forked from ipfs/kubo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
polynomials.go
278 lines (228 loc) · 5.13 KB
/
polynomials.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package chunker
import (
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"strconv"
)
// Pol is a polynomial from F_2[X].
type Pol uint64
// Add returns x+y.
func (x Pol) Add(y Pol) Pol {
r := Pol(uint64(x) ^ uint64(y))
return r
}
// mulOverflows returns true if the multiplication would overflow uint64.
// Code by Rob Pike, see
// https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ
func mulOverflows(a, b Pol) bool {
if a <= 1 || b <= 1 {
return false
}
c := a.mul(b)
d := c.Div(b)
if d != a {
return true
}
return false
}
func (x Pol) mul(y Pol) Pol {
if x == 0 || y == 0 {
return 0
}
var res Pol
for i := 0; i <= y.Deg(); i++ {
if (y & (1 << uint(i))) > 0 {
res = res.Add(x << uint(i))
}
}
return res
}
// Mul returns x*y. When an overflow occurs, Mul panics.
func (x Pol) Mul(y Pol) Pol {
if mulOverflows(x, y) {
panic("multiplication would overflow uint64")
}
return x.mul(y)
}
// Deg returns the degree of the polynomial x. If x is zero, -1 is returned.
func (x Pol) Deg() int {
// the degree of 0 is -1
if x == 0 {
return -1
}
var mask Pol = (1 << 63)
for i := 63; i >= 0; i-- {
// test if bit i is set
if x&mask > 0 {
// this is the degree of x
return i
}
mask >>= 1
}
// fall-through, return -1
return -1
}
// String returns the coefficients in hex.
func (x Pol) String() string {
return "0x" + strconv.FormatUint(uint64(x), 16)
}
// Expand returns the string representation of the polynomial x.
func (x Pol) Expand() string {
if x == 0 {
return "0"
}
s := ""
for i := x.Deg(); i > 1; i-- {
if x&(1<<uint(i)) > 0 {
s += fmt.Sprintf("+x^%d", i)
}
}
if x&2 > 0 {
s += "+x"
}
if x&1 > 0 {
s += "+1"
}
return s[1:]
}
// DivMod returns x / d = q, and remainder r,
// see https://en.wikipedia.org/wiki/Division_algorithm
func (x Pol) DivMod(d Pol) (Pol, Pol) {
if x == 0 {
return 0, 0
}
if d == 0 {
panic("division by zero")
}
D := d.Deg()
diff := x.Deg() - D
if diff < 0 {
return 0, x
}
var q Pol
for diff >= 0 {
m := d << uint(diff)
q |= (1 << uint(diff))
x = x.Add(m)
diff = x.Deg() - D
}
return q, x
}
// Div returns the integer division result x / d.
func (x Pol) Div(d Pol) Pol {
q, _ := x.DivMod(d)
return q
}
// Mod returns the remainder of x / d
func (x Pol) Mod(d Pol) Pol {
_, r := x.DivMod(d)
return r
}
// I really dislike having a function that does not terminate, so specify a
// really large upper bound for finding a new irreducible polynomial, and
// return an error when no irreducible polynomial has been found within
// randPolMaxTries.
const randPolMaxTries = 1e6
// RandomPolynomial returns a new random irreducible polynomial of degree 53
// (largest prime number below 64-8). There are (2^53-2/53) irreducible
// polynomials of degree 53 in F_2[X], c.f. Michael O. Rabin (1981):
// "Fingerprinting by Random Polynomials", page 4. If no polynomial could be
// found in one million tries, an error is returned.
func RandomPolynomial() (Pol, error) {
for i := 0; i < randPolMaxTries; i++ {
var f Pol
// choose polynomial at random
err := binary.Read(rand.Reader, binary.LittleEndian, &f)
if err != nil {
return 0, err
}
// mask away bits above bit 53
f &= Pol((1 << 54) - 1)
// set highest and lowest bit so that the degree is 53 and the
// polynomial is not trivially reducible
f |= (1 << 53) | 1
// test if f is irreducible
if f.Irreducible() {
return f, nil
}
}
// If this is reached, we haven't found an irreducible polynomial in
// randPolMaxTries. This error is very unlikely to occur.
return 0, errors.New("unable to find new random irreducible polynomial")
}
// GCD computes the Greatest Common Divisor x and f.
func (x Pol) GCD(f Pol) Pol {
if f == 0 {
return x
}
if x == 0 {
return f
}
if x.Deg() < f.Deg() {
x, f = f, x
}
return f.GCD(x.Mod(f))
}
// Irreducible returns true iff x is irreducible over F_2. This function
// uses Ben Or's reducibility test.
//
// For details see "Tests and Constructions of Irreducible Polynomials over
// Finite Fields".
func (x Pol) Irreducible() bool {
for i := 1; i <= x.Deg()/2; i++ {
if x.GCD(qp(uint(i), x)) != 1 {
return false
}
}
return true
}
// MulMod computes x*f mod g
func (x Pol) MulMod(f, g Pol) Pol {
if x == 0 || f == 0 {
return 0
}
var res Pol
for i := 0; i <= f.Deg(); i++ {
if (f & (1 << uint(i))) > 0 {
a := x
for j := 0; j < i; j++ {
a = a.Mul(2).Mod(g)
}
res = res.Add(a).Mod(g)
}
}
return res
}
// qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the
// reducibility test.
func qp(p uint, g Pol) Pol {
num := (1 << p)
i := 1
// start with x
res := Pol(2)
for i < num {
// repeatedly square res
res = res.MulMod(res, g)
i *= 2
}
// add x
return res.Add(2).Mod(g)
}
func (p Pol) MarshalJSON() ([]byte, error) {
buf := strconv.AppendUint([]byte{'"'}, uint64(p), 16)
buf = append(buf, '"')
return buf, nil
}
func (p *Pol) UnmarshalJSON(data []byte) error {
if len(data) < 2 {
return errors.New("invalid string for polynomial")
}
n, err := strconv.ParseUint(string(data[1:len(data)-1]), 16, 64)
if err != nil {
return err
}
*p = Pol(n)
return nil
}