ip_expire+0x40e/0x6c0 net/ipv4/ip_fragment.c:239
 call_timer_fn+0x241/0x820 kernel/time/timer.c:1268
 expire_timers kernel/time/timer.c:1307 [inline]
 __run_timers+0x960/0xcf0 kernel/time/timer.c:1601
 run_timer_softirq+0x21/0x80 kernel/time/timer.c:1614
 __do_softirq+0x31f/0xbe7 kernel/softirq.c:284
 invoke_softirq kernel/softirq.c:364 [inline]
 irq_exit+0x1cc/0x200 kernel/softirq.c:405
 exiting_irq arch/x86/include/asm/apic.h:657 [inline]
 smp_apic_timer_interrupt+0x76/0xa0 arch/x86/kernel/apic/apic.c:962
 apic_timer_interrupt+0x93/0xa0 arch/x86/entry/entry_64.S:707
RIP: 0010:__read_once_size include/linux/compiler.h:254 [inline]
RIP: 0010:atomic_read arch/x86/include/asm/atomic.h:26 [inline]
RIP: 0010:rcu_dynticks_curr_cpu_in_eqs kernel/rcu/tree.c:350 [inline]
RIP: 0010:__rcu_is_watching kernel/rcu/tree.c:1133 [inline]
RIP: 0010:rcu_is_watching+0x83/0x110 kernel/rcu/tree.c:1147
RSP: 0000:ffff8801c391f120 EFLAGS: 00000a03 ORIG_RAX: ffffffffffffff10
RAX: dffffc0000000000 RBX: ffff8801c391f148 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000055edd4374000 RDI: ffff8801dbe1ae0c
RBP: ffff8801c391f1a0 R08: 0000000000000002 R09: 0000000000000000
R10: dffffc0000000000 R11: 0000000000000002 R12: 1ffff10038723e25
R13: ffff8801dbe1ae00 R14: ffff8801c391f680 R15: dffffc0000000000
 </IRQ>
 rcu_read_lock_held+0x87/0xc0 kernel/rcu/update.c:293
 radix_tree_deref_slot include/linux/radix-tree.h:238 [inline]
 filemap_map_pages+0x6d4/0x1570 mm/filemap.c:2335
 do_fault_around mm/memory.c:3231 [inline]
 do_read_fault mm/memory.c:3265 [inline]
 do_fault+0xbd5/0x2080 mm/memory.c:3370
 handle_pte_fault mm/memory.c:3600 [inline]
 __handle_mm_fault+0x1062/0x2cb0 mm/memory.c:3714
 handle_mm_fault+0x1e2/0x480 mm/memory.c:3751
 __do_page_fault+0x4f6/0xb60 arch/x86/mm/fault.c:1397
 do_page_fault+0x54/0x70 arch/x86/mm/fault.c:1460
 page_fault+0x28/0x30 arch/x86/entry/entry_64.S:1011
RIP: 0033:0x7f83172f2786
RSP: 002b:00007fffe859ae80 EFLAGS: 00010293
RAX: 000055edd4373040 RBX: 00007f83175111c8 RCX: 000055edd4373238
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 00007f8317510970
RBP: 00007fffe859afd0 R08: 0000000000000009 R09: 0000000000000000
R10: 0000000000000064 R11: 0000000000000000 R12: 000055edd4373040
R13: 0000000000000000 R14: 00007fffe859afe8 R15: 0000000000000000

Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Mar 7, 2018
(cherry pick from commit 3d88d56)

Due to how the MONOTONIC_RAW accumulation logic was handled,
there is the potential for a 1ns discontinuity when we do
accumulations. This small discontinuity has for the most part
gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW
in their vDSO clock_gettime implementation, we've seen failures
with the inconsistency-check test in kselftest.

This patch addresses the issue by using the same sub-ns
accumulation handling that CLOCK_MONOTONIC uses, which avoids
the issue for in-kernel users.

Since the ARM64 vDSO implementation has its own clock_gettime
calculation logic, this patch reduces the frequency of errors,
but failures are still seen. The ARM64 vDSO will need to be
updated to include the sub-nanosecond xtime_nsec values in its
calculation for this issue to be completely fixed.

Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Daniel Mentz <danielmentz@google.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "stable #4 . 8+" <stable@vger.kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Bug: 20045882
Bug: 63737556
Change-Id: I6c55dd7685f6bd212c6af9d09c527528e1dd5fa1
hubot pushed a commit that referenced this pull request Mar 7, 2018
(cherry pick from commit 3d88d56)

Due to how the MONOTONIC_RAW accumulation logic was handled,
there is the potential for a 1ns discontinuity when we do
accumulations. This small discontinuity has for the most part
gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW
in their vDSO clock_gettime implementation, we've seen failures
with the inconsistency-check test in kselftest.

This patch addresses the issue by using the same sub-ns
accumulation handling that CLOCK_MONOTONIC uses, which avoids
the issue for in-kernel users.

Since the ARM64 vDSO implementation has its own clock_gettime
calculation logic, this patch reduces the frequency of errors,
but failures are still seen. The ARM64 vDSO will need to be
updated to include the sub-nanosecond xtime_nsec values in its
calculation for this issue to be completely fixed.

Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Daniel Mentz <danielmentz@google.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "stable #4 . 8+" <stable@vger.kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Bug: 20045882
Bug: 63737556
Change-Id: I6c55dd7685f6bd212c6af9d09c527528e1dd5fa1
hubot pushed a commit that referenced this pull request Mar 18, 2018
commit 1514839 upstream.

This patch fixes NULL pointer crash due to active timer running for abort
IOCB.

From crash dump analysis it was discoverd that get_next_timer_interrupt()
encountered a corrupted entry on the timer list.

 #9 [ffff95e1f6f0fd40] page_fault at ffffffff914fe8f8
    [exception RIP: get_next_timer_interrupt+440]
    RIP: ffffffff90ea3088  RSP: ffff95e1f6f0fdf0  RFLAGS: 00010013
    RAX: ffff95e1f6451028  RBX: 000218e2389e5f40  RCX: 00000001232ad600
    RDX: 0000000000000001  RSI: ffff95e1f6f0fdf0  RDI: 0000000001232ad6
    RBP: ffff95e1f6f0fe40   R8: ffff95e1f6451188   R9: 0000000000000001
    R10: 0000000000000016  R11: 0000000000000016  R12: 00000001232ad5f6
    R13: ffff95e1f6450000  R14: ffff95e1f6f0fdf8  R15: ffff95e1f6f0fe10
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Looking at the assembly of get_next_timer_interrupt(), address came
from %r8 (ffff95e1f6451188) which is pointing to list_head with single
entry at ffff95e5ff621178.

 0xffffffff90ea307a <get_next_timer_interrupt+426>:      mov    (%r8),%rdx
 0xffffffff90ea307d <get_next_timer_interrupt+429>:      cmp    %r8,%rdx
 0xffffffff90ea3080 <get_next_timer_interrupt+432>:      je     0xffffffff90ea30a7 <get_next_timer_interrupt+471>
 0xffffffff90ea3082 <get_next_timer_interrupt+434>:      nopw   0x0(%rax,%rax,1)
 0xffffffff90ea3088 <get_next_timer_interrupt+440>:      testb  $0x1,0x18(%rdx)

 crash> rd ffff95e1f6451188 10
 ffff95e1f6451188:  ffff95e5ff621178 ffff95e5ff621178   x.b.....x.b.....
 ffff95e1f6451198:  ffff95e1f6451198 ffff95e1f6451198   ..E.......E.....
 ffff95e1f64511a8:  ffff95e1f64511a8 ffff95e1f64511a8   ..E.......E.....
 ffff95e1f64511b8:  ffff95e77cf509a0 ffff95e77cf509a0   ...|.......|....
 ffff95e1f64511c8:  ffff95e1f64511c8 ffff95e1f64511c8   ..E.......E.....

 crash> rd ffff95e5ff621178 10
 ffff95e5ff621178:  0000000000000001 ffff95e15936aa00   ..........6Y....
 ffff95e5ff621188:  0000000000000000 00000000ffffffff   ................
 ffff95e5ff621198:  00000000000000a0 0000000000000010   ................
 ffff95e5ff6211a8:  ffff95e5ff621198 000000000000000c   ..b.............
 ffff95e5ff6211b8:  00000f5800000000 ffff95e751f8d720   ....X... ..Q....

 ffff95e5ff621178 belongs to freed mempool object at ffff95e5ff621080.

 CACHE            NAME                 OBJSIZE  ALLOCATED     TOTAL  SLABS  SSIZE
 ffff95dc7fd74d00 mnt_cache                384      19785     24948    594    16k
   SLAB              MEMORY            NODE  TOTAL  ALLOCATED  FREE
   ffffdc5dabfd8800  ffff95e5ff620000     1     42         29    13
   FREE / [ALLOCATED]
    ffff95e5ff621080  (cpu 6 cache)

Examining the contents of that memory reveals a pointer to a constant string
in the driver, "abort\0", which is set by qla24xx_async_abort_cmd().

 crash> rd ffffffffc059277c 20
 ffffffffc059277c:  6e490074726f6261 0074707572726574   abort.Interrupt.
 ffffffffc059278c:  00676e696c6c6f50 6920726576697244   Polling.Driver i
 ffffffffc059279c:  646f6d207325206e 6974736554000a65   n %s mode..Testi
 ffffffffc05927ac:  636976656420676e 786c252074612065   ng device at %lx
 ffffffffc05927bc:  6b63656843000a2e 646f727020676e69   ...Checking prod
 ffffffffc05927cc:  6f20444920746375 0a2e706968632066   uct ID of chip..
 ffffffffc05927dc:  5120646e756f4600 204130303232414c   .Found QLA2200A
 ffffffffc05927ec:  43000a2e70696843 20676e696b636568   Chip...Checking
 ffffffffc05927fc:  65786f626c69616d 6c636e69000a2e73   mailboxes...incl
 ffffffffc059280c:  756e696c2f656475 616d2d616d642f78   ude/linux/dma-ma

 crash> struct -ox srb_iocb
 struct srb_iocb {
           union {
               struct {...} logio;
               struct {...} els_logo;
               struct {...} tmf;
               struct {...} fxiocb;
               struct {...} abt;
               struct ct_arg ctarg;
               struct {...} mbx;
               struct {...} nack;
    [0x0 ] } u;
    [0xb8] struct timer_list timer;
    [0x108] void (*timeout)(void *);
 }
 SIZE: 0x110

 crash> ! bc
 ibase=16
 obase=10
 B8+40
 F8

The object is a srb_t, and at offset 0xf8 within that structure
(i.e. ffff95e5ff621080 + f8 -> ffff95e5ff621178) is a struct timer_list.

Cc: <stable@vger.kernel.org> #4.4+
Fixes: 4440e46 ("[SCSI] qla2xxx: Add IOCB Abort command asynchronous handling.")
Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Mar 25, 2018
[ Upstream commit 72d5481 ]

It is unlikely request_threaded_irq will fail, but if it does for some
reason we should clear iommu->pr_irq in the error path. Also
intel_svm_finish_prq shouldn't try to clean up the page request
interrupt if pr_irq is 0. Without these, if request_threaded_irq were
to fail the following occurs:

fail with no fixes:

[    0.683147] ------------[ cut here ]------------
[    0.683148] NULL pointer, cannot free irq
[    0.683158] WARNING: CPU: 1 PID: 1 at kernel/irq/irqdomain.c:1632 irq_domain_free_irqs+0x126/0x140
[    0.683160] Modules linked in:
[    0.683163] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 4.15.0-rc2 #3
[    0.683165] Hardware name:                  /NUC7i3BNB, BIOS BNKBL357.86A.0036.2017.0105.1112 01/05/2017
[    0.683168] RIP: 0010:irq_domain_free_irqs+0x126/0x140
[    0.683169] RSP: 0000:ffffc90000037ce8 EFLAGS: 00010292
[    0.683171] RAX: 000000000000001d RBX: ffff880276283c00 RCX: ffffffff81c5e5e8
[    0.683172] RDX: 0000000000000001 RSI: 0000000000000096 RDI: 0000000000000246
[    0.683174] RBP: ffff880276283c00 R08: 0000000000000000 R09: 000000000000023c
[    0.683175] R10: 0000000000000007 R11: 0000000000000000 R12: 000000000000007a
[    0.683176] R13: 0000000000000001 R14: 0000000000000000 R15: 0000010010000000
[    0.683178] FS:  0000000000000000(0000) GS:ffff88027ec80000(0000) knlGS:0000000000000000
[    0.683180] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    0.683181] CR2: 0000000000000000 CR3: 0000000001c09001 CR4: 00000000003606e0
[    0.683182] Call Trace:
[    0.683189]  intel_svm_finish_prq+0x3c/0x60
[    0.683191]  free_dmar_iommu+0x1ac/0x1b0
[    0.683195]  init_dmars+0xaaa/0xaea
[    0.683200]  ? klist_next+0x19/0xc0
[    0.683203]  ? pci_do_find_bus+0x50/0x50
[    0.683205]  ? pci_get_dev_by_id+0x52/0x70
[    0.683208]  intel_iommu_init+0x498/0x5c7
[    0.683211]  pci_iommu_init+0x13/0x3c
[    0.683214]  ? e820__memblock_setup+0x61/0x61
[    0.683217]  do_one_initcall+0x4d/0x1a0
[    0.683220]  kernel_init_freeable+0x186/0x20e
[    0.683222]  ? set_debug_rodata+0x11/0x11
[    0.683225]  ? rest_init+0xb0/0xb0
[    0.683226]  kernel_init+0xa/0xff
[    0.683229]  ret_from_fork+0x1f/0x30
[    0.683259] Code: 89 ee 44 89 e7 e8 3b e8 ff ff 5b 5d 44 89 e7 44 89 ee 41 5c 41 5d 41 5e e9 a8 84 ff ff 48 c7 c7 a8 71 a7 81 31 c0 e8 6a d3 f9 ff <0f> ff 5b 5d 41 5c 41 5d 41 5
e c3 0f 1f 44 00 00 66 2e 0f 1f 84
[    0.683285] ---[ end trace f7650e42792627ca ]---

with iommu->pr_irq = 0, but no check in intel_svm_finish_prq:

[    0.669561] ------------[ cut here ]------------
[    0.669563] Trying to free already-free IRQ 0
[    0.669573] WARNING: CPU: 3 PID: 1 at kernel/irq/manage.c:1546 __free_irq+0xa4/0x2c0
[    0.669574] Modules linked in:
[    0.669577] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 4.15.0-rc2 #4
[    0.669579] Hardware name:                  /NUC7i3BNB, BIOS BNKBL357.86A.0036.2017.0105.1112 01/05/2017
[    0.669581] RIP: 0010:__free_irq+0xa4/0x2c0
[    0.669582] RSP: 0000:ffffc90000037cc0 EFLAGS: 00010082
[    0.669584] RAX: 0000000000000021 RBX: 0000000000000000 RCX: ffffffff81c5e5e8
[    0.669585] RDX: 0000000000000001 RSI: 0000000000000086 RDI: 0000000000000046
[    0.669587] RBP: 0000000000000000 R08: 0000000000000000 R09: 000000000000023c
[    0.669588] R10: 0000000000000007 R11: 0000000000000000 R12: ffff880276253960
[    0.669589] R13: ffff8802762538a4 R14: ffff880276253800 R15: ffff880276283600
[    0.669593] FS:  0000000000000000(0000) GS:ffff88027ed80000(0000) knlGS:0000000000000000
[    0.669594] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[    0.669596] CR2: 0000000000000000 CR3: 0000000001c09001 CR4: 00000000003606e0
[    0.669602] Call Trace:
[    0.669616]  free_irq+0x30/0x60
[    0.669620]  intel_svm_finish_prq+0x34/0x60
[    0.669623]  free_dmar_iommu+0x1ac/0x1b0
[    0.669627]  init_dmars+0xaaa/0xaea
[    0.669631]  ? klist_next+0x19/0xc0
[    0.669634]  ? pci_do_find_bus+0x50/0x50
[    0.669637]  ? pci_get_dev_by_id+0x52/0x70
[    0.669639]  intel_iommu_init+0x498/0x5c7
[    0.669642]  pci_iommu_init+0x13/0x3c
[    0.669645]  ? e820__memblock_setup+0x61/0x61
[    0.669648]  do_one_initcall+0x4d/0x1a0
[    0.669651]  kernel_init_freeable+0x186/0x20e
[    0.669653]  ? set_debug_rodata+0x11/0x11
[    0.669656]  ? rest_init+0xb0/0xb0
[    0.669658]  kernel_init+0xa/0xff
[    0.669661]  ret_from_fork+0x1f/0x30
[    0.669662] Code: 7a 08 75 0e e9 c3 01 00 00 4c 39 7b 08 74 57 48 89 da 48 8b 5a 18 48 85 db 75 ee 89 ee 48 c7 c7 78 67 a7 81 31 c0 e8 4c 37 fa ff <0f> ff 48 8b 34 24 4c 89 ef e
8 0e 4c 68 00 49 8b 46 40 48 8b 80
[    0.669688] ---[ end trace 58a470248700f2fc ]---

Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Apr 14, 2018
[ Upstream commit d754941 ]

If, for any reason, userland shuts down iscsi transport interfaces
before proper logouts - like when logging in to LUNs manually, without
logging out on server shutdown, or when automated scripts can't
umount/logout from logged LUNs - kernel will hang forever on its
sd_sync_cache() logic, after issuing the SYNCHRONIZE_CACHE cmd to all
still existent paths.

PID: 1 TASK: ffff8801a69b8000 CPU: 1 COMMAND: "systemd-shutdow"
 #0 [ffff8801a69c3a30] __schedule at ffffffff8183e9ee
 #1 [ffff8801a69c3a80] schedule at ffffffff8183f0d5
 #2 [ffff8801a69c3a98] schedule_timeout at ffffffff81842199
 #3 [ffff8801a69c3b40] io_schedule_timeout at ffffffff8183e604
 #4 [ffff8801a69c3b70] wait_for_completion_io_timeout at ffffffff8183fc6c
 #5 [ffff8801a69c3bd0] blk_execute_rq at ffffffff813cfe10
 #6 [ffff8801a69c3c88] scsi_execute at ffffffff815c3fc7
 #7 [ffff8801a69c3cc8] scsi_execute_req_flags at ffffffff815c60fe
 #8 [ffff8801a69c3d30] sd_sync_cache at ffffffff815d37d7
 #9 [ffff8801a69c3da8] sd_shutdown at ffffffff815d3c3c

This happens because iscsi_eh_cmd_timed_out(), the transport layer
timeout helper, would tell the queue timeout function (scsi_times_out)
to reset the request timer over and over, until the session state is
back to logged in state. Unfortunately, during server shutdown, this
might never happen again.

Other option would be "not to handle" the issue in the transport
layer. That would trigger the error handler logic, which would also need
the session state to be logged in again.

Best option, for such case, is to tell upper layers that the command was
handled during the transport layer error handler helper, marking it as
DID_NO_CONNECT, which will allow completion and inform about the
problem.

After the session was marked as ISCSI_STATE_FAILED, due to the first
timeout during the server shutdown phase, all subsequent cmds will fail
to be queued, allowing upper logic to fail faster.

Signed-off-by: Rafael David Tinoco <rafael.tinoco@canonical.com>
Reviewed-by: Lee Duncan <lduncan@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Apr 27, 2018
David reported that perf can segfault when adding an uprobe event like
this:

  $ perf probe -x /lib64/libc-2.14.90.so -a 'malloc  size=%di'

  (gdb) bt
  #0  parse_eh_frame_hdr (hdr=0x0, hdr_size=2596, hdr_vaddr=71788,
      ehdr=0x7fffffffd390, eh_frame_vaddr=
      0x7fffffffd378, table_entries=0x8808d8, table_encoding=0x8808e0 "") at
      dwarf_getcfi_elf.c:79
  #1  0x000000385f81615a in getcfi_scn_eh_frame (hdr_vaddr=71788,
      hdr_scn=0x8839b0, shdr=0x7fffffffd2f0, scn=<optimized out>,
      ehdr=0x7fffffffd390, elf=0x882b30) at dwarf_getcfi_elf.c:231
  #2  getcfi_shdr (ehdr=0x7fffffffd390, elf=0x882b30) at dwarf_getcfi_elf.c:283
  #3  dwarf_getcfi_elf (elf=0x882b30) at dwarf_getcfi_elf.c:309
  #4  0x00000000004d5bac in debuginfo__find_probes (pf=0x7fffffffd4f0,
      dbg=Unhandled dwarf expression opcode 0xfa) at util/probe-finder.c:993
  #5  0x00000000004d634a in debuginfo__find_trace_events (dbg=0x880840,
      pev=<optimized out>, tevs=0x880f88, max_tevs=<optimized out>) at
      util/probe-finder.c:1200
  #6  0x00000000004aed6b in try_to_find_probe_trace_events (target=0x881b20
      "/lib64/libpthread-2.14.90.so",
      max_tevs=128, tevs=0x880f88, pev=0x859b30) at util/probe-event.c:482
  #7  convert_to_probe_trace_events (target=0x881b20
      "/lib64/libpthread-2.14.90.so", max_tevs=128, tevs=0x880f88,
      pev=0x859b30) at util/probe-event.c:2356
  #8  add_perf_probe_events (pevs=<optimized out>, npevs=1, max_tevs=128,
      target=0x881b20 "/lib64/libpthread-2.14.90.so", force_add=false) at
      util/probe-event.c:2391
  #9  0x000000000044014f in __cmd_probe (argc=<optimized out>,
      argv=0x7fffffffe2f0, prefix=Unhandled dwarf expression opcode 0xfa) at
      at builtin-probe.c:488
  #10 0x0000000000440313 in cmd_probe (argc=5, argv=0x7fffffffe2f0,
      prefix=<optimized out>) at builtin-probe.c:506
  #11 0x000000000041d133 in run_builtin (p=0x805680, argc=5,
      argv=0x7fffffffe2f0) at perf.c:341
  #12 0x000000000041c8b2 in handle_internal_command (argv=<optimized out>,
      argc=<optimized out>) at perf.c:400
  #13 run_argv (argv=<optimized out>, argcp=<optimized out>) at perf.c:444
  #14 main (argc=5, argv=0x7fffffffe2f0) at perf.c:559

And I found a related commit (5704c8c4fa71 "getcfi_scn_eh_frame: Don't
crash and burn when .eh_frame bits aren't there.") in elfutils that can
lead to a unexpected crash like this.  To safely use the function, it
needs to check the .eh_frame section is a PROGBITS type.

Reported-by: David Ahern <dsahern@gmail.com>
Tested-by: David Ahern <dsahern@gmail.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Mark Wielaard <mjw@redhat.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20141230090533.GH6081@sejong
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
hubot pushed a commit that referenced this pull request Apr 27, 2018
Ying Xue says:

====================
Involve rhashtable_lookup_insert routine

The series aims to involve rhashtable_lookup_insert() to guarantee
that the process of lookup and insertion of an object from/into hash
table is finished atomically, allowing rhashtable's users not to
introduce an extra lock during search and insertion. For example,
tipc socket is the first user benefiting from this enhancement.

v2 changes:
 - fix the issue of waking up worker thread under a wrong condition in
   patch #2, which is pointed by Thomas.
 - move a comment from rhashtable_inser() to rhashtable_wakeup_worker()
   according to Thomas's suggestion in patch #2.
 - indent the third line of condition statement in
   rhashtable_wakeup_worker() to inner bracket in patch #2.
 - drop patch #3 of v1 series
 - fix an issue of being unable to remove an object from hash table in
   certain special case in patch #4.
 - involve a new patch #5 to avoid unnecessary wakeup for worker queue
   thread
 - involve a new patch #6 to initialize atomic "nelems" variable
 - adjust "nelem_hint" value from 256 to 192 avoiding to unnecessarily
   to shrink hash table from the beginning phase in patch #7.

v1 changes:
 But before rhashtable_lookup_insert() is involved, the following
 optimizations need to be first done:
- simplify rhashtable_lookup by reusing rhashtable_lookup_compare()
- introduce rhashtable_wakeup_worker() to further reduce duplicated
  code in patch #2
- fix an issue in patch #3
- involve rhashtable_lookup_insert(). But in this version, we firstly
  use rhashtable_lookup() to search duplicate key in both old and new
  bucket table; secondly introduce another __rhashtable_insert() helper
  function to reduce the duplicated code between rhashtable_insert()
  and rhashtable_lookup_insert().
- add patch #5 into the series as it depends on above patches. But in
  this version, no change is made comparing with its previous version.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
hubot pushed a commit that referenced this pull request May 8, 2018
commit ab31fd0 upstream.

v4.10 commit 6f2ce1c ("scsi: zfcp: fix rport unblock race with LUN
recovery") extended accessing parent pointer fields of struct
zfcp_erp_action for tracing.  If an erp_action has never been enqueued
before, these parent pointer fields are uninitialized and NULL. Examples
are zfcp objects freshly added to the parent object's children list,
before enqueueing their first recovery subsequently. In
zfcp_erp_try_rport_unblock(), we iterate such list. Accessing erp_action
fields can cause a NULL pointer dereference.  Since the kernel can read
from lowcore on s390, it does not immediately cause a kernel page
fault. Instead it can cause hangs on trying to acquire the wrong
erp_action->adapter->dbf->rec_lock in zfcp_dbf_rec_action_lvl()
                      ^bogus^
while holding already other locks with IRQs disabled.

Real life example from attaching lots of LUNs in parallel on many CPUs:

crash> bt 17723
PID: 17723  TASK: ...               CPU: 25  COMMAND: "zfcperp0.0.1800"
 LOWCORE INFO:
  -psw      : 0x0404300180000000 0x000000000038e424
  -function : _raw_spin_lock_wait_flags at 38e424
...
 #0 [fdde8fc90] zfcp_dbf_rec_action_lvl at 3e0004e9862 [zfcp]
 #1 [fdde8fce8] zfcp_erp_try_rport_unblock at 3e0004dfddc [zfcp]
 #2 [fdde8fd38] zfcp_erp_strategy at 3e0004e0234 [zfcp]
 #3 [fdde8fda8] zfcp_erp_thread at 3e0004e0a12 [zfcp]
 #4 [fdde8fe60] kthread at 173550
 #5 [fdde8feb8] kernel_thread_starter at 10add2

zfcp_adapter
 zfcp_port
  zfcp_unit <address>, 0x404040d600000000
  scsi_device NULL, returning early!
zfcp_scsi_dev.status = 0x40000000
0x40000000 ZFCP_STATUS_COMMON_RUNNING

crash> zfcp_unit <address>
struct zfcp_unit {
  erp_action = {
    adapter = 0x0,
    port = 0x0,
    unit = 0x0,
  },
}

zfcp_erp_action is always fully embedded into its container object. Such
container object is never moved in its object tree (only add or delete).
Hence, erp_action parent pointers can never change.

To fix the issue, initialize the erp_action parent pointers before
adding the erp_action container to any list and thus before it becomes
accessible from outside of its initializing function.

In order to also close the time window between zfcp_erp_setup_act()
memsetting the entire erp_action to zero and setting the parent pointers
again, drop the memset and instead explicitly initialize individually
all erp_action fields except for parent pointers. To be extra careful
not to introduce any other unintended side effect, even keep zeroing the
erp_action fields for list and timer. Also double-check with
WARN_ON_ONCE that erp_action parent pointers never change, so we get to
know when we would deviate from previous behavior.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 6f2ce1c ("scsi: zfcp: fix rport unblock race with LUN recovery")
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 8, 2018
commit a743bbe upstream.

The warning below says it all:

  BUG: using __this_cpu_read() in preemptible [00000000] code: swapper/0/1
  caller is __this_cpu_preempt_check
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.14.0-rc8 #4
  Call Trace:
   dump_stack
   check_preemption_disabled
   ? do_early_param
   __this_cpu_preempt_check
   arch_perfmon_init
   op_nmi_init
   ? alloc_pci_root_info
   oprofile_arch_init
   oprofile_init
   do_one_initcall
   ...

These accessors should not have been used in the first place: it is PPro so
no mixed silicon revisions and thus it can simply use boot_cpu_data.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Fengguang Wu <fengguang.wu@intel.com>
Fix-creation-mandated-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Robert Richter <rric@kernel.org>
Cc: x86@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 8, 2018
commit 1514839 upstream.

This patch fixes NULL pointer crash due to active timer running for abort
IOCB.

From crash dump analysis it was discoverd that get_next_timer_interrupt()
encountered a corrupted entry on the timer list.

 #9 [ffff95e1f6f0fd40] page_fault at ffffffff914fe8f8
    [exception RIP: get_next_timer_interrupt+440]
    RIP: ffffffff90ea3088  RSP: ffff95e1f6f0fdf0  RFLAGS: 00010013
    RAX: ffff95e1f6451028  RBX: 000218e2389e5f40  RCX: 00000001232ad600
    RDX: 0000000000000001  RSI: ffff95e1f6f0fdf0  RDI: 0000000001232ad6
    RBP: ffff95e1f6f0fe40   R8: ffff95e1f6451188   R9: 0000000000000001
    R10: 0000000000000016  R11: 0000000000000016  R12: 00000001232ad5f6
    R13: ffff95e1f6450000  R14: ffff95e1f6f0fdf8  R15: ffff95e1f6f0fe10
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Looking at the assembly of get_next_timer_interrupt(), address came
from %r8 (ffff95e1f6451188) which is pointing to list_head with single
entry at ffff95e5ff621178.

 0xffffffff90ea307a <get_next_timer_interrupt+426>:      mov    (%r8),%rdx
 0xffffffff90ea307d <get_next_timer_interrupt+429>:      cmp    %r8,%rdx
 0xffffffff90ea3080 <get_next_timer_interrupt+432>:      je     0xffffffff90ea30a7 <get_next_timer_interrupt+471>
 0xffffffff90ea3082 <get_next_timer_interrupt+434>:      nopw   0x0(%rax,%rax,1)
 0xffffffff90ea3088 <get_next_timer_interrupt+440>:      testb  $0x1,0x18(%rdx)

 crash> rd ffff95e1f6451188 10
 ffff95e1f6451188:  ffff95e5ff621178 ffff95e5ff621178   x.b.....x.b.....
 ffff95e1f6451198:  ffff95e1f6451198 ffff95e1f6451198   ..E.......E.....
 ffff95e1f64511a8:  ffff95e1f64511a8 ffff95e1f64511a8   ..E.......E.....
 ffff95e1f64511b8:  ffff95e77cf509a0 ffff95e77cf509a0   ...|.......|....
 ffff95e1f64511c8:  ffff95e1f64511c8 ffff95e1f64511c8   ..E.......E.....

 crash> rd ffff95e5ff621178 10
 ffff95e5ff621178:  0000000000000001 ffff95e15936aa00   ..........6Y....
 ffff95e5ff621188:  0000000000000000 00000000ffffffff   ................
 ffff95e5ff621198:  00000000000000a0 0000000000000010   ................
 ffff95e5ff6211a8:  ffff95e5ff621198 000000000000000c   ..b.............
 ffff95e5ff6211b8:  00000f5800000000 ffff95e751f8d720   ....X... ..Q....

 ffff95e5ff621178 belongs to freed mempool object at ffff95e5ff621080.

 CACHE            NAME                 OBJSIZE  ALLOCATED     TOTAL  SLABS  SSIZE
 ffff95dc7fd74d00 mnt_cache                384      19785     24948    594    16k
   SLAB              MEMORY            NODE  TOTAL  ALLOCATED  FREE
   ffffdc5dabfd8800  ffff95e5ff620000     1     42         29    13
   FREE / [ALLOCATED]
    ffff95e5ff621080  (cpu 6 cache)

Examining the contents of that memory reveals a pointer to a constant string
in the driver, "abort\0", which is set by qla24xx_async_abort_cmd().

 crash> rd ffffffffc059277c 20
 ffffffffc059277c:  6e490074726f6261 0074707572726574   abort.Interrupt.
 ffffffffc059278c:  00676e696c6c6f50 6920726576697244   Polling.Driver i
 ffffffffc059279c:  646f6d207325206e 6974736554000a65   n %s mode..Testi
 ffffffffc05927ac:  636976656420676e 786c252074612065   ng device at %lx
 ffffffffc05927bc:  6b63656843000a2e 646f727020676e69   ...Checking prod
 ffffffffc05927cc:  6f20444920746375 0a2e706968632066   uct ID of chip..
 ffffffffc05927dc:  5120646e756f4600 204130303232414c   .Found QLA2200A
 ffffffffc05927ec:  43000a2e70696843 20676e696b636568   Chip...Checking
 ffffffffc05927fc:  65786f626c69616d 6c636e69000a2e73   mailboxes...incl
 ffffffffc059280c:  756e696c2f656475 616d2d616d642f78   ude/linux/dma-ma

 crash> struct -ox srb_iocb
 struct srb_iocb {
           union {
               struct {...} logio;
               struct {...} els_logo;
               struct {...} tmf;
               struct {...} fxiocb;
               struct {...} abt;
               struct ct_arg ctarg;
               struct {...} mbx;
               struct {...} nack;
    [0x0 ] } u;
    [0xb8] struct timer_list timer;
    [0x108] void (*timeout)(void *);
 }
 SIZE: 0x110

 crash> ! bc
 ibase=16
 obase=10
 B8+40
 F8

The object is a srb_t, and at offset 0xf8 within that structure
(i.e. ffff95e5ff621080 + f8 -> ffff95e5ff621178) is a struct timer_list.

Cc: <stable@vger.kernel.org> #4.4+
Fixes: 4440e46 ("[SCSI] qla2xxx: Add IOCB Abort command asynchronous handling.")
Signed-off-by: Himanshu Madhani <himanshu.madhani@cavium.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 26, 2018
commit 3d88d56 upstream.

Due to how the MONOTONIC_RAW accumulation logic was handled,
there is the potential for a 1ns discontinuity when we do
accumulations. This small discontinuity has for the most part
gone un-noticed, but since ARM64 enabled CLOCK_MONOTONIC_RAW
in their vDSO clock_gettime implementation, we've seen failures
with the inconsistency-check test in kselftest.

This patch addresses the issue by using the same sub-ns
accumulation handling that CLOCK_MONOTONIC uses, which avoids
the issue for in-kernel users.

Since the ARM64 vDSO implementation has its own clock_gettime
calculation logic, this patch reduces the frequency of errors,
but failures are still seen. The ARM64 vDSO will need to be
updated to include the sub-nanosecond xtime_nsec values in its
calculation for this issue to be completely fixed.

Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Daniel Mentz <danielmentz@google.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "stable #4 . 8+" <stable@vger.kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Link: http://lkml.kernel.org/r/1496965462-20003-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[fabrizio: cherry-pick to 4.4. Kept cycle_t type for function
logarithmic_accumulation local variable "interval". Dropped
casting of "interval" variable]
Signed-off-by: Fabrizio Castro <fabrizio.castro@bp.renesas.com>
Signed-off-by: Biju Das <biju.das@bp.renesas.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 30, 2018
[ Upstream commit 2c0aa08 ]

Scenario:
1. Port down and do fail over
2. Ap do rds_bind syscall

PID: 47039  TASK: ffff89887e2fe640  CPU: 47  COMMAND: "kworker/u:6"
 #0 [ffff898e35f159f0] machine_kexec at ffffffff8103abf9
 #1 [ffff898e35f15a60] crash_kexec at ffffffff810b96e3
 #2 [ffff898e35f15b30] oops_end at ffffffff8150f518
 #3 [ffff898e35f15b60] no_context at ffffffff8104854c
 #4 [ffff898e35f15ba0] __bad_area_nosemaphore at ffffffff81048675
 #5 [ffff898e35f15bf0] bad_area_nosemaphore at ffffffff810487d3
 #6 [ffff898e35f15c00] do_page_fault at ffffffff815120b8
 #7 [ffff898e35f15d10] page_fault at ffffffff8150ea95
    [exception RIP: unknown or invalid address]
    RIP: 0000000000000000  RSP: ffff898e35f15dc8  RFLAGS: 00010282
    RAX: 00000000fffffffe  RBX: ffff889b77f6fc00  RCX:ffffffff81c99d88
    RDX: 0000000000000000  RSI: ffff896019ee08e8  RDI:ffff889b77f6fc00
    RBP: ffff898e35f15df0   R8: ffff896019ee08c8  R9:0000000000000000
    R10: 0000000000000400  R11: 0000000000000000  R12:ffff896019ee08c0
    R13: ffff889b77f6fe68  R14: ffffffff81c99d80  R15: ffffffffa022a1e0
    ORIG_RAX: ffffffffffffffff  CS: 0010 SS: 0018
 #8 [ffff898e35f15dc8] cma_ndev_work_handler at ffffffffa022a228 [rdma_cm]
 #9 [ffff898e35f15df8] process_one_work at ffffffff8108a7c6
 #10 [ffff898e35f15e58] worker_thread at ffffffff8108bda0
 #11 [ffff898e35f15ee8] kthread at ffffffff81090fe6

PID: 45659  TASK: ffff880d313d2500  CPU: 31  COMMAND: "oracle_45659_ap"
 #0 [ffff881024ccfc98] __schedule at ffffffff8150bac4
 #1 [ffff881024ccfd40] schedule at ffffffff8150c2cf
 #2 [ffff881024ccfd50] __mutex_lock_slowpath at ffffffff8150cee7
 #3 [ffff881024ccfdc0] mutex_lock at ffffffff8150cdeb
 #4 [ffff881024ccfde0] rdma_destroy_id at ffffffffa022a027 [rdma_cm]
 #5 [ffff881024ccfe10] rds_ib_laddr_check at ffffffffa0357857 [rds_rdma]
 #6 [ffff881024ccfe50] rds_trans_get_preferred at ffffffffa0324c2a [rds]
 #7 [ffff881024ccfe80] rds_bind at ffffffffa031d690 [rds]
 #8 [ffff881024ccfeb0] sys_bind at ffffffff8142a670

PID: 45659                          PID: 47039
rds_ib_laddr_check
  /* create id_priv with a null event_handler */
  rdma_create_id
  rdma_bind_addr
    cma_acquire_dev
      /* add id_priv to cma_dev->id_list */
      cma_attach_to_dev
                                    cma_ndev_work_handler
                                      /* event_hanlder is null */
                                      id_priv->id.event_handler

Signed-off-by: Guanglei Li <guanglei.li@oracle.com>
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Yanjun Zhu <yanjun.zhu@oracle.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Acked-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 30, 2018
[ Upstream commit f61e643 ]

As of commit 205e1b7 ("dma-mapping: warn when there is no
coherent_dma_mask") the Freescale FEC driver is issuing the following
warning on driver initialization on ColdFire systems:

WARNING: CPU: 0 PID: 1 at ./include/linux/dma-mapping.h:516 0x40159e20
Modules linked in:
CPU: 0 PID: 1 Comm: swapper Not tainted 4.16.0-rc7-dirty #4
Stack from 41833dd8:
        41833dd8 40259c53 40025534 40279e26 00000003 00000000 4004e514 41827000
        400255de 40244e42 00000204 40159e20 00000009 00000000 00000000 4024531d
        40159e20 40244e42 00000204 00000000 00000000 00000000 00000007 00000000
        00000000 40279e26 4028d040 40226576 4003ae88 40279e26 418273f6 41833ef8
        7fffffff 418273f2 41867028 4003c9a2 4180ac6c 00000004 41833f8c 4013e71c
        40279e1c 40279e26 40226c16 4013ced2 40279e26 40279e58 4028d040 00000000
Call Trace:
        [<40025534>] 0x40025534
 [<4004e514>] 0x4004e514
 [<400255de>] 0x400255de
 [<40159e20>] 0x40159e20
 [<40159e20>] 0x40159e20

It is not fatal, the driver and the system continue to function normally.

As per the warning the coherent_dma_mask is not set on this device.
There is nothing special about the DMA memory coherency on this hardware
so we can just set the mask to 32bits in the platform data for the FEC
ethernet devices.

Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request May 30, 2018
[ Upstream commit 2bbea6e ]

when mounting an ISO filesystem sometimes (very rarely)
the system hangs because of a race condition between two tasks.

PID: 6766   TASK: ffff88007b2a6dd0  CPU: 0   COMMAND: "mount"
 #0 [ffff880078447ae0] __schedule at ffffffff8168d605
 #1 [ffff880078447b48] schedule_preempt_disabled at ffffffff8168ed49
 #2 [ffff880078447b58] __mutex_lock_slowpath at ffffffff8168c995
 #3 [ffff880078447bb8] mutex_lock at ffffffff8168bdef
 #4 [ffff880078447bd0] sr_block_ioctl at ffffffffa00b6818 [sr_mod]
 #5 [ffff880078447c10] blkdev_ioctl at ffffffff812fea50
 #6 [ffff880078447c70] ioctl_by_bdev at ffffffff8123a8b3
 #7 [ffff880078447c90] isofs_fill_super at ffffffffa04fb1e1 [isofs]
 #8 [ffff880078447da8] mount_bdev at ffffffff81202570
 #9 [ffff880078447e18] isofs_mount at ffffffffa04f9828 [isofs]
#10 [ffff880078447e28] mount_fs at ffffffff81202d09
#11 [ffff880078447e70] vfs_kern_mount at ffffffff8121ea8f
#12 [ffff880078447ea8] do_mount at ffffffff81220fee
#13 [ffff880078447f28] sys_mount at ffffffff812218d6
#14 [ffff880078447f80] system_call_fastpath at ffffffff81698c49
    RIP: 00007fd9ea914e9a  RSP: 00007ffd5d9bf648  RFLAGS: 00010246
    RAX: 00000000000000a5  RBX: ffffffff81698c49  RCX: 0000000000000010
    RDX: 00007fd9ec2bc210  RSI: 00007fd9ec2bc290  RDI: 00007fd9ec2bcf30
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000010
    R10: 00000000c0ed0001  R11: 0000000000000206  R12: 00007fd9ec2bc040
    R13: 00007fd9eb6b2380  R14: 00007fd9ec2bc210  R15: 00007fd9ec2bcf30
    ORIG_RAX: 00000000000000a5  CS: 0033  SS: 002b

This task was trying to mount the cdrom.  It allocated and configured a
super_block struct and owned the write-lock for the super_block->s_umount
rwsem. While exclusively owning the s_umount lock, it called
sr_block_ioctl and waited to acquire the global sr_mutex lock.

PID: 6785   TASK: ffff880078720fb0  CPU: 0   COMMAND: "systemd-udevd"
 #0 [ffff880078417898] __schedule at ffffffff8168d605
 #1 [ffff880078417900] schedule at ffffffff8168dc59
 #2 [ffff880078417910] rwsem_down_read_failed at ffffffff8168f605
 #3 [ffff880078417980] call_rwsem_down_read_failed at ffffffff81328838
 #4 [ffff8800784179d0] down_read at ffffffff8168cde0
 #5 [ffff8800784179e8] get_super at ffffffff81201cc7
 #6 [ffff880078417a10] __invalidate_device at ffffffff8123a8de
 #7 [ffff880078417a40] flush_disk at ffffffff8123a94b
 #8 [ffff880078417a88] check_disk_change at ffffffff8123ab50
 #9 [ffff880078417ab0] cdrom_open at ffffffffa00a29e1 [cdrom]
#10 [ffff880078417b68] sr_block_open at ffffffffa00b6f9b [sr_mod]
#11 [ffff880078417b98] __blkdev_get at ffffffff8123ba86
#12 [ffff880078417bf0] blkdev_get at ffffffff8123bd65
#13 [ffff880078417c78] blkdev_open at ffffffff8123bf9b
#14 [ffff880078417c90] do_dentry_open at ffffffff811fc7f7
#15 [ffff880078417cd8] vfs_open at ffffffff811fc9cf
#16 [ffff880078417d00] do_last at ffffffff8120d53d
#17 [ffff880078417db0] path_openat at ffffffff8120e6b2
#18 [ffff880078417e48] do_filp_open at ffffffff8121082b
#19 [ffff880078417f18] do_sys_open at ffffffff811fdd33
#20 [ffff880078417f70] sys_open at ffffffff811fde4e
#21 [ffff880078417f80] system_call_fastpath at ffffffff81698c49
    RIP: 00007f29438b0c20  RSP: 00007ffc76624b78  RFLAGS: 00010246
    RAX: 0000000000000002  RBX: ffffffff81698c49  RCX: 0000000000000000
    RDX: 00007f2944a5fa70  RSI: 00000000000a0800  RDI: 00007f2944a5fa70
    RBP: 00007f2944a5f540   R8: 0000000000000000   R9: 0000000000000020
    R10: 00007f2943614c40  R11: 0000000000000246  R12: ffffffff811fde4e
    R13: ffff880078417f78  R14: 000000000000000c  R15: 00007f2944a4b010
    ORIG_RAX: 0000000000000002  CS: 0033  SS: 002b

This task tried to open the cdrom device, the sr_block_open function
acquired the global sr_mutex lock. The call to check_disk_change()
then saw an event flag indicating a possible media change and tried
to flush any cached data for the device.
As part of the flush, it tried to acquire the super_block->s_umount
lock associated with the cdrom device.
This was the same super_block as created and locked by the previous task.

The first task acquires the s_umount lock and then the sr_mutex_lock;
the second task acquires the sr_mutex_lock and then the s_umount lock.

This patch fixes the issue by moving check_disk_change() out of
cdrom_open() and let the caller take care of it.

Signed-off-by: Maurizio Lombardi <mlombard@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
hubot pushed a commit that referenced this pull request Aug 6, 2018
commit 89da619 upstream.

Kernel panic when with high memory pressure, calltrace looks like,

PID: 21439 TASK: ffff881be3afedd0 CPU: 16 COMMAND: "java"
 #0 [ffff881ec7ed7630] machine_kexec at ffffffff81059beb
 #1 [ffff881ec7ed7690] __crash_kexec at ffffffff81105942
 #2 [ffff881ec7ed7760] crash_kexec at ffffffff81105a30
 #3 [ffff881ec7ed7778] oops_end at ffffffff816902c8
 #4 [ffff881ec7ed77a0] no_context at ffffffff8167ff46
 #5 [ffff881ec7ed77f0] __bad_area_nosemaphore at ffffffff8167ffdc
 #6 [ffff881ec7ed7838] __node_set at ffffffff81680300
 #7 [ffff881ec7ed7860] __do_page_fault at ffffffff8169320f
 #8 [ffff881ec7ed78c0] do_page_fault at ffffffff816932b5
 #9 [ffff881ec7ed78f0] page_fault at ffffffff8168f4c8
    [exception RIP: _raw_spin_lock_irqsave+47]
    RIP: ffffffff8168edef RSP: ffff881ec7ed79a8 RFLAGS: 00010046
    RAX: 0000000000000246 RBX: ffffea0019740d00 RCX: ffff881ec7ed7fd8
    RDX: 0000000000020000 RSI: 0000000000000016 RDI: 0000000000000008
    RBP: ffff881ec7ed79a8 R8: 0000000000000246 R9: 000000000001a098
    R10: ffff88107ffda000 R11: 0000000000000000 R12: 0000000000000000
    R13: 0000000000000008 R14: ffff881ec7ed7a80 R15: ffff881be3afedd0
    ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018

It happens in the pagefault and results in double pagefault
during compacting pages when memory allocation fails.

Analysed the vmcore, the page leads to second pagefault is corrupted
with _mapcount=-256, but private=0.

It's caused by the race between migration and ballooning, and lock
missing in virtballoon_migratepage() of virtio_balloon driver.
This patch fix the bug.

Fixes: e225042 ("virtio_balloon: introduce migration primitives to balloon pages")
Cc: stable@vger.kernel.org
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Signed-off-by: Huang Chong <huang.chong@zte.com.cn>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
jtpoo3 pushed a commit to jtpoo3/android_kernel_asus_flo that referenced this pull request Nov 3, 2018
commit 412d32e upstream.

A rescue thread exiting TASK_INTERRUPTIBLE can lead to a task scheduling
off, never to be seen again.  In the case where this occurred, an exiting
thread hit reiserfs homebrew conditional resched while holding a mutex,
bringing the box to its knees.

PID: 18105  TASK: ffff8807fd412180  CPU: 5   COMMAND: "kdmflush"
 #0 [ffff8808157e7670] schedule at ffffffff8143f489
 aosp-mirror#1 [ffff8808157e77b8] reiserfs_get_block at ffffffffa038ab2d [reiserfs]
 aosp-mirror#2 [ffff8808157e79a8] __block_write_begin at ffffffff8117fb14
 aosp-mirror#3 [ffff8808157e7a98] reiserfs_write_begin at ffffffffa0388695 [reiserfs]
 aosp-mirror#4 [ffff8808157e7ad8] generic_perform_write at ffffffff810ee9e2
 aosp-mirror#5 [ffff8808157e7b58] generic_file_buffered_write at ffffffff810eeb41
 aosp-mirror#6 [ffff8808157e7ba8] __generic_file_aio_write at ffffffff810f1a3a
 aosp-mirror#7 [ffff8808157e7c58] generic_file_aio_write at ffffffff810f1c88
 aosp-mirror#8 [ffff8808157e7cc8] do_sync_write at ffffffff8114f850
 aosp-mirror#9 [ffff8808157e7dd8] do_acct_process at ffffffff810a268f
    [exception RIP: kernel_thread_helper]
    RIP: ffffffff8144a5c0  RSP: ffff8808157e7f58  RFLAGS: 00000202
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: 0000000000000000
    RDX: 0000000000000000  RSI: ffffffff8107af60  RDI: ffff8803ee491d18
    RBP: 0000000000000000   R8: 0000000000000000   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000000  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018

Signed-off-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
@willnorris
Copy link

To report bugs or submit patches to Android, please follow the instructions at http://source.android.com/source/contributing.html. More information on these mirrors (like the fact that issues and pull requests are ignored) is available at http://android.github.io/.

@willnorris willnorris closed this Nov 5, 2018
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request Feb 22, 2019
commit 420902c upstream.

If we hold the superblock lock while calling reiserfs_quota_on_mount(), we can
deadlock our own worker - mount blocks kworker/3:2, sleeps forever more.

crash> ps|grep UN
    715      2   3  ffff880220734d30  UN   0.0       0      0  [kworker/3:2]
   9369   9341   2  ffff88021ffb7560  UN   1.3  493404 123184  Xorg
   9665   9664   3  ffff880225b92ab0  UN   0.0   47368    812  udisks-daemon
  10635  10403   3  ffff880222f22c70  UN   0.0   14904    936  mount
crash> bt ffff880220734d30
PID: 715    TASK: ffff880220734d30  CPU: 3   COMMAND: "kworker/3:2"
 #0 [ffff8802244c3c20] schedule at ffffffff8144584b
 aosp-mirror#1 [ffff8802244c3cc8] __rt_mutex_slowlock at ffffffff814472b3
 aosp-mirror#2 [ffff8802244c3d28] rt_mutex_slowlock at ffffffff814473f5
 aosp-mirror#3 [ffff8802244c3dc8] reiserfs_write_lock at ffffffffa05f28fd [reiserfs]
 aosp-mirror#4 [ffff8802244c3de8] flush_async_commits at ffffffffa05ec91d [reiserfs]
 aosp-mirror#5 [ffff8802244c3e08] process_one_work at ffffffff81073726
 aosp-mirror#6 [ffff8802244c3e68] worker_thread at ffffffff81073eba
 aosp-mirror#7 [ffff8802244c3ec8] kthread at ffffffff810782e0
 aosp-mirror#8 [ffff8802244c3f48] kernel_thread_helper at ffffffff81450064
crash> rd ffff8802244c3cc8 10
ffff8802244c3cc8:  ffffffff814472b3 ffff880222f23250   .rD.....P2."....
ffff8802244c3cd8:  0000000000000000 0000000000000286   ................
ffff8802244c3ce8:  ffff8802244c3d30 ffff880220734d80   0=L$.....Ms ....
ffff8802244c3cf8:  ffff880222e8f628 0000000000000000   (.."............
ffff8802244c3d08:  0000000000000000 0000000000000002   ................
crash> struct rt_mutex ffff880222e8f628
struct rt_mutex {
  wait_lock = {
    raw_lock = {
      slock = 65537
    }
  },
  wait_list = {
    node_list = {
      next = 0xffff8802244c3d48,
      prev = 0xffff8802244c3d48
    }
  },
  owner = 0xffff880222f22c71,
  save_state = 0
}
crash> bt 0xffff880222f22c70
PID: 10635  TASK: ffff880222f22c70  CPU: 3   COMMAND: "mount"
 #0 [ffff8802216a9868] schedule at ffffffff8144584b
 aosp-mirror#1 [ffff8802216a9910] schedule_timeout at ffffffff81446865
 aosp-mirror#2 [ffff8802216a99a0] wait_for_common at ffffffff81445f74
 aosp-mirror#3 [ffff8802216a9a30] flush_work at ffffffff810712d3
 aosp-mirror#4 [ffff8802216a9ab0] schedule_on_each_cpu at ffffffff81074463
 aosp-mirror#5 [ffff8802216a9ae0] invalidate_bdev at ffffffff81178aba
 aosp-mirror#6 [ffff8802216a9af0] vfs_load_quota_inode at ffffffff811a3632
 aosp-mirror#7 [ffff8802216a9b50] dquot_quota_on_mount at ffffffff811a375c
 aosp-mirror#8 [ffff8802216a9b80] finish_unfinished at ffffffffa05dd8b0 [reiserfs]
 aosp-mirror#9 [ffff8802216a9cc0] reiserfs_fill_super at ffffffffa05de825 [reiserfs]
    RIP: 00007f7b9303997a  RSP: 00007ffff443c7a8  RFLAGS: 00010202
    RAX: 00000000000000a5  RBX: ffffffff8144ef12  RCX: 00007f7b932e9ee0
    RDX: 00007f7b93d9a400  RSI: 00007f7b93d9a3e0  RDI: 00007f7b93d9a3c0
    RBP: 00007f7b93d9a2c0   R8: 00007f7b93d9a550   R9: 0000000000000001
    R10: ffffffffc0ed040e  R11: 0000000000000202  R12: 000000000000040e
    R13: 0000000000000000  R14: 00000000c0ed040e  R15: 00007ffff443ca20
    ORIG_RAX: 00000000000000a5  CS: 0033  SS: 002b

Signed-off-by: Mike Galbraith <efault@gmx.de>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Mike Galbraith <mgalbraith@suse.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Willy Tarreau <w@1wt.eu>
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request Feb 22, 2019
commit 3d46a44 upstream.

PID: 614    TASK: ffff882a739da580  CPU: 3   COMMAND: "ocfs2dc"
  #0 [ffff882ecc3759b0] machine_kexec at ffffffff8103b35d
  aosp-mirror#1 [ffff882ecc375a20] crash_kexec at ffffffff810b95b5
  aosp-mirror#2 [ffff882ecc375af0] oops_end at ffffffff815091d8
  aosp-mirror#3 [ffff882ecc375b20] die at ffffffff8101868b
  aosp-mirror#4 [ffff882ecc375b50] do_trap at ffffffff81508bb0
  aosp-mirror#5 [ffff882ecc375ba0] do_invalid_op at ffffffff810165e5
  aosp-mirror#6 [ffff882ecc375c40] invalid_op at ffffffff815116fb
     [exception RIP: ocfs2_ci_checkpointed+208]
     RIP: ffffffffa0a7e940  RSP: ffff882ecc375cf0  RFLAGS: 00010002
     RAX: 0000000000000001  RBX: 000000000000654b  RCX: ffff8812dc83f1f8
     RDX: 00000000000017d9  RSI: ffff8812dc83f1f8  RDI: ffffffffa0b2c318
     RBP: ffff882ecc375d20   R8: ffff882ef6ecfa60   R9: ffff88301f272200
     R10: 0000000000000000  R11: 0000000000000000  R12: ffffffffffffffff
     R13: ffff8812dc83f4f0  R14: 0000000000000000  R15: ffff8812dc83f1f8
     ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
  aosp-mirror#7 [ffff882ecc375d28] ocfs2_check_meta_downconvert at ffffffffa0a7edbd [ocfs2]
  aosp-mirror#8 [ffff882ecc375d38] ocfs2_unblock_lock at ffffffffa0a84af8 [ocfs2]
  aosp-mirror#9 [ffff882ecc375dc8] ocfs2_process_blocked_lock at ffffffffa0a85285 [ocfs2]
assert is tripped because the tran is not checkpointed and the lock level is PR.

Some time ago, chmod command had been executed. As result, the following call
chain left the inode cluster lock in PR state, latter on causing the assert.
system_call_fastpath
  -> my_chmod
   -> sys_chmod
    -> sys_fchmodat
     -> notify_change
      -> ocfs2_setattr
       -> posix_acl_chmod
        -> ocfs2_iop_set_acl
         -> ocfs2_set_acl
          -> ocfs2_acl_set_mode
Here is how.
1119 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1120 {
1247         ocfs2_inode_unlock(inode, 1); <<< WRONG thing to do.
..
1258         if (!status && attr->ia_valid & ATTR_MODE) {
1259                 status =  posix_acl_chmod(inode, inode->i_mode);

519 posix_acl_chmod(struct inode *inode, umode_t mode)
520 {
..
539         ret = inode->i_op->set_acl(inode, acl, ACL_TYPE_ACCESS);

287 int ocfs2_iop_set_acl(struct inode *inode, struct posix_acl *acl, ...
288 {
289         return ocfs2_set_acl(NULL, inode, NULL, type, acl, NULL, NULL);

224 int ocfs2_set_acl(handle_t *handle,
225                          struct inode *inode, ...
231 {
..
252                                 ret = ocfs2_acl_set_mode(inode, di_bh,
253                                                          handle, mode);

168 static int ocfs2_acl_set_mode(struct inode *inode, struct buffer_head ...
170 {
183         if (handle == NULL) {
                    >>> BUG: inode lock not held in ex at this point <<<
184                 handle = ocfs2_start_trans(OCFS2_SB(inode->i_sb),
185                                            OCFS2_INODE_UPDATE_CREDITS);

ocfs2_setattr.#1247 we unlock and at #1259 call posix_acl_chmod. When we reach
ocfs2_acl_set_mode.#181 and do trans, the inode cluster lock is not held in EX
mode (it should be). How this could have happended?

We are the lock master, were holding lock EX and have released it in
ocfs2_setattr.#1247.  Note that there are no holders of this lock at
this point.  Another node needs the lock in PR, and we downconvert from
EX to PR.  So the inode lock is PR when do the trans in
ocfs2_acl_set_mode.#184.  The trans stays in core (not flushed to disc).
Now another node want the lock in EX, downconvert thread gets kicked
(the one that tripped assert abovt), finds an unflushed trans but the
lock is not EX (it is PR).  If the lock was at EX, it would have flushed
the trans ocfs2_ci_checkpointed -> ocfs2_start_checkpoint before
downconverting (to NULL) for the request.

ocfs2_setattr must not drop inode lock ex in this code path.  If it
does, takes it again before the trans, say in ocfs2_set_acl, another
cluster node can get in between, execute another setattr, overwriting
the one in progress on this node, resulting in a mode acl size combo
that is a mix of the two.

Orabug: 20189959
Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Willy Tarreau <w@1wt.eu>
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request Feb 22, 2019
commit d5afb6f upstream.

The code where sk_clone() came from created a new socket and locked it,
but then, on the error path didn't unlock it.

This problem stayed there for a long while, till b0691c8 ("net:
Unlock sock before calling sk_free()") fixed it, but unfortunately the
callers of sk_clone() (now sk_clone_locked()) were not audited and the
one in dccp_create_openreq_child() remained.

Now in the age of the syskaller fuzzer, this was finally uncovered, as
reported by Dmitry:

 ---- 8< ----

I've got the following report while running syzkaller fuzzer on
86292b3 ("Merge branch 'akpm' (patches from Andrew)")

  [ BUG: held lock freed! ]
  4.10.0+ #234 Not tainted
  -------------------------
  syz-executor6/6898 is freeing memory
  ffff88006286cac0-ffff88006286d3b7, with a lock still held there!
   (slock-AF_INET6){+.-...}, at: [<ffffffff8362c2c9>] spin_lock
  include/linux/spinlock.h:299 [inline]
   (slock-AF_INET6){+.-...}, at: [<ffffffff8362c2c9>]
  sk_clone_lock+0x3d9/0x12c0 net/core/sock.c:1504
  5 locks held by syz-executor6/6898:
   #0:  (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff839a34b4>] lock_sock
  include/net/sock.h:1460 [inline]
   #0:  (sk_lock-AF_INET6){+.+.+.}, at: [<ffffffff839a34b4>]
  inet_stream_connect+0x44/0xa0 net/ipv4/af_inet.c:681
   aosp-mirror#1:  (rcu_read_lock){......}, at: [<ffffffff83bc1c2a>]
  inet6_csk_xmit+0x12a/0x5d0 net/ipv6/inet6_connection_sock.c:126
   aosp-mirror#2:  (rcu_read_lock){......}, at: [<ffffffff8369b424>] __skb_unlink
  include/linux/skbuff.h:1767 [inline]
   aosp-mirror#2:  (rcu_read_lock){......}, at: [<ffffffff8369b424>] __skb_dequeue
  include/linux/skbuff.h:1783 [inline]
   aosp-mirror#2:  (rcu_read_lock){......}, at: [<ffffffff8369b424>]
  process_backlog+0x264/0x730 net/core/dev.c:4835
   aosp-mirror#3:  (rcu_read_lock){......}, at: [<ffffffff83aeb5c0>]
  ip6_input_finish+0x0/0x1700 net/ipv6/ip6_input.c:59
   aosp-mirror#4:  (slock-AF_INET6){+.-...}, at: [<ffffffff8362c2c9>] spin_lock
  include/linux/spinlock.h:299 [inline]
   aosp-mirror#4:  (slock-AF_INET6){+.-...}, at: [<ffffffff8362c2c9>]
  sk_clone_lock+0x3d9/0x12c0 net/core/sock.c:1504

Fix it just like was done by b0691c8 ("net: Unlock sock before calling
sk_free()").

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170301153510.GE15145@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Willy Tarreau <w@1wt.eu>
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request May 27, 2019
commit 71abdc1 upstream.

When kswapd exits, it can end up taking locks that were previously held
by allocating tasks while they waited for reclaim.  Lockdep currently
warns about this:

On Wed, May 28, 2014 at 06:06:34PM +0800, Gu Zheng wrote:
>  inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-R} usage.
>  kswapd2/1151 [HC0[0]:SC0[0]:HE1:SE1] takes:
>   (&sig->group_rwsem){+++++?}, at: exit_signals+0x24/0x130
>  {RECLAIM_FS-ON-W} state was registered at:
>     mark_held_locks+0xb9/0x140
>     lockdep_trace_alloc+0x7a/0xe0
>     kmem_cache_alloc_trace+0x37/0x240
>     flex_array_alloc+0x99/0x1a0
>     cgroup_attach_task+0x63/0x430
>     attach_task_by_pid+0x210/0x280
>     cgroup_procs_write+0x16/0x20
>     cgroup_file_write+0x120/0x2c0
>     vfs_write+0xc0/0x1f0
>     SyS_write+0x4c/0xa0
>     tracesys+0xdd/0xe2
>  irq event stamp: 49
>  hardirqs last  enabled at (49):  _raw_spin_unlock_irqrestore+0x36/0x70
>  hardirqs last disabled at (48):  _raw_spin_lock_irqsave+0x2b/0xa0
>  softirqs last  enabled at (0):  copy_process.part.24+0x627/0x15f0
>  softirqs last disabled at (0):            (null)
>
>  other info that might help us debug this:
>   Possible unsafe locking scenario:
>
>         CPU0
>         ----
>    lock(&sig->group_rwsem);
>    <Interrupt>
>      lock(&sig->group_rwsem);
>
>   *** DEADLOCK ***
>
>  no locks held by kswapd2/1151.
>
>  stack backtrace:
>  CPU: 30 PID: 1151 Comm: kswapd2 Not tainted 3.10.39+ aosp-mirror#4
>  Call Trace:
>    dump_stack+0x19/0x1b
>    print_usage_bug+0x1f7/0x208
>    mark_lock+0x21d/0x2a0
>    __lock_acquire+0x52a/0xb60
>    lock_acquire+0xa2/0x140
>    down_read+0x51/0xa0
>    exit_signals+0x24/0x130
>    do_exit+0xb5/0xa50
>    kthread+0xdb/0x100
>    ret_from_fork+0x7c/0xb0

This is because the kswapd thread is still marked as a reclaimer at the
time of exit.  But because it is exiting, nobody is actually waiting on
it to make reclaim progress anymore, and it's nothing but a regular
thread at this point.  Be tidy and strip it of all its powers
(PF_MEMALLOC, PF_SWAPWRITE, PF_KSWAPD, and the lockdep reclaim state)
before returning from the thread function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request May 27, 2019
[ Upstream commit 5924f17 ]

When in repair-mode and TCP_RECV_QUEUE is set, we end up calling
tcp_push with mss_now being 0. If data is in the send-queue and
tcp_set_skb_tso_segs gets called, we crash because it will divide by
mss_now:

[  347.151939] divide error: 0000 [aosp-mirror#1] SMP
[  347.152907] Modules linked in:
[  347.152907] CPU: 1 PID: 1123 Comm: packetdrill Not tainted 3.16.0-rc2 aosp-mirror#4
[  347.152907] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007
[  347.152907] task: f5b88540 ti: f3c82000 task.ti: f3c82000
[  347.152907] EIP: 0060:[<c1601359>] EFLAGS: 00210246 CPU: 1
[  347.152907] EIP is at tcp_set_skb_tso_segs+0x49/0xa0
[  347.152907] EAX: 00000b67 EBX: f5acd080 ECX: 00000000 EDX: 00000000
[  347.152907] ESI: f5a28f40 EDI: f3c88f00 EBP: f3c83d10 ESP: f3c83d00
[  347.152907]  DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
[  347.152907] CR0: 80050033 CR2: 083158b0 CR3: 35146000 CR4: 000006b0
[  347.152907] Stack:
[  347.152907]  c167f9d9 f5acd080 000005b4 00000002 f3c83d20 c16013e6 f3c88f00 f5acd080
[  347.152907]  f3c83da0 c1603b5a f3c83d38 c10a0188 00000000 00000000 f3c83d84 c10acc85
[  347.152907]  c1ad5ec0 00000000 00000000 c1ad679c 010003e0 00000000 00000000 f3c88fc8
[  347.152907] Call Trace:
[  347.152907]  [<c167f9d9>] ? apic_timer_interrupt+0x2d/0x34
[  347.152907]  [<c16013e6>] tcp_init_tso_segs+0x36/0x50
[  347.152907]  [<c1603b5a>] tcp_write_xmit+0x7a/0xbf0
[  347.152907]  [<c10a0188>] ? up+0x28/0x40
[  347.152907]  [<c10acc85>] ? console_unlock+0x295/0x480
[  347.152907]  [<c10ad24f>] ? vprintk_emit+0x1ef/0x4b0
[  347.152907]  [<c1605716>] __tcp_push_pending_frames+0x36/0xd0
[  347.152907]  [<c15f4860>] tcp_push+0xf0/0x120
[  347.152907]  [<c15f7641>] tcp_sendmsg+0xf1/0xbf0
[  347.152907]  [<c116d920>] ? kmem_cache_free+0xf0/0x120
[  347.152907]  [<c106a682>] ? __sigqueue_free+0x32/0x40
[  347.152907]  [<c106a682>] ? __sigqueue_free+0x32/0x40
[  347.152907]  [<c114f0f0>] ? do_wp_page+0x3e0/0x850
[  347.152907]  [<c161c36a>] inet_sendmsg+0x4a/0xb0
[  347.152907]  [<c1150269>] ? handle_mm_fault+0x709/0xfb0
[  347.152907]  [<c15a006b>] sock_aio_write+0xbb/0xd0
[  347.152907]  [<c1180b79>] do_sync_write+0x69/0xa0
[  347.152907]  [<c1181023>] vfs_write+0x123/0x160
[  347.152907]  [<c1181d55>] SyS_write+0x55/0xb0
[  347.152907]  [<c167f0d8>] sysenter_do_call+0x12/0x28

This can easily be reproduced with the following packetdrill-script (the
"magic" with netem, sk_pacing and limit_output_bytes is done to prevent
the kernel from pushing all segments, because hitting the limit without
doing this is not so easy with packetdrill):

0   socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

+0  bind(3, ..., ...) = 0
+0  listen(3, 1) = 0

+0  < S 0:0(0) win 32792 <mss 1460>
+0  > S. 0:0(0) ack 1 <mss 1460>
+0.1  < . 1:1(0) ack 1 win 65000

+0  accept(3, ..., ...) = 4

// This forces that not all segments of the snd-queue will be pushed
+0 `tc qdisc add dev tun0 root netem delay 10ms`
+0 `sysctl -w net.ipv4.tcp_limit_output_bytes=2`
+0 setsockopt(4, SOL_SOCKET, 47, [2], 4) = 0

+0 write(4,...,10000) = 10000
+0 write(4,...,10000) = 10000

// Set tcp-repair stuff, particularly TCP_RECV_QUEUE
+0 setsockopt(4, SOL_TCP, 19, [1], 4) = 0
+0 setsockopt(4, SOL_TCP, 20, [1], 4) = 0

// This now will make the write push the remaining segments
+0 setsockopt(4, SOL_SOCKET, 47, [20000], 4) = 0
+0 `sysctl -w net.ipv4.tcp_limit_output_bytes=130000`

// Now we will crash
+0 write(4,...,1000) = 1000

This happens since ec34232 (tcp: fix retransmission in repair
mode). Prior to that, the call to tcp_push was prevented by a check for
tp->repair.

The patch fixes it, by adding the new goto-label out_nopush. When exiting
tcp_sendmsg and a push is not required, which is the case for tp->repair,
we go to this label.

When repairing and calling send() with TCP_RECV_QUEUE, the data is
actually put in the receive-queue. So, no push is required because no
data has been added to the send-queue.

Cc: Andrew Vagin <avagin@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Fixes: ec34232 (tcp: fix retransmission in repair mode)
Signed-off-by: Christoph Paasch <christoph.paasch@uclouvain.be>
Acked-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
timocapa pushed a commit to timocapa/kernel_lenok that referenced this pull request May 27, 2019
commit 504d587 upstream.

clockevents_increase_min_delta() calls printk() from under
hrtimer_bases.lock. That causes lock inversion on scheduler locks because
printk() can call into the scheduler. Lockdep puts it as:

======================================================
[ INFO: possible circular locking dependency detected ]
3.15.0-rc8-06195-g939f04b aosp-mirror#2 Not tainted
-------------------------------------------------------
trinity-main/74 is trying to acquire lock:
 (&port_lock_key){-.....}, at: [<811c60be>] serial8250_console_write+0x8c/0x10c

but task is already holding lock:
 (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> aosp-mirror#5 (hrtimer_bases.lock){-.-...}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<8103c918>] __hrtimer_start_range_ns+0x1c/0x197
       [<8107ec20>] perf_swevent_start_hrtimer.part.41+0x7a/0x85
       [<81080792>] task_clock_event_start+0x3a/0x3f
       [<810807a4>] task_clock_event_add+0xd/0x14
       [<8108259a>] event_sched_in+0xb6/0x17a
       [<810826a2>] group_sched_in+0x44/0x122
       [<81082885>] ctx_sched_in.isra.67+0x105/0x11f
       [<810828e6>] perf_event_sched_in.isra.70+0x47/0x4b
       [<81082bf6>] __perf_install_in_context+0x8b/0xa3
       [<8107eb8e>] remote_function+0x12/0x2a
       [<8105f5af>] smp_call_function_single+0x2d/0x53
       [<8107e17d>] task_function_call+0x30/0x36
       [<8107fb82>] perf_install_in_context+0x87/0xbb
       [<810852c9>] SYSC_perf_event_open+0x5c6/0x701
       [<810856f9>] SyS_perf_event_open+0x17/0x19
       [<8142f8ee>] syscall_call+0x7/0xb

-> aosp-mirror#4 (&ctx->lock){......}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f04c>] _raw_spin_lock+0x21/0x30
       [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
       [<8142cacc>] __schedule+0x4c6/0x4cb
       [<8142cae0>] schedule+0xf/0x11
       [<8142f9a6>] work_resched+0x5/0x30

-> aosp-mirror#3 (&rq->lock){-.-.-.}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f04c>] _raw_spin_lock+0x21/0x30
       [<81040873>] __task_rq_lock+0x33/0x3a
       [<8104184c>] wake_up_new_task+0x25/0xc2
       [<8102474b>] do_fork+0x15c/0x2a0
       [<810248a9>] kernel_thread+0x1a/0x1f
       [<814232a2>] rest_init+0x1a/0x10e
       [<817af949>] start_kernel+0x303/0x308
       [<817af2ab>] i386_start_kernel+0x79/0x7d

-> aosp-mirror#2 (&p->pi_lock){-.-...}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<810413dd>] try_to_wake_up+0x1d/0xd6
       [<810414cd>] default_wake_function+0xb/0xd
       [<810461f3>] __wake_up_common+0x39/0x59
       [<81046346>] __wake_up+0x29/0x3b
       [<811b8733>] tty_wakeup+0x49/0x51
       [<811c3568>] uart_write_wakeup+0x17/0x19
       [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
       [<811c5f28>] serial8250_handle_irq+0x54/0x6a
       [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
       [<811c56d8>] serial8250_interrupt+0x38/0x9e
       [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
       [<81051296>] handle_irq_event+0x2c/0x43
       [<81052cee>] handle_level_irq+0x57/0x80
       [<81002a72>] handle_irq+0x46/0x5c
       [<810027df>] do_IRQ+0x32/0x89
       [<8143036e>] common_interrupt+0x2e/0x33
       [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
       [<811c25a4>] uart_start+0x2d/0x32
       [<811c2c04>] uart_write+0xc7/0xd6
       [<811bc6f6>] n_tty_write+0xb8/0x35e
       [<811b9beb>] tty_write+0x163/0x1e4
       [<811b9cd9>] redirected_tty_write+0x6d/0x75
       [<810b6ed6>] vfs_write+0x75/0xb0
       [<810b7265>] SyS_write+0x44/0x77
       [<8142f8ee>] syscall_call+0x7/0xb

-> aosp-mirror#1 (&tty->write_wait){-.....}:
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<81046332>] __wake_up+0x15/0x3b
       [<811b8733>] tty_wakeup+0x49/0x51
       [<811c3568>] uart_write_wakeup+0x17/0x19
       [<811c5dc1>] serial8250_tx_chars+0xbc/0xfb
       [<811c5f28>] serial8250_handle_irq+0x54/0x6a
       [<811c5f57>] serial8250_default_handle_irq+0x19/0x1c
       [<811c56d8>] serial8250_interrupt+0x38/0x9e
       [<810510e7>] handle_irq_event_percpu+0x5f/0x1e2
       [<81051296>] handle_irq_event+0x2c/0x43
       [<81052cee>] handle_level_irq+0x57/0x80
       [<81002a72>] handle_irq+0x46/0x5c
       [<810027df>] do_IRQ+0x32/0x89
       [<8143036e>] common_interrupt+0x2e/0x33
       [<8142f23c>] _raw_spin_unlock_irqrestore+0x3f/0x49
       [<811c25a4>] uart_start+0x2d/0x32
       [<811c2c04>] uart_write+0xc7/0xd6
       [<811bc6f6>] n_tty_write+0xb8/0x35e
       [<811b9beb>] tty_write+0x163/0x1e4
       [<811b9cd9>] redirected_tty_write+0x6d/0x75
       [<810b6ed6>] vfs_write+0x75/0xb0
       [<810b7265>] SyS_write+0x44/0x77
       [<8142f8ee>] syscall_call+0x7/0xb

-> #0 (&port_lock_key){-.....}:
       [<8104a62d>] __lock_acquire+0x9ea/0xc6d
       [<8104a942>] lock_acquire+0x92/0x101
       [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
       [<811c60be>] serial8250_console_write+0x8c/0x10c
       [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
       [<8104f5d5>] console_unlock+0x1d7/0x398
       [<8104fb70>] vprintk_emit+0x3da/0x3e4
       [<81425f76>] printk+0x17/0x19
       [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
       [<8105c548>] clockevents_program_event+0xe7/0xf3
       [<8105cc1c>] tick_program_event+0x1e/0x23
       [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
       [<8103c49e>] __remove_hrtimer+0x5b/0x79
       [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
       [<8103cb4b>] hrtimer_cancel+0xd/0x18
       [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
       [<81080705>] task_clock_event_stop+0x20/0x64
       [<81080756>] task_clock_event_del+0xd/0xf
       [<81081350>] event_sched_out+0xab/0x11e
       [<810813e0>] group_sched_out+0x1d/0x66
       [<81081682>] ctx_sched_out+0xaf/0xbf
       [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
       [<8142cacc>] __schedule+0x4c6/0x4cb
       [<8142cae0>] schedule+0xf/0x11
       [<8142f9a6>] work_resched+0x5/0x30

other info that might help us debug this:

Chain exists of:
  &port_lock_key --> &ctx->lock --> hrtimer_bases.lock

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(hrtimer_bases.lock);
                               lock(&ctx->lock);
                               lock(hrtimer_bases.lock);
  lock(&port_lock_key);

 *** DEADLOCK ***

4 locks held by trinity-main/74:
 #0:  (&rq->lock){-.-.-.}, at: [<8142c6f3>] __schedule+0xed/0x4cb
 aosp-mirror#1:  (&ctx->lock){......}, at: [<81081df3>] __perf_event_task_sched_out+0x1dc/0x34f
 aosp-mirror#2:  (hrtimer_bases.lock){-.-...}, at: [<8103caeb>] hrtimer_try_to_cancel+0x13/0x66
 aosp-mirror#3:  (console_lock){+.+...}, at: [<8104fb5d>] vprintk_emit+0x3c7/0x3e4

stack backtrace:
CPU: 0 PID: 74 Comm: trinity-main Not tainted 3.15.0-rc8-06195-g939f04b aosp-mirror#2
 00000000 81c3a310 8b995c14 81426f69 8b995c44 81425a99 8161f671 8161f570
 8161f538 8161f559 8161f538 8b995c78 8b142bb0 00000004 8b142fdc 8b142bb0
 8b995ca8 8104a62d 8b142fac 000016f2 81c3a310 00000001 00000001 00000003
Call Trace:
 [<81426f69>] dump_stack+0x16/0x18
 [<81425a99>] print_circular_bug+0x18f/0x19c
 [<8104a62d>] __lock_acquire+0x9ea/0xc6d
 [<8104a942>] lock_acquire+0x92/0x101
 [<811c60be>] ? serial8250_console_write+0x8c/0x10c
 [<811c6032>] ? wait_for_xmitr+0x76/0x76
 [<8142f11d>] _raw_spin_lock_irqsave+0x2e/0x3e
 [<811c60be>] ? serial8250_console_write+0x8c/0x10c
 [<811c60be>] serial8250_console_write+0x8c/0x10c
 [<8104af87>] ? lock_release+0x191/0x223
 [<811c6032>] ? wait_for_xmitr+0x76/0x76
 [<8104e402>] call_console_drivers.constprop.31+0x87/0x118
 [<8104f5d5>] console_unlock+0x1d7/0x398
 [<8104fb70>] vprintk_emit+0x3da/0x3e4
 [<81425f76>] printk+0x17/0x19
 [<8105bfa0>] clockevents_program_min_delta+0x104/0x116
 [<8105cc1c>] tick_program_event+0x1e/0x23
 [<8103c43c>] hrtimer_force_reprogram+0x88/0x8f
 [<8103c49e>] __remove_hrtimer+0x5b/0x79
 [<8103cb21>] hrtimer_try_to_cancel+0x49/0x66
 [<8103cb4b>] hrtimer_cancel+0xd/0x18
 [<8107f102>] perf_swevent_cancel_hrtimer.part.60+0x2b/0x30
 [<81080705>] task_clock_event_stop+0x20/0x64
 [<81080756>] task_clock_event_del+0xd/0xf
 [<81081350>] event_sched_out+0xab/0x11e
 [<810813e0>] group_sched_out+0x1d/0x66
 [<81081682>] ctx_sched_out+0xaf/0xbf
 [<81081e04>] __perf_event_task_sched_out+0x1ed/0x34f
 [<8104416d>] ? __dequeue_entity+0x23/0x27
 [<81044505>] ? pick_next_task_fair+0xb1/0x120
 [<8142cacc>] __schedule+0x4c6/0x4cb
 [<81047574>] ? trace_hardirqs_off_caller+0xd7/0x108
 [<810475b0>] ? trace_hardirqs_off+0xb/0xd
 [<81056346>] ? rcu_irq_exit+0x64/0x77

Fix the problem by using printk_deferred() which does not call into the
scheduler.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
michalgr pushed a commit to michalgr/kernel_msm that referenced this pull request Oct 3, 2019
commit 252f6e8 upstream.

It is currently done in arc_init_IRQ() which might be too late
considering gcc 7.3.1 onwards (GNU 2018.03) generates unaligned
memory accesses by default

Cc: stable@vger.kernel.org aosp-mirror#4.4+
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: rewrote changelog]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
michalgr pushed a commit to michalgr/kernel_msm that referenced this pull request Oct 3, 2019
commit 5e3cc1e upstream.

Use inode->i_lock to protect i_size_write(), else i_size_read() in
generic_fillattr() may loop infinitely in read_seqcount_begin() when
multiple processes invoke v9fs_vfs_getattr() or v9fs_vfs_getattr_dotl()
simultaneously under 32-bit SMP environment, and a soft lockup will be
triggered as show below:

  watchdog: BUG: soft lockup - CPU#5 stuck for 22s! [stat:2217]
  Modules linked in:
  CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e aosp-mirror#4
  Hardware name: Generic DT based system
  PC is at generic_fillattr+0x104/0x108
  LR is at 0xec497f00
  pc : [<802b8898>]    lr : [<ec497f00>]    psr: 200c0013
  sp : ec497e20  ip : ed608030  fp : ec497e3c
  r10: 00000000  r9 : ec497f00  r8 : ed608030
  r7 : ec497ebc  r6 : ec497f00  r5 : ee5c1550  r4 : ee005780
  r3 : 0000052d  r2 : 00000000  r1 : ec497f00  r0 : ed608030
  Flags: nzCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment none
  Control: 10c5387d  Table: ac48006a  DAC: 00000051
  CPU: 5 PID: 2217 Comm: stat Not tainted 5.0.0-rc1-00005-g7f702faf5a9e aosp-mirror#4
  Hardware name: Generic DT based system
  Backtrace:
  [<8010d974>] (dump_backtrace) from [<8010dc88>] (show_stack+0x20/0x24)
  [<8010dc68>] (show_stack) from [<80a1d194>] (dump_stack+0xb0/0xdc)
  [<80a1d0e4>] (dump_stack) from [<80109f34>] (show_regs+0x1c/0x20)
  [<80109f18>] (show_regs) from [<801d0a80>] (watchdog_timer_fn+0x280/0x2f8)
  [<801d0800>] (watchdog_timer_fn) from [<80198658>] (__hrtimer_run_queues+0x18c/0x380)
  [<801984cc>] (__hrtimer_run_queues) from [<80198e60>] (hrtimer_run_queues+0xb8/0xf0)
  [<80198da8>] (hrtimer_run_queues) from [<801973e8>] (run_local_timers+0x28/0x64)
  [<801973c0>] (run_local_timers) from [<80197460>] (update_process_times+0x3c/0x6c)
  [<80197424>] (update_process_times) from [<801ab2b8>] (tick_nohz_handler+0xe0/0x1bc)
  [<801ab1d8>] (tick_nohz_handler) from [<80843050>] (arch_timer_handler_virt+0x38/0x48)
  [<80843018>] (arch_timer_handler_virt) from [<80180a64>] (handle_percpu_devid_irq+0x8c/0x240)
  [<801809d8>] (handle_percpu_devid_irq) from [<8017ac20>] (generic_handle_irq+0x34/0x44)
  [<8017abec>] (generic_handle_irq) from [<8017b344>] (__handle_domain_irq+0x6c/0xc4)
  [<8017b2d8>] (__handle_domain_irq) from [<801022e0>] (gic_handle_irq+0x4c/0x88)
  [<80102294>] (gic_handle_irq) from [<80101a30>] (__irq_svc+0x70/0x98)
  [<802b8794>] (generic_fillattr) from [<8056b284>] (v9fs_vfs_getattr_dotl+0x74/0xa4)
  [<8056b210>] (v9fs_vfs_getattr_dotl) from [<802b8904>] (vfs_getattr_nosec+0x68/0x7c)
  [<802b889c>] (vfs_getattr_nosec) from [<802b895c>] (vfs_getattr+0x44/0x48)
  [<802b8918>] (vfs_getattr) from [<802b8a74>] (vfs_statx+0x9c/0xec)
  [<802b89d8>] (vfs_statx) from [<802b9428>] (sys_lstat64+0x48/0x78)
  [<802b93e0>] (sys_lstat64) from [<80101000>] (ret_fast_syscall+0x0/0x28)

[dominique.martinet@cea.fr: updated comment to not refer to a function
in another subsystem]
Link: http://lkml.kernel.org/r/20190124063514.8571-2-houtao1@huawei.com
Cc: stable@vger.kernel.org
Fixes: 7549ae3 ("9p: Use the i_size_[read, write]() macros instead of using inode->i_size directly.")
Reported-by: Xing Gaopeng <xingaopeng@huawei.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
michalgr pushed a commit to michalgr/kernel_msm that referenced this pull request Oct 3, 2019
commit 9f0bbf3 upstream.

Because there may be random garbage beyond a string's null terminator,
it's not correct to copy the the complete character array for use as a
hist trigger key.  This results in multiple histogram entries for the
'same' string key.

So, in the case of a string key, use strncpy instead of memcpy to
avoid copying in the extra bytes.

Before, using the gdbus entries in the following hist trigger as an
example:

  # echo 'hist:key=comm' > /sys/kernel/debug/tracing/events/sched/sched_waking/trigger
  # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist

  ...

  { comm: ImgDecoder aosp-mirror#4                      } hitcount:        203
  { comm: gmain                              } hitcount:        213
  { comm: gmain                              } hitcount:        216
  { comm: StreamTrans #73                    } hitcount:        221
  { comm: mozStorage aosp-mirror#3                      } hitcount:        230
  { comm: gdbus                              } hitcount:        233
  { comm: StyleThread#5                      } hitcount:        253
  { comm: gdbus                              } hitcount:        256
  { comm: gdbus                              } hitcount:        260
  { comm: StyleThread#4                      } hitcount:        271

  ...

  # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist | egrep gdbus | wc -l
  51

After:

  # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist | egrep gdbus | wc -l
  1

Link: http://lkml.kernel.org/r/50c35ae1267d64eee975b8125e151e600071d4dc.1549309756.git.tom.zanussi@linux.intel.com

Cc: Namhyung Kim <namhyung@kernel.org>
Cc: stable@vger.kernel.org
Fixes: 79e577c ("tracing: Support string type key properly")
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
reaqon pushed a commit to reaqon/kernel_msm that referenced this pull request Jun 5, 2020
commit ab42b48 upstream.

The "auto-attach" handler function `gsc_hpdi_auto_attach()` calls
`dma_alloc_coherent()` in a loop to allocate some DMA data buffers, and
also calls it to allocate a buffer for a DMA descriptor chain.  However,
it does not check the return value of any of these calls.  Change
`gsc_hpdi_auto_attach()` to return `-ENOMEM` if any of these
`dma_alloc_coherent()` calls fail.  This will result in the comedi core
calling the "detach" handler `gsc_hpdi_detach()` as part of the
clean-up, which will call `gsc_hpdi_free_dma()` to free any allocated
DMA coherent memory buffers.

Cc: <stable@vger.kernel.org> aosp-mirror#4.6+
Signed-off-by: Ian Abbott <abbotti@mev.co.uk>
Link: https://lore.kernel.org/r/20191216110823.216237-1-abbotti@mev.co.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
reaqon pushed a commit to reaqon/kernel_msm that referenced this pull request Jun 5, 2020
commit 5c9934b upstream.

We got another syzbot report [1] that tells us we must use
write_lock_irq()/write_unlock_irq() to avoid possible deadlock.

[1]

WARNING: inconsistent lock state
5.5.0-rc1-syzkaller #0 Not tainted
--------------------------------
inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-R} usage.
syz-executor826/9605 [HC1[1]:SC0[0]:HE0:SE1] takes:
ffffffff8a128718 (disc_data_lock){+-..}, at: sp_get.isra.0+0x1d/0xf0 drivers/net/ppp/ppp_synctty.c:138
{HARDIRQ-ON-W} state was registered at:
  lock_acquire+0x190/0x410 kernel/locking/lockdep.c:4485
  __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline]
  _raw_write_lock_bh+0x33/0x50 kernel/locking/spinlock.c:319
  sixpack_close+0x1d/0x250 drivers/net/hamradio/6pack.c:657
  tty_ldisc_close.isra.0+0x119/0x1a0 drivers/tty/tty_ldisc.c:489
  tty_set_ldisc+0x230/0x6b0 drivers/tty/tty_ldisc.c:585
  tiocsetd drivers/tty/tty_io.c:2337 [inline]
  tty_ioctl+0xe8d/0x14f0 drivers/tty/tty_io.c:2597
  vfs_ioctl fs/ioctl.c:47 [inline]
  file_ioctl fs/ioctl.c:545 [inline]
  do_vfs_ioctl+0x977/0x14e0 fs/ioctl.c:732
  ksys_ioctl+0xab/0xd0 fs/ioctl.c:749
  __do_sys_ioctl fs/ioctl.c:756 [inline]
  __se_sys_ioctl fs/ioctl.c:754 [inline]
  __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:754
  do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
  entry_SYSCALL_64_after_hwframe+0x49/0xbe
irq event stamp: 3946
hardirqs last  enabled at (3945): [<ffffffff87c86e43>] __raw_spin_unlock_irq include/linux/spinlock_api_smp.h:168 [inline]
hardirqs last  enabled at (3945): [<ffffffff87c86e43>] _raw_spin_unlock_irq+0x23/0x80 kernel/locking/spinlock.c:199
hardirqs last disabled at (3946): [<ffffffff8100675f>] trace_hardirqs_off_thunk+0x1a/0x1c arch/x86/entry/thunk_64.S:42
softirqs last  enabled at (2658): [<ffffffff86a8b4df>] spin_unlock_bh include/linux/spinlock.h:383 [inline]
softirqs last  enabled at (2658): [<ffffffff86a8b4df>] clusterip_netdev_event+0x46f/0x670 net/ipv4/netfilter/ipt_CLUSTERIP.c:222
softirqs last disabled at (2656): [<ffffffff86a8b22b>] spin_lock_bh include/linux/spinlock.h:343 [inline]
softirqs last disabled at (2656): [<ffffffff86a8b22b>] clusterip_netdev_event+0x1bb/0x670 net/ipv4/netfilter/ipt_CLUSTERIP.c:196

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(disc_data_lock);
  <Interrupt>
    lock(disc_data_lock);

 *** DEADLOCK ***

5 locks held by syz-executor826/9605:
 #0: ffff8880a905e198 (&tty->legacy_mutex){+.+.}, at: tty_lock+0xc7/0x130 drivers/tty/tty_mutex.c:19
 aosp-mirror#1: ffffffff899a56c0 (rcu_read_lock){....}, at: mutex_spin_on_owner+0x0/0x330 kernel/locking/mutex.c:413
 aosp-mirror#2: ffff8880a496a2b0 (&(&i->lock)->rlock){-.-.}, at: spin_lock include/linux/spinlock.h:338 [inline]
 aosp-mirror#2: ffff8880a496a2b0 (&(&i->lock)->rlock){-.-.}, at: serial8250_interrupt+0x2d/0x1a0 drivers/tty/serial/8250/8250_core.c:116
 aosp-mirror#3: ffffffff8c104048 (&port_lock_key){-.-.}, at: serial8250_handle_irq.part.0+0x24/0x330 drivers/tty/serial/8250/8250_port.c:1823
 aosp-mirror#4: ffff8880a905e090 (&tty->ldisc_sem){++++}, at: tty_ldisc_ref+0x22/0x90 drivers/tty/tty_ldisc.c:288

stack backtrace:
CPU: 1 PID: 9605 Comm: syz-executor826 Not tainted 5.5.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 <IRQ>
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x197/0x210 lib/dump_stack.c:118
 print_usage_bug.cold+0x327/0x378 kernel/locking/lockdep.c:3101
 valid_state kernel/locking/lockdep.c:3112 [inline]
 mark_lock_irq kernel/locking/lockdep.c:3309 [inline]
 mark_lock+0xbb4/0x1220 kernel/locking/lockdep.c:3666
 mark_usage kernel/locking/lockdep.c:3554 [inline]
 __lock_acquire+0x1e55/0x4a00 kernel/locking/lockdep.c:3909
 lock_acquire+0x190/0x410 kernel/locking/lockdep.c:4485
 __raw_read_lock include/linux/rwlock_api_smp.h:149 [inline]
 _raw_read_lock+0x32/0x50 kernel/locking/spinlock.c:223
 sp_get.isra.0+0x1d/0xf0 drivers/net/ppp/ppp_synctty.c:138
 sixpack_write_wakeup+0x25/0x340 drivers/net/hamradio/6pack.c:402
 tty_wakeup+0xe9/0x120 drivers/tty/tty_io.c:536
 tty_port_default_wakeup+0x2b/0x40 drivers/tty/tty_port.c:50
 tty_port_tty_wakeup+0x57/0x70 drivers/tty/tty_port.c:387
 uart_write_wakeup+0x46/0x70 drivers/tty/serial/serial_core.c:104
 serial8250_tx_chars+0x495/0xaf0 drivers/tty/serial/8250/8250_port.c:1761
 serial8250_handle_irq.part.0+0x2a2/0x330 drivers/tty/serial/8250/8250_port.c:1834
 serial8250_handle_irq drivers/tty/serial/8250/8250_port.c:1820 [inline]
 serial8250_default_handle_irq+0xc0/0x150 drivers/tty/serial/8250/8250_port.c:1850
 serial8250_interrupt+0xf1/0x1a0 drivers/tty/serial/8250/8250_core.c:126
 __handle_irq_event_percpu+0x15d/0x970 kernel/irq/handle.c:149
 handle_irq_event_percpu+0x74/0x160 kernel/irq/handle.c:189
 handle_irq_event+0xa7/0x134 kernel/irq/handle.c:206
 handle_edge_irq+0x25e/0x8d0 kernel/irq/chip.c:830
 generic_handle_irq_desc include/linux/irqdesc.h:156 [inline]
 do_IRQ+0xde/0x280 arch/x86/kernel/irq.c:250
 common_interrupt+0xf/0xf arch/x86/entry/entry_64.S:607
 </IRQ>
RIP: 0010:cpu_relax arch/x86/include/asm/processor.h:685 [inline]
RIP: 0010:mutex_spin_on_owner+0x247/0x330 kernel/locking/mutex.c:579
Code: c3 be 08 00 00 00 4c 89 e7 e8 e5 06 59 00 4c 89 e0 48 c1 e8 03 42 80 3c 38 00 0f 85 e1 00 00 00 49 8b 04 24 a8 01 75 96 f3 90 <e9> 2f fe ff ff 0f 0b e8 0d 19 09 00 84 c0 0f 85 ff fd ff ff 48 c7
RSP: 0018:ffffc90001eafa20 EFLAGS: 00000246 ORIG_RAX: ffffffffffffffd7
RAX: 0000000000000000 RBX: ffff88809fd9e0c0 RCX: 1ffffffff13266dd
RDX: 0000000000000000 RSI: 0000000000000008 RDI: 0000000000000000
RBP: ffffc90001eafa60 R08: 1ffff11013d22898 R09: ffffed1013d22899
R10: ffffed1013d22898 R11: ffff88809e9144c7 R12: ffff8880a905e138
R13: ffff88809e9144c0 R14: 0000000000000000 R15: dffffc0000000000
 mutex_optimistic_spin kernel/locking/mutex.c:673 [inline]
 __mutex_lock_common kernel/locking/mutex.c:962 [inline]
 __mutex_lock+0x32b/0x13c0 kernel/locking/mutex.c:1106
 mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:1121
 tty_lock+0xc7/0x130 drivers/tty/tty_mutex.c:19
 tty_release+0xb5/0xe90 drivers/tty/tty_io.c:1665
 __fput+0x2ff/0x890 fs/file_table.c:280
 ____fput+0x16/0x20 fs/file_table.c:313
 task_work_run+0x145/0x1c0 kernel/task_work.c:113
 exit_task_work include/linux/task_work.h:22 [inline]
 do_exit+0x8e7/0x2ef0 kernel/exit.c:797
 do_group_exit+0x135/0x360 kernel/exit.c:895
 __do_sys_exit_group kernel/exit.c:906 [inline]
 __se_sys_exit_group kernel/exit.c:904 [inline]
 __x64_sys_exit_group+0x44/0x50 kernel/exit.c:904
 do_syscall_64+0xfa/0x790 arch/x86/entry/common.c:294
 entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x43fef8
Code: Bad RIP value.
RSP: 002b:00007ffdb07d2338 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 000000000043fef8
RDX: 0000000000000000 RSI: 000000000000003c RDI: 0000000000000000
RBP: 00000000004bf730 R08: 00000000000000e7 R09: ffffffffffffffd0
R10: 00000000004002c8 R11: 0000000000000246 R12: 0000000000000001
R13: 00000000006d1180 R14: 0000000000000000 R15: 0000000000000000

Fixes: 6e4e2f8 ("6pack,mkiss: fix lock inconsistency")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
3 participants