-
Notifications
You must be signed in to change notification settings - Fork 0
/
melting.Rd
637 lines (512 loc) · 27.4 KB
/
melting.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/melting.R
\encoding{UTF-8}
\name{melting}
\alias{melting}
\title{melting}
\usage{
melting(sequence, comp.sequence = NULL,
nucleic.acid.conc,
hybridisation.type = c("dnadna", "rnarna", "dnarna",
"rnadna", "mrnarna", "rnamrna"),
Na.conc, Mg.conc, Tris.conc, K.conc,
dNTP.conc, DMSO.conc, formamide.conc,
size.threshold = 60, self = FALSE, correction.factor,
method.approx = c("ahs01", "che93", "che93corr",
"marschdot", "owe69", "san98",
"wetdna91", "wetrna91", "wetdnarna91"),
method.nn = c("all97", "bre86", "san04", "san96", "sug96",
"tan04", "fre86", "xia98", "sug95", "tur06"),
method.GU = c("tur99"),
method.singleMM = c("allsanpey", "tur06", "zno07", "zno08"),
method.tandemMM = c("allsanpey", "tur99"),
method.single.dangle = c("bom00", "sugdna02", "sugrna02", "ser08"),
method.double.dangle = c("sugdna02", "sugrna02", "ser05", "ser06"),
method.long.dangle = c("sugdna02", "sugrna02"),
method.internal.loop = c("san04", "tur06", "zno07"),
method.single.bulge.loop = c("tan04", "san04", "ser07" ,"tur06"),
method.long.bulge.loop = c("san04", "tur06"),
method.CNG = c("bro05"),
method.inosine = c("san05", "zno07"),
method.hydroxyadenine = c("sug01"),
method.azobenzenes = c("asa05"),
method.locked = c("mct04"),
correction.Na = c("ahs01", "kam71", "marschdot",
"owc1904", "owc2004", "owc2104", "owc2204",
"san96", "san04", "schlif",
"tanna06", "tanna07", "wet91"),
correction.Mg = c("oxcmg08", "tanmg06", "tanmg07"),
correction.NaMg = c("oxcmix08", "tanmix07"),
method.Naeq = c("ahs01", "mit96", "pey00"),
correction.DMSO = c("ahs01", "cul76", "esc80", "mus80"),
}
\arguments{
\item{sequence}{Sequence (5' to 3') of one strand of the nucleic acid duplex
as a character string.}
\item{comp.sequence}{Complementary sequence (3' to 5') of the nucleic acid
duplex as a character string.}
\item{nucleic.acid.conc}{Concentration of the nucleic acid strand
(\ifelse{html}{mol L<sup>-1</sup>}{\eqn{\textrm{mol L}^{-1}}}) in excess as
a numeric value.}
\item{hybridisation.type}{The hybridisation type. Either \code{"dnadna"},
\code{"rnarna"}, \code{"dnarna"}, \code{"rnadna"}, \code{"mrnarna"} or
\code{"rnamrna"} (see \strong{Hybridisation type options}).}
\item{Na.conc}{Concentration of Na ions (M) as a numeric value (see
\strong{Ion and agent concentrations}).}
\item{Mg.conc}{Concentration of Mg ions (M) as a numeric value (see
\strong{Ion and agent concentrations}).}
\item{Tris.conc}{Concentration of Tris ions (M) as a numeric value (see
\strong{Ion and agent concentrations}).}
\item{K.conc}{Concentration of K ions (M) as a numeric value (see \strong{Ion
and agent concentrations}).}
\item{dNTP.conc}{Concentration of dNTP (M) as a numeric value (see \strong{Ion
and agent concentrations}).}
\item{DMSO.conc}{Concentration of DMSO (\%) as a numeric value (see
\strong{Ion and agent concentrations}).}
\item{formamide.conc}{Concentration of formamide (M or \% depending on
correction method) as a numeric value (see \strong{Ion and agent
concentrations}).}
\item{size.threshold}{Sequence length threshold to decide approximative or
nearest-neighbour approach for computation. Default is 60.}
\item{self}{logical. Specifies that \code{sequence} is self complementary and
\code{complementary sequence} is not required (seed \strong{Self
complementary sequences}). Default is \code{FALSE}.}
\item{correction.factor}{Correction factor to be used to modulate the effect
of the nucleic acid concentration (\code{nucleic.acid.conc}) in the
computation of melting temperature (see \strong{Correction factor for
nucleic acid concentration}).}
\item{method.approx}{Specify the approximative formula to be used for melting
temperature calculation for sequences of length greater than
\code{size.threshold}. Either \code{"ahs01"}, \code{"che93"},
\code{"che93corr"}, \code{"schdot"}, \code{"owe69"}, \code{"san98"},
\code{"wetdna91"}, \code{"wetrna91"} or \code{"wetdnarna91"} (see
\strong{Approximative formulas}).}
\item{method.nn}{Specify the nearest neighbor model to be used for melting
temperature calculation for sequences of length lesser than
\code{size.threshold}. Either \code{"all97"}, \code{"bre86"},
\code{"san04"}, \code{"san96"}, \code{"sug96"}, \code{"tan04"},
\code{"fre86"}, \code{"xia98"}, \code{"sug95"} or \code{"tur06"} (see
\strong{Nearest neighbor models}).}
\item{method.GU}{Specify the nearest neighbor model to compute the
contribution of GU base pairs to the thermodynamic of helix-coil transition.
Available method is \code{"tur99"} (see \strong{GU wobble base pairs
effect}).}
\item{method.singleMM}{Specify the nearest neighbor model to compute the
contribution of single mismatch to the thermodynamic of helix-coil
transition. Either \code{"allsanpey"}, \code{"tur06"}, \code{"zno07"} or
\code{"zno08"} (see \strong{Single mismatch effect}).}
\item{method.tandemMM}{Specify the nearest neighbor model to compute the
contribution of tandem mismatches to the thermodynamic of helix-coil
transition. Either \code{"allsanpey"} or \code{"tur99"} (see \strong{Tandem
mismatches effect}).}
\item{method.single.dangle}{Specify the nearest neighbor model to compute the
contribution of single dangling end to the thermodynamic of helix-coil
transition. Either \code{"bom00"}, \code{"sugdna02"}, \code{"sugrna02"} or
\code{"ser08"} (see \strong{Single dangling end effect}).}
\item{method.double.dangle}{Specify the nearest neighbor model to compute the
contribution of double dangling end to the thermodynamic of helix-coil
transition. Either \code{"sugdna02"}, \code{"sugrna02"}, \code{"ser05"} or
\code{"ser06"} (see \strong{Double dangling end effect}).}
\item{method.long.dangle}{Specify the nearest neighbor model to compute the
contribution of long dangling end to the thermodynamic of helix-coil
transition. Either \code{"sugdna02"} or \code{"sugrna02"} (see \strong{Long
dangling end effect}).}
\item{method.internal.loop}{Specify the nearest neighbor model to compute the
contribution of internal loop to the thermodynamic of helix-coil transition.
Either \code{"san04"}, \code{"tur06"} or \code{"zno07"} (see
\strong{Internal loop effect}).}
\item{method.single.bulge.loop}{Specify the nearest neighbor model to compute
the contribution of single bulge loop to the thermodynamic of helix-coil
transition. Either \code{"san04"}, \code{"tan04"}, \code{"ser07"} or
\code{"tur06"} (see \strong{Single bulge loop effect}).}
\item{method.long.bulge.loop}{Specify the nearest neighbor model to compute
the contribution of long bulge loop to the thermodynamic of helix-coil
transition. Either \code{"san04"} or \code{"tur06"} (see \strong{Long bulge
loop effect}).}
\item{method.CNG}{Specify the nearest neighbor model to compute the
contribution of CNG repeats to the thermodynamic of helix-coil transition.
Available method is \code{"bro05"} (see \strong{CNG repeats effect}).}
\item{method.inosine}{Specify the pecific nearest neighbor model to compute
the contribution of inosine bases (I) to the thermodynamic of helix-coil
transition. Either \code{"san05"} or \code{"zno07"} (see \strong{Inosine
bases effect}).}
\item{method.hydroxyadenine}{Specify the nearest neighbor model to compute the
contribution of hydroxyadenine bases (A*) to the thermodynamic of helix-coil
transition. Available method is \code{"sug01"} (see \strong{Hydroxyadenine
bases effect}).}
\item{method.azobenzenes}{Specify the nearest neighbor model to compute the
contribution of azobenzenes (X_T for trans azobenzenes and X_C for cis
azobenzenes) to the thermodynamic of helix-coil transition. Available method
is \code{"asa05"} (see \strong{Azobenzenes effect}).}
\item{method.locked}{Specify the nearest neighbor model to compute the
contribution of locked nucleic acids (AL, GL, TL and CL) to the
thermodynamic of helix-coil transition. Available method is \code{"mct04"}
(see \strong{Locked nucleic acids effect}).}
\item{correction.Na}{Specify the correction method for Na ions. Either
\code{"ahs01"}, \code{"kam71"}, \code{"owc1904"}, \code{"owc2004"},
\code{"owc2104"}, \code{"owc2204"}, \code{"san96"}, \code{"san04"},
\code{"schlif"}, \code{"tanna06"}, \code{"wetdna91"}, \code{"tanna07"},
\code{"wetrna91"} or \code{"wetdnarna91"} (see \strong{Sodium corrections}).}
\item{correction.Mg}{Specify the correction method for Mg ions. Either
\code{"owcmg08"}, \code{"tanmg06"} or \code{"tanmg07"} (see
\strong{Magnesium corrections}).}
\item{correction.NaMg}{Specify the correction method for mixed Na and Mg ions.
Either \code{"owcmix08"}, \code{"tanmix07"} or \code{"tanmix07"} (see
\strong{Mixed Sodium and Magnesium corrections}).}
\item{method.Naeq}{Specify the ion correction which gives a sodium equivalent
concentration if other cations are present. Either \code{"ahs01"},
\code{"mit96"} or \code{"pey00"} (see \strong{Sodium equivalent
concentration methods}).}
\item{correction.DMSO}{Specify the correction method for DMSO. Specify the
correction method for DMSO. Either \code{"ahs01"}, \code{"mus81"},
\code{"cul76"} or \code{"esc80"} (see \strong{DMSO corrections}).}
\item{correction.formamide}{Specify the correction method for formamide.
Specify the correction method for formamide Either \code{"bla96"} or
\code{"lincorr"} (see \strong{Formamide corrections}).}
}
\description{
R interface to the
\href{https://www.ebi.ac.uk/biomodels/tools/melting/}{MELTING 5 software} (Le
Novère, 2001; Dumousseau et al., 2012) for computation of enthalpy and entropy
of the helix-coil transition, and then the melting temperature of a nucleic
acid duplex.
}
\section{Mandatory arguments}{
The following are the arguments which are
mandatory for computation. \itemize{ \item \code{sequence} \item
\code{comp.sequence}: Mandatory if there are mismatches, inosine(s) or
hydroxyadenine(s) between the two strands. If not specified, it is computed
as the complement of \code{sequence}. Self-complementarity in
\code{sequence} is detected even though there may be (are) dangling end(s)
and \code{comp.sequence} is computed (see \strong{Self complementary
sequences}). \item \code{nucleic.acid.conc} \item \code{Na.conc, Mg.conc,
Tris.conc, K.conc}: At least one cation (Na, Mg, Tris, K) concentration is
mandatory, the other agents(dNTP, DMSO, formamide) are optional. \item
\code{hybridisation.type} }
}
\section{Hybridisation type options}{
The details of the possible options for
hybridisation type specified in the argument \code{hybridisation.type} are
as follows:
\tabular{lll}{ \strong{Option} \tab \strong{\code{Sequence}} \tab
\strong{\code{Complementary sequence}}\cr \code{dnadna} \tab DNA \tab DNA
\cr \code{rnarna} \tab RNA \tab RNA \cr \code{dnarna} \tab DNA \tab RNA \cr
\code{rnadna} \tab RNA \tab DNA \cr \code{mrnarna} \tab 2-o-methyl RNA \tab
RNA \cr \code{rnamrna} \tab RNA \tab 2-o-methyl RNA }
This parameter determines the nature of the sequences in the arguments
\code{sequence} and \code{comp.sequence}.
}
\section{Ion and agent concentrations}{
These values are used for different
correction functions which approximately adjusts for effects of these
ions(Na, Mg, Tris, K) and/or agents(dNTP, DMSO, formamide) on on
thermodynamic stability of nucleic acid duplexes. Their concentration limits
depends on the correction method used. All the concentrations must be in M,
except for the DMSO (\%) and formamide (\% or M depending on the correction
method). Note that Tris+ concentration is about half of the total tris
buffer concentration.
}
\section{Self complementary sequences}{
Self complementarity for perfect
matching sequences or sequences with dangling ends is detected
automatically. However it can be specified by the argument \code{self}.
}
\section{Correction factor for nucleic acid concentration}{
For self
complementary sequences (Auto detected or specified in \code{self}) it is 1.
Otherwise it is 4 if the both strands are present in equivalent amount and 1
if one strand is in excess.
}
\section{Approximative estimation formulas}{
The calculation is increasingly
incorrect when the length of the duplex decreases. Moreover, it does not
take into account nucleic acid concentration. \tabular{llll}{
\strong{Formula}\tab \strong{Type} \tab \strong{Limits.Remarks}\tab
\strong{Reference}\cr \code{ahs01}\tab DNA\tab No mismatch \tab von Ahsen et
al., 2001 \cr \code{che93}\tab DNA\tab No mismatch; Na=0, Mg=0.0015, \tab
Marmur and Doty, 1962\cr \tab\tab Tris=0.01, K=0.05 \tab\cr
\code{che93corr}\tab DNA\tab No mismatch; Na=0, Mg=0.0015, \tab Marmur and
Doty, 1962\cr \tab\tab Tris=0.01, K=0.05 \tab\cr \code{marschdot}\tab
DNA\tab No mismatch \tab Wetmur, 1991; Marmur and \cr \tab\tab \tab Doty,
1962; Chester and\cr \tab\tab \tab Marshak, 1993; Schildkraut \cr \tab\tab
\tab and Lifson, 1965; Wahl et\cr \tab\tab \tab al., 1987; Britten et al.,
\cr \tab\tab \tab 1974; Hall et al., 1980\cr \code{owe69}\tab DNA\tab No
mismatch \tab Owen et al., 1969; \cr \tab\tab \tab Frank-Kamenetskii, 1971;
\cr \tab\tab \tab Blake, 1996; Blake and \cr \tab\tab \tab Delcourt, 1998
\cr \code{san98}\tab DNA\tab No mismatch \tab SantaLucia, 1998; von Ahsen\cr
\tab\tab \tab et al., 2001 \cr \code{wetdna91}*\tab DNA\tab \tab Wetmur,
1991 \cr \code{wetrna91}*\tab RNA\tab \tab Wetmur, 1991 \cr
\code{wetdnarna91}* \tab DNA/RNA\tab \tab Wetmur, 1991 }
}
\section{Nearest neighbor models}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference}\cr
\code{all97}*\tab DNA\tab\tab Allawi and SantaLucia, 1997\cr
\code{tur06}*\tab 2'-O-MeRNA/\tab A sodium correction\tab Kierzek et al.,
2006 \cr \tab RNA\tab (\code{san04}) is \tab\cr \tab\tab automatically
applied to \tab\cr \tab\tab convert the entropy (Na =\tab\cr \tab\tab 0.1M)
into the entropy (Na = \tab\cr \tab\tab 1M). \tab\cr \code{bre86} \tab
DNA\tab\tab Breslauer et al., 1986 \cr \code{san04} \tab DNA\tab\tab
SantaLucia and Hicks, 2004 \cr \code{san96} \tab DNA\tab\tab SantaLucia et
al., 1996\cr \code{sug96} \tab DNA\tab\tab Sugimoto et al., 1996\cr
\code{tan04} \tab DNA\tab\tab Tanaka et al., 2004\cr \code{fre86} \tab
RNA\tab\tab Freier et al., 1986\cr \code{xia98}*\tab RNA\tab\tab Xia et al.,
1998 \cr \code{sug95}*\tab DNA/ \tab\tab SantaLucia et al., 1996\cr \tab
RNA\tab\tab }
}
\section{GU wobble base pairs effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{tur99}*\tab RNA\tab\tab Mathews et al., 1999 }
}
\section{Single mismatch effect}{
\tabular{llll}{ \strong{Model}\tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{allsanpey}* \tab DNA\tab \tab Allawi and SantaLucia, 1997;\cr \tab\tab
\tab Allawi and SantaLucia, 1998;\cr \tab\tab \tab Allawi and SantaLucia,
1998;\cr \tab\tab \tab Allawi and SantaLucia, \cr \tab\tab \tab 1998; Peyret
et al., 1999 \cr \code{tur06}\tab RNA\tab \tab Lu et al., 2006 \cr
\code{zno07}* \tab RNA\tab \tab Davis and Znosko, 2007\cr \code{zno08}\tab
RNA\tab At least one adjacent GU base \tab Davis and Znosko, 2008\cr
\tab\tab pair. \tab }
}
\section{Tandem mismatches effect}{
\tabular{llll}{ \strong{Model}\tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{allsanpey}* \tab DNA\tab Only GT mismatches and TA/TG \tab Allawi and
SantaLucia, 1997;\cr \tab\tab mismatches.\tab Allawi and SantaLucia,
1998;\cr \tab\tab\tab Allawi and SantaLucia, 1998;\cr \tab\tab\tab Allawi
and SantaLucia, \cr \tab\tab\tab 1998; Peyret et al., 1999 \cr \code{tur99}*
\tab RNA\tab No adjacent GU or UG base\tab Mathews et al., 1999\cr \tab\tab
pairs. \tab } Tandem mismatches are not taken into account by the
approximative mode. Note that not all the mismatched Crick's pairs have been
investigated.
}
\section{Single dangling end effect}{
\tabular{llll}{ \strong{Model}\tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{bom00}* \tab DNA\tab \tab Bommarito et al., 2000\cr \code{sugdna02}
\tab DNA\tab Only terminal poly A self \tab Ohmichi et al., 2002\cr \tab\tab
complementary sequences.\tab \cr \code{sugrna02} \tab RNA\tab Only terminal
poly A self \tab Ohmichi et al., 2002\cr \tab\tab complementary
sequences.\tab \cr \code{ser08}* \tab RNA\tab Only 3' UA, GU and UG \tab
Miller et al., 2008 \cr \tab\tab terminal base pairs only 5' \tab \cr
\tab\tab UG and GU terminal base \tab \cr \tab\tab pairs.\tab } Single
dangling ends are not taken into account by the approximative mode.
}
\section{Double dangling end effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{sugdna02}* \tab DNA\tab Only terminal poly A self\tab Ohmichi et al.,
2002\cr \tab\tab complementary sequences. \tab \cr \code{sugrna02}\tab
RNA\tab Only terminal poly A self\tab Ohmichi et al., 2002\cr \tab\tab
complementary sequences. \tab \cr \code{ser05} \tab RNA\tab Depends on the
available \tab O'Toole et al., 2005\cr \tab\tab thermodynamic parameters for
\tab \cr \tab\tab single dangling end. \tab \cr \code{ser06}*\tab
RNA\tab\tab O'Toole et al., 2006 } Double dangling ends are not taken into
account by the approximative mode.
}
\section{Long dangling end effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{sugdna02}* \tab DNA\tab Only terminal poly A self \tab Ohmichi et al.,
2002\cr \tab\tab complementary sequences.\tab \cr \code{sugrna02}* \tab
RNA\tab Only terminal poly A self \tab Ohmichi et al., 2002\cr \tab\tab
complementary sequences.\tab } Long dangling ends are not taken into account
by the approximative mode.
}
\section{Internal loop effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{san04}*\tab DNA\tab Missing asymmetry penalty. \tab SantaLucia and
Hicks, 2004\cr \tab\tab Not tested with experimental \tab \cr \tab\tab
results. \tab \cr \code{tur06} \tab RNA\tab Not tested with experimental
\tab Lu et al., 2006 \cr \tab\tab results. \tab \cr \code{zno07}*\tab
RNA\tab\tab Davis and Znosko, 2007 } Internal loops are not taken into
account by the approximative mode.
}
\section{Single bulge loop effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{tan04}*\tab DNA\tab \tab Tan and Chen, 2007\cr \code{san04} \tab
DNA\tab Missing closing AT penalty. \tab SantaLucia and Hicks, 2004\cr
\code{ser07} \tab RNA\tab Less reliable results. Some \tab Blose et al.,
2007\cr \tab\tab missing parameters. \tab \cr \code{tur06}*\tab RNA\tab \tab
Lu et al., 2006 } Internal loops are not taken into account by the
approximative mode.
}
\section{Long bulge loop effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{san04}*\tab DNA\tab Missing closing AT penalty.\tab SantaLucia and
Hicks, 2004\cr \code{tur06}*\tab RNA\tab Not tested with experimental \tab
Lu et al., 2006 \cr \tab\tab results. \tab } Long bulge loops are not taken
into account by the approximative mode.
}
\section{CNG repeats effect}{
\tabular{llll}{ \strong{Model} \tab \strong{Type}
\tab \strong{Limits.Remarks}\tab \strong{Reference}\cr \code{bro05}*\tab
RNA\tab Self complementary sequences. \tab Broda et al., 2005 \cr \tab\tab 2
to 7 CNG repeats. \tab } CNG repeats are not taken into account by the
approximative mode. The contribution of CNG repeats to the thermodynamic of
helix-coil transition can be computed only for 2 to 7 CNG repeats. N
represents a single mismatch of type N/N.
}
\section{Inosine bases effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{san05}*\tab DNA\tab Missing parameters for tandem \tab Watkins and
SantaLucia, 2005\cr \tab\tab base pairs containing inosine \tab \cr \tab\tab
bases.\tab \cr \code{zno07}*\tab RNA\tab Only IU base pairs. \tab Wright et
al., 2007 }
}
\section{Hydroxyadenine bases effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference}\cr
\code{sug01}*\tab DNA\tab Only 5' GA*C 3'and 5' TA*A 3' \tab Kawakami et
al., 2001\cr \tab\tab contexts. \tab } Hydroxyadenine bases (A*) are not
taken into account by the approximative mode.
}
\section{Azobenzenes effect effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{asa05}*\tab DNA\tab Less reliable results when \tab Asanuma et al.,
2005\cr \tab\tab the number of cis azobenzene \tab \cr \tab\tab increases.
\tab } Azobenzenes (X_T for trans azobenzenes and X_C for cis azobenzenes)
are not taken into account by the approximative mode.
}
\section{Locked nucleic acids effect}{
\tabular{llll}{ \strong{Model} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{mct04}*\tab DNA\tab\tab McTigue et al., 2004 } Locked nucleic acids
(AL, GL, TL and CL) are not taken into account by the approximative mode.
}
\section{Sodium corrections}{
\tabular{llll}{ \strong{Correcion} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference} \cr
\code{ahs01} \tab DNA\tab Na>0.\tab von Ahsen et al., 2001\cr
\code{schlif}\tab DNA\tab Na>=0.07; Na<=0.12.\tab Schildkraut and Lifson,
1965\cr \code{tanna06} \tab DNA\tab Na>=0.001; Na<=1.\tab Tan and Chen,
2006\cr \code{tanna07}*\tab RNA\tab Na>=0.003; Na<=1.\tab Tan and Chen,
2007\cr \tab or \tab\tab \cr \tab 2'-O-MeRNA/RNA \tab\tab \cr \code{wet91}
\tab RNA, \tab Na>0.\tab Wetmur, 1991\cr \tab DNA\tab\tab \cr \tab
and\tab\tab \cr \tab RNA/DNA\tab\tab \cr \code{kam71} \tab DNA\tab Na>0;
Na>=0.069; Na<=1.02. \tab Frank-Kamenetskii, 1971 \cr \code{marschdot} \tab
DNA\tab Na>=0.069; Na<=1.02. \tab Marmur and Doty, 1962; Blake\cr
\tab\tab\tab and Delcourt, 1998\cr \code{owc1904} \tab DNA\tab Na>0.\tab
Owczarzy et al., 2004 \cr \code{owc2004} \tab DNA\tab Na>0.\tab Owczarzy et
al., 2004 \cr \code{owc2104} \tab DNA\tab Na>0.\tab Owczarzy et al., 2004
\cr \code{owc2204}*\tab DNA\tab Na>0.\tab Owczarzy et al., 2004 \cr
\code{san96} \tab DNA\tab Na>=0.1. \tab SantaLucia et al., 1996 \cr
\code{san04} \tab DNA\tab Na>=0.05; Na<=1.1; \tab SantaLucia and Hicks,
2004; \cr \tab\tab Oligonucleotides inferior to \tab SantaLucia, 1998\cr
\tab\tab 16 bases.\tab }
}
\section{Magnesium corrections}{
\tabular{llll}{ \strong{Correcion} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference}\cr
\code{owcmg08}*\tab DNA\tab Mg>=0.0005; Mg<=0.6.\tab Owczarzy et al.,
2008\cr \code{tanmg06} \tab DNA\tab Mg>=0.0001; Mg<=1; Oligomer \tab Tan and
Chen, 2006 \cr \tab\tab length superior to 6 base \tab\cr \tab\tab
pairs.\tab\cr \code{tanmg07}*\tab RNA\tab Mg>=0.1; Mg<=0.3. \tab Tan and
Chen, 2007 }
}
\section{Mixed Sodium and Magnesium corrections}{
\tabular{llll}{
\strong{Correcion} \tab \strong{Type} \tab \strong{Limits.Remarks} \tab
\strong{Reference}\cr \code{owcmix08}* \tab DNA\tab Mg>=0.0005; Mg<=0.6;
\tab Owczarzy et al., 2008\cr \tab\tab Na+K+Tris/2>0. \tab\cr
\code{tanmix07}\tab DNA\tab Mg>=0.1; Mg<=0.3;\tab Tan and Chen, 2007 \cr
\tab and\tab Na+K+Tris/2>=0.1;\tab\cr \tab RNA\tab Na+K+Tris/2<=0.3.\tab }
}
\section{Sodium equivalent concentration methods}{
\tabular{llll}{
\strong{Correcion} \tab \strong{Type} \tab \strong{Limits.Remarks} \tab
\strong{Reference} \cr \code{ahs01}*\tab DNA\tab\tab von Ahsen et al.,
2001\cr \code{mit96} \tab DNA\tab\tab Mitsuhashi, 1996\cr \code{pey00} \tab
DNA\tab\tab Peyret, 2000 }
}
\section{DMSO corrections}{
\tabular{llll}{ \strong{Correcion} \tab
\strong{Type} \tab \strong{Limits.Remarks} \tab \strong{Reference}\cr
\code{ahs01} \tab DNA\tab Not tested with experimental \tab von Ahsen et
al., 2001 \cr \tab\tab results. \tab\cr \code{cul76} \tab DNA\tab Not tested
with experimental \tab Cullen and Bick, 1976\cr \tab\tab results. \tab\cr
\code{esc80} \tab DNA\tab Not tested with experimental \tab Escara and
Hutton, 1980\cr \tab\tab results. \tab\cr \code{mus80} \tab DNA\tab Not
tested with experimental \tab Musielski et al., 1981 \cr \tab\tab results.
\tab }
}
\section{Formamide corrections}{
\tabular{llll}{ \strong{Correcion} \tab
\strong{Type} \tab \strong{Limits.Remarks}\tab \strong{Reference} \cr
\code{bla96} \tab DNA\tab With formamide concentration\tab Blake, 1996 \cr
\tab\tab in mol/L. \tab \cr \code{lincorr} \tab DNA\tab With a % of
formamide volume. \tab McConaughy et al., 1969;\cr \tab\tab \tab Record,
1967; Casey and \cr \tab\tab \tab Davidson, 1977; Hutton, 1977 }
}
\examples{
}
\references{
\insertRef{marmur_determination_1962}{rmelting}
\insertRef{schildkraut_dependence_1965}{rmelting}
\insertRef{record_electrostatic_1967}{rmelting}
\insertRef{mcconaughy_nucleic_1969}{rmelting}
\insertRef{owen_determination_1969}{rmelting}
\insertRef{frank-kamenetskii_simplification_1971}{rmelting}
\insertRef{britten_analysis_1974}{rmelting}
\insertRef{cullen_thermal_1976}{rmelting}
\insertRef{hutton_renaturation_1977}{rmelting}
\insertRef{casey_rates_1977}{rmelting}
\insertRef{hall_evolution_1980}{rmelting}
\insertRef{escara_thermal_1980}{rmelting}
\insertRef{musielski_influence_1981}{rmelting}
\insertRef{freier_improved_1986}{rmelting}
\insertRef{breslauer_predicting_1986}{rmelting}
\insertRef{wahl_molecular_1987}{rmelting}
\insertRef{wetmur_dna_1991}{rmelting}
\insertRef{chester_dimethyl_1993}{rmelting}
\insertRef{sugimoto_rna/dna_1994}{rmelting}
\insertRef{sugimoto_thermodynamic_1995}{rmelting}
\insertRef{santalucia_improved_1996}{rmelting}
\insertRef{sugimoto_improved_1996}{rmelting}
\insertRef{blake_thermodynamic_1996}{rmelting}
\insertRef{blake_denaturation_1996}{rmelting}
\insertRef{mitsuhashi_technical_1996}{rmelting}
\insertRef{allawi_thermodynamics_1997}{rmelting}
\insertRef{santalucia_unified_1998}{rmelting}
\insertRef{xia_thermodynamic_1998}{rmelting}
\insertRef{allawi_thermodynamics_1998}{rmelting}
\insertRef{blake_thermal_1998}{rmelting}
\insertRef{allawi_nearest_1998}{rmelting}
\insertRef{allawi_nearest-neighbor_1998}{rmelting}
\insertRef{mathews_expanded_1999}{rmelting}
\insertRef{peyret_nearest-neighbor_1999}{rmelting}
\insertRef{peyret_prediction_2000}{rmelting}
\insertRef{bommarito_thermodynamic_2000}{rmelting}
\insertRef{kawakami_thermodynamic_2001}{rmelting}
\insertRef{von_ahsen_oligonucleotide_2001}{rmelting}
\insertRef{le_novere_melting_2001}{rmelting}
\insertRef{ohmichi_long_2002}{rmelting}
\insertRef{santalucia_thermodynamics_2004}{rmelting}
\insertRef{tanaka_thermodynamic_2004}{rmelting}
\insertRef{mctigue_sequence-dependent_2004}{rmelting}
\insertRef{owczarzy_effects_2004}{rmelting}
\insertRef{broda_thermodynamic_2005}{rmelting}
\insertRef{watkins_nearest-neighbor_2005}{rmelting}
\insertRef{asanuma_clear-cut_2005}{rmelting}
\insertRef{otoole_stability_2005}{rmelting}
\insertRef{lu_set_2006}{rmelting}
\insertRef{kierzek_nearest_2006}{rmelting}
\insertRef{tan_nucleic_2006}{rmelting}
\insertRef{otoole_comprehensive_2006}{rmelting}
\insertRef{tan_rna_2007}{rmelting}
\insertRef{wright_nearest_2007}{rmelting}
\insertRef{davis_thermodynamic_2007}{rmelting}
\insertRef{blose_non-nearest-neighbor_2007}{rmelting}
\insertRef{badhwar_thermodynamic_2007}{rmelting}
\insertRef{davis_thermodynamic_2008}{rmelting}
\insertRef{miller_thermodynamic_2008}{rmelting}
\insertRef{owczarzy_predicting_2008}{rmelting}
\insertRef{dumousseau_melting_2012}{rmelting}
}