Skip to content

automl/DACBench

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DACBench is a benchmark library for Dynamic Algorithm Configuration. Its focus is on reproducibility and comparability of different DAC methods as well as easy analysis of the optimization process.

You can try out the basics of DACBench in Colab here without any installation. Our examples in the repository should give you an impression of what you can do with DACBench and our documentation should answer any questions you might have.

You can find baseline data of static and random policies for a given version of DACBench on our project site.

Installation

We recommend installing DACBench in a virtual environment:

conda create -n dacbench python=3.10
conda activate dacbench
pip install dacbench

Instead of using pip, you can also use the GitHub repo directly:

git clone https://github.com/automl/DACBench.git
cd DACBench
git submodule update --init --recursive
pip install .

This command installs the base version of DACBench including the three small surrogate benchmarks and the option to install the FastDownward benchmark. For any other benchmark, you may use a singularity container as provided by us (see next section) or install it as an additional dependency. As an example, to install the SGDBenchmark, run:

pip install dacbench[sgd]

To use FastDownward, you first need to build the solver itself. We recommend using cmake version 3.10.2. The command is:

./dacbench/envs/rl-plan/fast-downward/build.py

You can also install all dependencies like so:

pip install dacbench[all,dev,example,docs]

Containerized Benchmarks

DACBench can run containerized versions of Benchmarks using Singularity containers to isolate their dependencies and make reproducible Singularity images.

Building a Container

For writing your own recipe to build a Container, you can refer to dacbench/container/singularity_recipes/recipe_template

Install Singularity and run the following to build the (in this case) cma container

cd dacbench/container/singularity_recipes
sudo singularity build cma cma.def

Citing DACBench

If you use DACBench in your research or application, please cite us:

@inproceedings{eimer-ijcai21,
  author    = {T. Eimer and A. Biedenkapp and M. Reimer and S. Adriaensen and F. Hutter and M. Lindauer},
  title     = {DACBench: A Benchmark Library for Dynamic Algorithm Configuration},
  booktitle = {Proceedings of the Thirtieth International Joint Conference on
               Artificial Intelligence ({IJCAI}'21)},
  year      = {2021},
  month     = aug,
  publisher = {ijcai.org},