Macaw is a tool that lineage-types MTB samples and identifies strain mixes in WGS data sets.
Quick-run recipe:
java -jar macaw.jar -o <output.txt> <input.bam>
python macaw-utilities.py interpret -m <output.txt> -o <result>
Versioned production releases: https://github.com/AbeelLab/macaw/releases
Nightly development builds: http://www.abeellab.org/jenkins/macaw/
Source-code: https://github.com/AbeelLab/macaw.git
Submit bugs and features requests: https://github.com/AbeelLab/macaw/issues
Usage: java -jar macaw.jar [options] -o <output> <file>...
Required arguments:
-o <output> | --output <output>
File where you want the output to be written
<file>
Input files (BAM)
Optional arguments:
--marker <value>
File containing marker sequences. This file has to be a multi-fasta file with the headers indicating the name of the markers.
-t <value> | --threshold <value>
Threshold to determine absence or presence of a marker (default=5)
Usage: python macaw-utilities.py interpret -m <marker detection file> -o <output>
Required arguments:
-m <marker detection file> | --macaw <marker detection file>
File with absence/presence as determined by macaw.jar
-o <output> | --output <output>
Output file prefix (.macaw.interpreted automatically appended)
Usage: python macaw-utilities.py condense -d <input file directory> -o <output>
Required arguments:
-d <input file directory> | --directory <input file directory>
Directory with all .interpreted.macaw files in it
-o <output> | --output <output>
Output file
- Python 2.7 + NumPy + SciPy
- Java 1.7+