forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 2
/
expression.go
335 lines (292 loc) · 10.4 KB
/
expression.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
goJSON "encoding/json"
"fmt"
"github.com/juju/errors"
"github.com/pingcap/tidb/ast"
"github.com/pingcap/tidb/model"
"github.com/pingcap/tidb/mysql"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/terror"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/types/json"
)
// These are byte flags used for `HashCode()`.
const (
constantFlag byte = 0
columnFlag byte = 1
scalarFunctionFlag byte = 3
)
// EvalAstExpr evaluates ast expression directly.
var EvalAstExpr func(ctx sessionctx.Context, expr ast.ExprNode) (types.Datum, error)
// Expression represents all scalar expression in SQL.
type Expression interface {
fmt.Stringer
goJSON.Marshaler
// Eval evaluates an expression through a row.
Eval(row types.Row) (types.Datum, error)
// EvalInt returns the int64 representation of expression.
EvalInt(ctx sessionctx.Context, row types.Row) (val int64, isNull bool, err error)
// EvalReal returns the float64 representation of expression.
EvalReal(ctx sessionctx.Context, row types.Row) (val float64, isNull bool, err error)
// EvalString returns the string representation of expression.
EvalString(ctx sessionctx.Context, row types.Row) (val string, isNull bool, err error)
// EvalDecimal returns the decimal representation of expression.
EvalDecimal(ctx sessionctx.Context, row types.Row) (val *types.MyDecimal, isNull bool, err error)
// EvalTime returns the DATE/DATETIME/TIMESTAMP representation of expression.
EvalTime(ctx sessionctx.Context, row types.Row) (val types.Time, isNull bool, err error)
// EvalDuration returns the duration representation of expression.
EvalDuration(ctx sessionctx.Context, row types.Row) (val types.Duration, isNull bool, err error)
// EvalJSON returns the JSON representation of expression.
EvalJSON(ctx sessionctx.Context, row types.Row) (val json.BinaryJSON, isNull bool, err error)
// GetType gets the type that the expression returns.
GetType() *types.FieldType
// Clone copies an expression totally.
Clone() Expression
// Equal checks whether two expressions are equal.
Equal(ctx sessionctx.Context, e Expression) bool
// IsCorrelated checks if this expression has correlated key.
IsCorrelated() bool
// Decorrelate try to decorrelate the expression by schema.
Decorrelate(schema *Schema) Expression
// ResolveIndices resolves indices by the given schema.
ResolveIndices(schema *Schema)
// ExplainInfo returns operator information to be explained.
ExplainInfo() string
// HashCode creates the hashcode for expression which can be used to identify itself from other expression.
// It generated as the following:
// Constant: ConstantFlag+encoded value
// Column: ColumnFlag+encoded value
// ScalarFunction: SFFlag+encoded function name + encoded arg_1 + encoded arg_2 + ...
HashCode(sc *stmtctx.StatementContext) []byte
}
// CNFExprs stands for a CNF expression.
type CNFExprs []Expression
// Clone clones itself.
func (e CNFExprs) Clone() CNFExprs {
cnf := make(CNFExprs, 0, len(e))
for _, expr := range e {
cnf = append(cnf, expr.Clone())
}
return cnf
}
// EvalBool evaluates expression list to a boolean value.
func EvalBool(ctx sessionctx.Context, exprList CNFExprs, row types.Row) (bool, error) {
for _, expr := range exprList {
data, err := expr.Eval(row)
if err != nil {
return false, errors.Trace(err)
}
if data.IsNull() {
return false, nil
}
i, err := data.ToBool(ctx.GetSessionVars().StmtCtx)
if err != nil {
return false, errors.Trace(err)
}
if i == 0 {
return false, nil
}
}
return true, nil
}
// composeConditionWithBinaryOp composes condition with binary operator into a balance deep tree, which benefits a lot for pb decoder/encoder.
func composeConditionWithBinaryOp(ctx sessionctx.Context, conditions []Expression, funcName string) Expression {
length := len(conditions)
if length == 0 {
return nil
}
if length == 1 {
return conditions[0]
}
expr := NewFunctionInternal(ctx, funcName,
types.NewFieldType(mysql.TypeTiny),
composeConditionWithBinaryOp(ctx, conditions[:length/2], funcName),
composeConditionWithBinaryOp(ctx, conditions[length/2:], funcName))
return expr
}
// ComposeCNFCondition composes CNF items into a balance deep CNF tree, which benefits a lot for pb decoder/encoder.
func ComposeCNFCondition(ctx sessionctx.Context, conditions ...Expression) Expression {
return composeConditionWithBinaryOp(ctx, conditions, ast.LogicAnd)
}
// ComposeDNFCondition composes DNF items into a balance deep DNF tree.
func ComposeDNFCondition(ctx sessionctx.Context, conditions ...Expression) Expression {
return composeConditionWithBinaryOp(ctx, conditions, ast.LogicOr)
}
func extractBinaryOpItems(conditions *ScalarFunction, funcName string) []Expression {
var ret []Expression
for _, arg := range conditions.GetArgs() {
if sf, ok := arg.(*ScalarFunction); ok && sf.FuncName.L == funcName {
ret = append(ret, extractBinaryOpItems(sf, funcName)...)
} else {
ret = append(ret, arg)
}
}
return ret
}
// FlattenDNFConditions extracts DNF expression's leaf item.
// e.g. or(or(a=1, a=2), or(a=3, a=4)), we'll get [a=1, a=2, a=3, a=4].
func FlattenDNFConditions(DNFCondition *ScalarFunction) []Expression {
return extractBinaryOpItems(DNFCondition, ast.LogicOr)
}
// FlattenCNFConditions extracts CNF expression's leaf item.
// e.g. and(and(a>1, a>2), and(a>3, a>4)), we'll get [a>1, a>2, a>3, a>4].
func FlattenCNFConditions(CNFCondition *ScalarFunction) []Expression {
return extractBinaryOpItems(CNFCondition, ast.LogicAnd)
}
// Assignment represents a set assignment in Update, such as
// Update t set c1 = hex(12), c2 = c3 where c2 = 1
type Assignment struct {
Col *Column
Expr Expression
}
// VarAssignment represents a variable assignment in Set, such as set global a = 1.
type VarAssignment struct {
Name string
Expr Expression
IsDefault bool
IsGlobal bool
IsSystem bool
ExtendValue *Constant
}
// splitNormalFormItems split CNF(conjunctive normal form) like "a and b and c", or DNF(disjunctive normal form) like "a or b or c"
func splitNormalFormItems(onExpr Expression, funcName string) []Expression {
switch v := onExpr.(type) {
case *ScalarFunction:
if v.FuncName.L == funcName {
var ret []Expression
for _, arg := range v.GetArgs() {
ret = append(ret, splitNormalFormItems(arg, funcName)...)
}
return ret
}
}
return []Expression{onExpr}
}
// SplitCNFItems splits CNF items.
// CNF means conjunctive normal form, e.g. "a and b and c".
func SplitCNFItems(onExpr Expression) []Expression {
return splitNormalFormItems(onExpr, ast.LogicAnd)
}
// SplitDNFItems splits DNF items.
// DNF means disjunctive normal form, e.g. "a or b or c".
func SplitDNFItems(onExpr Expression) []Expression {
return splitNormalFormItems(onExpr, ast.LogicOr)
}
// EvaluateExprWithNull sets columns in schema as null and calculate the final result of the scalar function.
// If the Expression is a non-constant value, it means the result is unknown.
func EvaluateExprWithNull(ctx sessionctx.Context, schema *Schema, expr Expression) Expression {
switch x := expr.(type) {
case *ScalarFunction:
args := make([]Expression, len(x.GetArgs()))
for i, arg := range x.GetArgs() {
args[i] = EvaluateExprWithNull(ctx, schema, arg)
}
return NewFunctionInternal(ctx, x.FuncName.L, types.NewFieldType(mysql.TypeTiny), args...)
case *Column:
if !schema.Contains(x) {
return x
}
return &Constant{Value: types.Datum{}, RetType: types.NewFieldType(mysql.TypeNull)}
case *Constant:
if x.DeferredExpr != nil {
return FoldConstant(x)
}
}
return expr.Clone()
}
// TableInfo2Schema converts table info to schema with empty DBName.
func TableInfo2Schema(tbl *model.TableInfo) *Schema {
return TableInfo2SchemaWithDBName(model.CIStr{}, tbl)
}
// TableInfo2SchemaWithDBName converts table info to schema.
func TableInfo2SchemaWithDBName(dbName model.CIStr, tbl *model.TableInfo) *Schema {
cols := ColumnInfos2ColumnsWithDBName(dbName, tbl.Name, tbl.Columns)
keys := make([]KeyInfo, 0, len(tbl.Indices)+1)
for _, idx := range tbl.Indices {
if !idx.Unique || idx.State != model.StatePublic {
continue
}
ok := true
newKey := make([]*Column, 0, len(idx.Columns))
for _, idxCol := range idx.Columns {
find := false
for i, col := range tbl.Columns {
if idxCol.Name.L == col.Name.L {
if !mysql.HasNotNullFlag(col.Flag) {
break
}
newKey = append(newKey, cols[i])
find = true
break
}
}
if !find {
ok = false
break
}
}
if ok {
keys = append(keys, newKey)
}
}
if tbl.PKIsHandle {
for i, col := range tbl.Columns {
if mysql.HasPriKeyFlag(col.Flag) {
keys = append(keys, KeyInfo{cols[i]})
break
}
}
}
schema := NewSchema(cols...)
schema.SetUniqueKeys(keys)
return schema
}
// ColumnInfos2ColumnsWithDBName converts a slice of ColumnInfo to a slice of Column.
func ColumnInfos2ColumnsWithDBName(dbName, tblName model.CIStr, colInfos []*model.ColumnInfo) []*Column {
columns := make([]*Column, 0, len(colInfos))
for i, col := range colInfos {
if col.State != model.StatePublic {
continue
}
newCol := &Column{
ColName: col.Name,
TblName: tblName,
DBName: dbName,
RetType: &col.FieldType,
Position: i,
Index: col.Offset,
}
columns = append(columns, newCol)
}
return columns
}
// NewValuesFunc creates a new values function.
func NewValuesFunc(ctx sessionctx.Context, offset int, retTp *types.FieldType) *ScalarFunction {
fc := &valuesFunctionClass{baseFunctionClass{ast.Values, 0, 0}, offset, retTp}
bt, err := fc.getFunction(ctx, nil)
terror.Log(errors.Trace(err))
return &ScalarFunction{
FuncName: model.NewCIStr(ast.Values),
RetType: retTp,
Function: bt,
}
}
// IsBinaryLiteral checks whether an expression is a binary literal
func IsBinaryLiteral(expr Expression) bool {
con, ok := expr.(*Constant)
return ok && con.Value.Kind() == types.KindBinaryLiteral
}