forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
density.go
760 lines (702 loc) · 25.8 KB
/
density.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package e2e
import (
"fmt"
"math"
"os"
"sort"
"strconv"
"sync"
"time"
"k8s.io/kubernetes/pkg/api"
"k8s.io/kubernetes/pkg/api/resource"
"k8s.io/kubernetes/pkg/api/unversioned"
"k8s.io/kubernetes/pkg/client/cache"
client "k8s.io/kubernetes/pkg/client/unversioned"
controllerframework "k8s.io/kubernetes/pkg/controller/framework"
"k8s.io/kubernetes/pkg/fields"
"k8s.io/kubernetes/pkg/labels"
"k8s.io/kubernetes/pkg/runtime"
"k8s.io/kubernetes/pkg/util/sets"
utiluuid "k8s.io/kubernetes/pkg/util/uuid"
"k8s.io/kubernetes/pkg/watch"
"k8s.io/kubernetes/test/e2e/framework"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const (
MinSaturationThreshold = 2 * time.Minute
MinPodsPerSecondThroughput = 8
)
// Maximum container failures this test tolerates before failing.
var MaxContainerFailures = 0
type DensityTestConfig struct {
Configs []framework.RCConfig
Client *client.Client
Namespace string
PollInterval time.Duration
PodCount int
Timeout time.Duration
}
func density30AddonResourceVerifier(numNodes int) map[string]framework.ResourceConstraint {
var apiserverMem uint64
var controllerMem uint64
var schedulerMem uint64
apiserverCPU := math.MaxFloat32
apiserverMem = math.MaxUint64
controllerCPU := math.MaxFloat32
controllerMem = math.MaxUint64
schedulerCPU := math.MaxFloat32
schedulerMem = math.MaxUint64
framework.Logf("Setting resource constraings for provider: %s", framework.TestContext.Provider)
if framework.ProviderIs("kubemark") {
if numNodes <= 5 {
apiserverCPU = 0.25
apiserverMem = 150 * (1024 * 1024)
controllerCPU = 0.1
controllerMem = 100 * (1024 * 1024)
schedulerCPU = 0.05
schedulerMem = 50 * (1024 * 1024)
} else if numNodes <= 100 {
apiserverCPU = 1.5
apiserverMem = 1500 * (1024 * 1024)
controllerCPU = 0.75
controllerMem = 750 * (1024 * 1024)
schedulerCPU = 0.75
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 500 {
apiserverCPU = 2.5
apiserverMem = 3400 * (1024 * 1024)
controllerCPU = 1.3
controllerMem = 1100 * (1024 * 1024)
schedulerCPU = 1.5
schedulerMem = 500 * (1024 * 1024)
} else if numNodes <= 1000 {
apiserverCPU = 4
apiserverMem = 4000 * (1024 * 1024)
controllerCPU = 3
controllerMem = 2000 * (1024 * 1024)
schedulerCPU = 1.5
schedulerMem = 750 * (1024 * 1024)
}
} else {
if numNodes <= 100 {
// TODO: Investigate higher apiserver consumption and
// potentially revert to 1.5cpu and 1.3GB - see #30871
apiserverCPU = 1.8
apiserverMem = 2200 * (1024 * 1024)
controllerCPU = 0.5
controllerMem = 300 * (1024 * 1024)
schedulerCPU = 0.4
schedulerMem = 150 * (1024 * 1024)
}
}
constraints := make(map[string]framework.ResourceConstraint)
constraints["fluentd-elasticsearch"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 250 * (1024 * 1024),
}
constraints["elasticsearch-logging"] = framework.ResourceConstraint{
CPUConstraint: 2,
// TODO: bring it down to 750MB again, when we lower Kubelet verbosity level. I.e. revert #19164
MemoryConstraint: 5000 * (1024 * 1024),
}
constraints["heapster"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 1800 * (1024 * 1024),
}
constraints["kibana-logging"] = framework.ResourceConstraint{
CPUConstraint: 0.2,
MemoryConstraint: 100 * (1024 * 1024),
}
constraints["kube-proxy"] = framework.ResourceConstraint{
CPUConstraint: 0.1,
MemoryConstraint: 20 * (1024 * 1024),
}
constraints["l7-lb-controller"] = framework.ResourceConstraint{
CPUConstraint: 0.1,
MemoryConstraint: 60 * (1024 * 1024),
}
constraints["influxdb"] = framework.ResourceConstraint{
CPUConstraint: 2,
MemoryConstraint: 500 * (1024 * 1024),
}
constraints["kube-apiserver"] = framework.ResourceConstraint{
CPUConstraint: apiserverCPU,
MemoryConstraint: apiserverMem,
}
constraints["kube-controller-manager"] = framework.ResourceConstraint{
CPUConstraint: controllerCPU,
MemoryConstraint: controllerMem,
}
constraints["kube-scheduler"] = framework.ResourceConstraint{
CPUConstraint: schedulerCPU,
MemoryConstraint: schedulerMem,
}
return constraints
}
func logPodStartupStatus(c *client.Client, expectedPods int, ns string, observedLabels map[string]string, period time.Duration, stopCh chan struct{}) {
label := labels.SelectorFromSet(labels.Set(observedLabels))
podStore := framework.NewPodStore(c, ns, label, fields.Everything())
defer podStore.Stop()
ticker := time.NewTicker(period)
defer ticker.Stop()
for {
select {
case <-ticker.C:
pods := podStore.List()
startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods)
startupStatus.Print("Density")
case <-stopCh:
pods := podStore.List()
startupStatus := framework.ComputeRCStartupStatus(pods, expectedPods)
startupStatus.Print("Density")
return
}
}
}
// runDensityTest will perform a density test and return the time it took for
// all pods to start
func runDensityTest(dtc DensityTestConfig) time.Duration {
defer GinkgoRecover()
// Create a listener for events.
// eLock is a lock protects the events
var eLock sync.Mutex
events := make([](*api.Event), 0)
_, controller := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
return dtc.Client.Events(dtc.Namespace).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
return dtc.Client.Events(dtc.Namespace).Watch(options)
},
},
&api.Event{},
0,
controllerframework.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
eLock.Lock()
defer eLock.Unlock()
events = append(events, obj.(*api.Event))
},
},
)
stop := make(chan struct{})
go controller.Run(stop)
// Create a listener for api updates
// uLock is a lock protects the updateCount
var uLock sync.Mutex
updateCount := 0
label := labels.SelectorFromSet(labels.Set(map[string]string{"type": "densityPod"}))
_, updateController := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
options.LabelSelector = label
return dtc.Client.Pods(dtc.Namespace).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
options.LabelSelector = label
return dtc.Client.Pods(dtc.Namespace).Watch(options)
},
},
&api.Pod{},
0,
controllerframework.ResourceEventHandlerFuncs{
UpdateFunc: func(_, _ interface{}) {
uLock.Lock()
defer uLock.Unlock()
updateCount++
},
},
)
go updateController.Run(stop)
// Start all replication controllers.
startTime := time.Now()
wg := sync.WaitGroup{}
wg.Add(len(dtc.Configs))
for i := range dtc.Configs {
rcConfig := dtc.Configs[i]
go func() {
framework.ExpectNoError(framework.RunRC(rcConfig))
wg.Done()
}()
}
logStopCh := make(chan struct{})
go logPodStartupStatus(dtc.Client, dtc.PodCount, dtc.Namespace, map[string]string{"type": "densityPod"}, dtc.PollInterval, logStopCh)
wg.Wait()
startupTime := time.Now().Sub(startTime)
close(logStopCh)
framework.Logf("E2E startup time for %d pods: %v", dtc.PodCount, startupTime)
framework.Logf("Throughput (pods/s) during cluster saturation phase: %v", float32(dtc.PodCount)/float32(startupTime/time.Second))
By("Waiting for all events to be recorded")
last := -1
current := len(events)
lastCount := -1
currentCount := updateCount
for start := time.Now(); (last < current || lastCount < currentCount) && time.Since(start) < dtc.Timeout; time.Sleep(10 * time.Second) {
func() {
eLock.Lock()
defer eLock.Unlock()
last = current
current = len(events)
}()
func() {
uLock.Lock()
defer uLock.Unlock()
lastCount = currentCount
currentCount = updateCount
}()
}
close(stop)
if current != last {
framework.Logf("Warning: Not all events were recorded after waiting %.2f minutes", dtc.Timeout.Minutes())
}
framework.Logf("Found %d events", current)
if currentCount != lastCount {
framework.Logf("Warning: Not all updates were recorded after waiting %.2f minutes", dtc.Timeout.Minutes())
}
framework.Logf("Found %d updates", currentCount)
// Tune the threshold for allowed failures.
badEvents := framework.BadEvents(events)
Expect(badEvents).NotTo(BeNumerically(">", int(math.Floor(0.01*float64(dtc.PodCount)))))
// Print some data about Pod to Node allocation
By("Printing Pod to Node allocation data")
podList, err := dtc.Client.Pods(api.NamespaceAll).List(api.ListOptions{})
framework.ExpectNoError(err)
pausePodAllocation := make(map[string]int)
systemPodAllocation := make(map[string][]string)
for _, pod := range podList.Items {
if pod.Namespace == api.NamespaceSystem {
systemPodAllocation[pod.Spec.NodeName] = append(systemPodAllocation[pod.Spec.NodeName], pod.Name)
} else {
pausePodAllocation[pod.Spec.NodeName]++
}
}
nodeNames := make([]string, 0)
for k := range pausePodAllocation {
nodeNames = append(nodeNames, k)
}
sort.Strings(nodeNames)
for _, node := range nodeNames {
framework.Logf("%v: %v pause pods, system pods: %v", node, pausePodAllocation[node], systemPodAllocation[node])
}
return startupTime
}
func cleanupDensityTest(dtc DensityTestConfig) {
defer GinkgoRecover()
By("Deleting ReplicationController")
// We explicitly delete all pods to have API calls necessary for deletion accounted in metrics.
for i := range dtc.Configs {
rcName := dtc.Configs[i].Name
rc, err := dtc.Client.ReplicationControllers(dtc.Namespace).Get(rcName)
if err == nil && rc.Spec.Replicas != 0 {
if framework.TestContext.GarbageCollectorEnabled {
By("Cleaning up only the replication controller, garbage collector will clean up the pods")
err := framework.DeleteRCAndWaitForGC(dtc.Client, dtc.Namespace, rcName)
framework.ExpectNoError(err)
} else {
By("Cleaning up the replication controller and pods")
err := framework.DeleteRCAndPods(dtc.Client, dtc.Namespace, rcName)
framework.ExpectNoError(err)
}
}
}
}
// This test suite can take a long time to run, and can affect or be affected by other tests.
// So by default it is added to the ginkgo.skip list (see driver.go).
// To run this suite you must explicitly ask for it by setting the
// -t/--test flag or ginkgo.focus flag.
// IMPORTANT: This test is designed to work on large (>= 100 Nodes) clusters. For smaller ones
// results will not be representative for control-plane performance as we'll start hitting
// limits on Docker's concurrent container startup.
var _ = framework.KubeDescribe("Density", func() {
var c *client.Client
var nodeCount int
var RCName string
var additionalPodsPrefix string
var ns string
var uuid string
var e2eStartupTime time.Duration
var totalPods int
var nodeCpuCapacity int64
var nodeMemCapacity int64
var nodes *api.NodeList
var masters sets.String
// Gathers data prior to framework namespace teardown
AfterEach(func() {
saturationThreshold := time.Duration((totalPods / MinPodsPerSecondThroughput)) * time.Second
if saturationThreshold < MinSaturationThreshold {
saturationThreshold = MinSaturationThreshold
}
Expect(e2eStartupTime).NotTo(BeNumerically(">", saturationThreshold))
saturationData := framework.SaturationTime{
TimeToSaturate: e2eStartupTime,
NumberOfNodes: nodeCount,
NumberOfPods: totalPods,
Throughput: float32(totalPods) / float32(e2eStartupTime/time.Second),
}
framework.Logf("Cluster saturation time: %s", framework.PrettyPrintJSON(saturationData))
// Verify latency metrics.
highLatencyRequests, err := framework.HighLatencyRequests(c)
framework.ExpectNoError(err)
Expect(highLatencyRequests).NotTo(BeNumerically(">", 0), "There should be no high-latency requests")
// Verify scheduler metrics.
// TODO: Reset metrics at the beginning of the test.
// We should do something similar to how we do it for APIserver.
framework.ExpectNoError(framework.VerifySchedulerLatency(c))
})
// Explicitly put here, to delete namespace at the end of the test
// (after measuring latency metrics, etc.).
f := framework.NewDefaultFramework("density")
f.NamespaceDeletionTimeout = time.Hour
BeforeEach(func() {
c = f.Client
ns = f.Namespace.Name
// In large clusters we may get to this point but still have a bunch
// of nodes without Routes created. Since this would make a node
// unschedulable, we need to wait until all of them are schedulable.
framework.ExpectNoError(framework.WaitForAllNodesSchedulable(c))
masters, nodes = framework.GetMasterAndWorkerNodesOrDie(c)
nodeCount = len(nodes.Items)
Expect(nodeCount).NotTo(BeZero())
nodeCpuCapacity = nodes.Items[0].Status.Allocatable.Cpu().MilliValue()
nodeMemCapacity = nodes.Items[0].Status.Allocatable.Memory().Value()
// Terminating a namespace (deleting the remaining objects from it - which
// generally means events) can affect the current run. Thus we wait for all
// terminating namespace to be finally deleted before starting this test.
err := framework.CheckTestingNSDeletedExcept(c, ns)
framework.ExpectNoError(err)
uuid = string(utiluuid.NewUUID())
framework.ExpectNoError(framework.ResetMetrics(c))
framework.ExpectNoError(os.Mkdir(fmt.Sprintf(framework.TestContext.OutputDir+"/%s", uuid), 0777))
framework.Logf("Listing nodes for easy debugging:\n")
for _, node := range nodes.Items {
var internalIP, externalIP string
for _, address := range node.Status.Addresses {
if address.Type == api.NodeInternalIP {
internalIP = address.Address
}
if address.Type == api.NodeExternalIP {
externalIP = address.Address
}
}
framework.Logf("Name: %v, clusterIP: %v, externalIP: %v", node.ObjectMeta.Name, internalIP, externalIP)
}
})
type Density struct {
// Controls if e2e latency tests should be run (they are slow)
runLatencyTest bool
podsPerNode int
// Controls how often the apiserver is polled for pods
interval time.Duration
}
densityTests := []Density{
// TODO: Expose runLatencyTest as ginkgo flag.
{podsPerNode: 3, runLatencyTest: false, interval: 10 * time.Second},
{podsPerNode: 30, runLatencyTest: true, interval: 10 * time.Second},
{podsPerNode: 50, runLatencyTest: false, interval: 10 * time.Second},
{podsPerNode: 95, runLatencyTest: true, interval: 10 * time.Second},
{podsPerNode: 100, runLatencyTest: false, interval: 10 * time.Second},
}
for _, testArg := range densityTests {
name := fmt.Sprintf("should allow starting %d pods per node", testArg.podsPerNode)
switch testArg.podsPerNode {
case 30:
name = "[Feature:Performance] " + name
case 95:
name = "[Feature:HighDensityPerformance]" + name
default:
name = "[Feature:ManualPerformance] " + name
}
itArg := testArg
It(name, func() {
podsPerNode := itArg.podsPerNode
if podsPerNode == 30 {
f.AddonResourceConstraints = func() map[string]framework.ResourceConstraint { return density30AddonResourceVerifier(nodeCount) }()
}
totalPods = podsPerNode * nodeCount
fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid))
framework.ExpectNoError(err)
defer fileHndl.Close()
timeout := 10 * time.Minute
// TODO: loop to podsPerNode instead of 1 when we're ready.
numberOrRCs := 1
RCConfigs := make([]framework.RCConfig, numberOrRCs)
for i := 0; i < numberOrRCs; i++ {
RCName := "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid
RCConfigs[i] = framework.RCConfig{Client: c,
Image: framework.GetPauseImageName(f.Client),
Name: RCName,
Namespace: ns,
Labels: map[string]string{"type": "densityPod"},
PollInterval: itArg.interval,
PodStatusFile: fileHndl,
Replicas: (totalPods + numberOrRCs - 1) / numberOrRCs,
CpuRequest: nodeCpuCapacity / 100,
MemRequest: nodeMemCapacity / 100,
MaxContainerFailures: &MaxContainerFailures,
Silent: true,
}
}
dConfig := DensityTestConfig{Client: c,
Configs: RCConfigs,
PodCount: totalPods,
Namespace: ns,
PollInterval: itArg.interval,
Timeout: timeout,
}
e2eStartupTime = runDensityTest(dConfig)
if itArg.runLatencyTest {
By("Scheduling additional Pods to measure startup latencies")
createTimes := make(map[string]unversioned.Time, 0)
nodes := make(map[string]string, 0)
scheduleTimes := make(map[string]unversioned.Time, 0)
runTimes := make(map[string]unversioned.Time, 0)
watchTimes := make(map[string]unversioned.Time, 0)
var mutex sync.Mutex
checkPod := func(p *api.Pod) {
mutex.Lock()
defer mutex.Unlock()
defer GinkgoRecover()
if p.Status.Phase == api.PodRunning {
if _, found := watchTimes[p.Name]; !found {
watchTimes[p.Name] = unversioned.Now()
createTimes[p.Name] = p.CreationTimestamp
nodes[p.Name] = p.Spec.NodeName
var startTime unversioned.Time
for _, cs := range p.Status.ContainerStatuses {
if cs.State.Running != nil {
if startTime.Before(cs.State.Running.StartedAt) {
startTime = cs.State.Running.StartedAt
}
}
}
if startTime != unversioned.NewTime(time.Time{}) {
runTimes[p.Name] = startTime
} else {
framework.Failf("Pod %v is reported to be running, but none of its containers is", p.Name)
}
}
}
}
additionalPodsPrefix = "density-latency-pod"
latencyPodsStore, controller := controllerframework.NewInformer(
&cache.ListWatch{
ListFunc: func(options api.ListOptions) (runtime.Object, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix})
return c.Pods(ns).List(options)
},
WatchFunc: func(options api.ListOptions) (watch.Interface, error) {
options.LabelSelector = labels.SelectorFromSet(labels.Set{"type": additionalPodsPrefix})
return c.Pods(ns).Watch(options)
},
},
&api.Pod{},
0,
controllerframework.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
p, ok := obj.(*api.Pod)
Expect(ok).To(Equal(true))
go checkPod(p)
},
UpdateFunc: func(oldObj, newObj interface{}) {
p, ok := newObj.(*api.Pod)
Expect(ok).To(Equal(true))
go checkPod(p)
},
},
)
stopCh := make(chan struct{})
go controller.Run(stopCh)
// Create some additional pods with throughput ~5 pods/sec.
var wg sync.WaitGroup
wg.Add(nodeCount)
// Explicitly set requests here.
// Thanks to it we trigger increasing priority function by scheduling
// a pod to a node, which in turn will result in spreading latency pods
// more evenly between nodes.
cpuRequest := *resource.NewMilliQuantity(nodeCpuCapacity/5, resource.DecimalSI)
memRequest := *resource.NewQuantity(nodeMemCapacity/5, resource.DecimalSI)
if podsPerNode > 30 {
// This is to make them schedulable on high-density tests
// (e.g. 100 pods/node kubemark).
cpuRequest = *resource.NewMilliQuantity(0, resource.DecimalSI)
memRequest = *resource.NewQuantity(0, resource.DecimalSI)
}
for i := 1; i <= nodeCount; i++ {
name := additionalPodsPrefix + "-" + strconv.Itoa(i)
go createRunningPodFromRC(&wg, c, name, ns, framework.GetPauseImageName(f.Client), additionalPodsPrefix, cpuRequest, memRequest)
time.Sleep(200 * time.Millisecond)
}
wg.Wait()
By("Waiting for all Pods begin observed by the watch...")
for start := time.Now(); len(watchTimes) < nodeCount; time.Sleep(10 * time.Second) {
if time.Since(start) < timeout {
framework.Failf("Timeout reached waiting for all Pods being observed by the watch.")
}
}
close(stopCh)
nodeToLatencyPods := make(map[string]int)
for _, item := range latencyPodsStore.List() {
pod := item.(*api.Pod)
nodeToLatencyPods[pod.Spec.NodeName]++
}
for node, count := range nodeToLatencyPods {
if count > 1 {
framework.Logf("%d latency pods scheduled on %s", count, node)
}
}
selector := fields.Set{
"involvedObject.kind": "Pod",
"involvedObject.namespace": ns,
"source": api.DefaultSchedulerName,
}.AsSelector()
options := api.ListOptions{FieldSelector: selector}
schedEvents, err := c.Events(ns).List(options)
framework.ExpectNoError(err)
for k := range createTimes {
for _, event := range schedEvents.Items {
if event.InvolvedObject.Name == k {
scheduleTimes[k] = event.FirstTimestamp
break
}
}
}
scheduleLag := make([]framework.PodLatencyData, 0)
startupLag := make([]framework.PodLatencyData, 0)
watchLag := make([]framework.PodLatencyData, 0)
schedToWatchLag := make([]framework.PodLatencyData, 0)
e2eLag := make([]framework.PodLatencyData, 0)
for name, create := range createTimes {
sched, ok := scheduleTimes[name]
Expect(ok).To(Equal(true))
run, ok := runTimes[name]
Expect(ok).To(Equal(true))
watch, ok := watchTimes[name]
Expect(ok).To(Equal(true))
node, ok := nodes[name]
Expect(ok).To(Equal(true))
scheduleLag = append(scheduleLag, framework.PodLatencyData{Name: name, Node: node, Latency: sched.Time.Sub(create.Time)})
startupLag = append(startupLag, framework.PodLatencyData{Name: name, Node: node, Latency: run.Time.Sub(sched.Time)})
watchLag = append(watchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(run.Time)})
schedToWatchLag = append(schedToWatchLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(sched.Time)})
e2eLag = append(e2eLag, framework.PodLatencyData{Name: name, Node: node, Latency: watch.Time.Sub(create.Time)})
}
sort.Sort(framework.LatencySlice(scheduleLag))
sort.Sort(framework.LatencySlice(startupLag))
sort.Sort(framework.LatencySlice(watchLag))
sort.Sort(framework.LatencySlice(schedToWatchLag))
sort.Sort(framework.LatencySlice(e2eLag))
framework.PrintLatencies(scheduleLag, "worst schedule latencies")
framework.PrintLatencies(startupLag, "worst run-after-schedule latencies")
framework.PrintLatencies(watchLag, "worst watch latencies")
framework.PrintLatencies(schedToWatchLag, "worst scheduled-to-end total latencies")
framework.PrintLatencies(e2eLag, "worst e2e total latencies")
// Test whether e2e pod startup time is acceptable.
podStartupLatency := framework.PodStartupLatency{Latency: framework.ExtractLatencyMetrics(e2eLag)}
framework.ExpectNoError(framework.VerifyPodStartupLatency(podStartupLatency))
framework.LogSuspiciousLatency(startupLag, e2eLag, nodeCount, c)
By("Removing additional replication controllers")
for i := 1; i <= nodeCount; i++ {
name := additionalPodsPrefix + "-" + strconv.Itoa(i)
c.ReplicationControllers(ns).Delete(name, nil)
}
}
cleanupDensityTest(dConfig)
})
}
// Calculate total number of pods from each node's max-pod
It("[Feature:ManualPerformance] should allow running maximum capacity pods on nodes", func() {
totalPods = 0
for _, n := range nodes.Items {
totalPods += int(n.Status.Capacity.Pods().Value())
}
totalPods -= framework.WaitForStableCluster(c, masters)
fileHndl, err := os.Create(fmt.Sprintf(framework.TestContext.OutputDir+"/%s/pod_states.csv", uuid))
framework.ExpectNoError(err)
defer fileHndl.Close()
rcCnt := 1
RCConfigs := make([]framework.RCConfig, rcCnt)
podsPerRC := int(totalPods / rcCnt)
for i := 0; i < rcCnt; i++ {
if i == rcCnt-1 {
podsPerRC += int(math.Mod(float64(totalPods), float64(rcCnt)))
}
RCName = "density" + strconv.Itoa(totalPods) + "-" + strconv.Itoa(i) + "-" + uuid
RCConfigs[i] = framework.RCConfig{Client: c,
Image: framework.GetPauseImageName(f.Client),
Name: RCName,
Namespace: ns,
Labels: map[string]string{"type": "densityPod"},
PollInterval: 10 * time.Second,
PodStatusFile: fileHndl,
Replicas: podsPerRC,
MaxContainerFailures: &MaxContainerFailures,
Silent: true,
}
}
dConfig := DensityTestConfig{Client: c,
Configs: RCConfigs,
PodCount: totalPods,
Namespace: ns,
PollInterval: 10 * time.Second,
Timeout: 10 * time.Minute,
}
e2eStartupTime = runDensityTest(dConfig)
cleanupDensityTest(dConfig)
})
})
func createRunningPodFromRC(wg *sync.WaitGroup, c *client.Client, name, ns, image, podType string, cpuRequest, memRequest resource.Quantity) {
defer GinkgoRecover()
defer wg.Done()
labels := map[string]string{
"type": podType,
"name": name,
}
rc := &api.ReplicationController{
ObjectMeta: api.ObjectMeta{
Name: name,
Labels: labels,
},
Spec: api.ReplicationControllerSpec{
Replicas: 1,
Selector: labels,
Template: &api.PodTemplateSpec{
ObjectMeta: api.ObjectMeta{
Labels: labels,
},
Spec: api.PodSpec{
Containers: []api.Container{
{
Name: name,
Image: image,
Resources: api.ResourceRequirements{
Requests: api.ResourceList{
api.ResourceCPU: cpuRequest,
api.ResourceMemory: memRequest,
},
},
},
},
DNSPolicy: api.DNSDefault,
},
},
},
}
_, err := c.ReplicationControllers(ns).Create(rc)
framework.ExpectNoError(err)
framework.ExpectNoError(framework.WaitForRCPodsRunning(c, ns, name))
framework.Logf("Found pod '%s' running", name)
}