-
Notifications
You must be signed in to change notification settings - Fork 10
/
StackGAN-stage1.py
217 lines (178 loc) · 11.2 KB
/
StackGAN-stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import tensorflow as tf
import numpy as np
import os
import pickle
import random
from matplotlib import pyplot as plt
beta=0.3 #Leak Factor
keep_prob=0.7 #Dropout layer parameter
noise_length=100 #Noise vector length
batch_size=128 # Batch Size for training
dataset=open('/home/SharedData/yagnesh/CUB/list.txt','r').read().splitlines() #List of all images
epoch=1 #current training iteration
epochs=255000 #upper limit to the iterations
lam=2.0 #divergence loss lagrange multiplier
#Function to generate a batch of images and corresponding encoded sentences tensor
def generate_cub_batch(batch_size):
batch=random.sample(dataset,batch_size) #Sample from images at random
real_images=np.empty(shape=[batch_size,64,64,3]) #For reading groundtruth images
encoded_sentence=np.empty(shape=[batch_size,4800]) #For reading encoded sentences
for i in range(len(batch)):
real_images[i]=plt.imread('/home/SharedData/yagnesh/CUB/images_64/'+batch[i]+'.png')
sentence_list=np.load('/home/SharedData/yagnesh/CUB/encoded_captions/'+batch[i]+'.npy')
encoded_sentence[i]=sentence_list[random.randint(0,np.shape(sentence_list)[0]-1)]
return real_images,encoded_sentence
#Setting up GPU parameters
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
config.allow_soft_placement=True
sess=tf.Session(config=config)
#Generator Network
def Generator(batch_size,z_len,encoded_sentences_tensor,reuse_flag,training_flag):
with tf.variable_scope(tf.get_variable_scope(),reuse=reuse_flag):
#Learning mean and variance of the latent conditioning variable
g_mu_w_0=tf.get_variable('g_mu_w_0',shape=[4800,128],initializer=tf.contrib.layers.xavier_initializer())
g_mu_b_0=tf.get_variable('g_mu_b_0',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_mu_a_0=tf.matmul(encoded_sentences_tensor,g_mu_w_0)+g_mu_b_0
g_mu_a_0=tf.maximum(g_mu_a_0,beta*g_mu_a_0)
g_sd_w_0=tf.get_variable('g_sd_w_0',shape=[4800,128],initializer=tf.contrib.layers.xavier_initializer())
g_sd_b_0=tf.get_variable('g_sd_b_0',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_sd_a_0=tf.matmul(encoded_sentences_tensor,g_sd_w_0)+g_sd_b_0
g_sd_a_0=tf.maximum(g_sd_a_0,beta*g_sd_a_0)
#Sampling from latent conditioning variable
epsilon=tf.random_normal([batch_size,128],mean=0,stddev=1)
g_cond=g_mu_a_0+tf.multiply(g_sd_a_0,epsilon)
#Sampling from latent noise variable
z=tf.random_normal([batch_size,z_len],mean=0,stddev=1)
ip=tf.concat([z,g_cond],1)
#Decoder network
g_w1=tf.get_variable('g_w1',shape=[z_len+128,4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_b1=tf.get_variable('g_b1',shape=[4*4*1024],initializer=tf.contrib.layers.xavier_initializer())
g_a1=tf.matmul(ip,g_w1)+g_b1
g_a1=tf.reshape(g_a1,[-1,4,4,1024])
g_a1=tf.layers.batch_normalization(g_a1,training=training_flag,reuse=reuse_flag)
g_a1=tf.maximum(g_a1,beta*g_a1)
g_w2=tf.get_variable('g_w2',shape=[3,3,512,1024],initializer=tf.contrib.layers.xavier_initializer())
g_b2=tf.get_variable('g_b2',shape=[512],initializer=tf.contrib.layers.xavier_initializer())
g_a2=tf.nn.conv2d_transpose(g_a1,g_w2,output_shape=[batch_size,8,8,512],strides=[1,2,2,1],padding='SAME')+g_b2
g_a2=tf.layers.batch_normalization(g_a2,training=training_flag,scale=True,reuse=reuse_flag)
g_a2=tf.maximum(g_a2,beta*g_a2)
g_w3=tf.get_variable('g_w3',shape=[3,3,256,512],initializer=tf.contrib.layers.xavier_initializer())
g_b3=tf.get_variable('g_b3',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
g_a3=tf.nn.conv2d_transpose(g_a2,g_w3,output_shape=[batch_size,16,16,256],strides=[1,2,2,1],padding='SAME')+g_b3
g_a3=tf.layers.batch_normalization(g_a3,training=training_flag,scale=True,reuse=reuse_flag)
g_a3=tf.maximum(g_a3,beta*g_a3)
g_w4=tf.get_variable('g_w4',shape=[3,3,128,256],initializer=tf.contrib.layers.xavier_initializer())
g_b4=tf.get_variable('g_b4',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
g_a4=tf.nn.conv2d_transpose(g_a3,g_w4,output_shape=[batch_size,32,32,128],strides=[1,2,2,1],padding='SAME')+g_b4
g_a4=tf.layers.batch_normalization(g_a4,training=training_flag,scale=True,reuse=reuse_flag)
g_a4=tf.maximum(g_a4,beta*g_a4)
g_w5=tf.get_variable('g_w5',shape=[3,3,3,128],initializer=tf.contrib.layers.xavier_initializer())
g_b5=tf.get_variable('g_b5',shape=[3],initializer=tf.contrib.layers.xavier_initializer())
g_a5=tf.nn.conv2d_transpose(g_a4,g_w5,output_shape=[batch_size,64,64,3],strides=[1,2,2,1],padding='SAME')+g_b5
return tf.nn.sigmoid(g_a5),g_mu_a_0,g_sd_a_0
#Discriminator Network
def Discriminator(image_tensor,encoded_sentences_tensor,reuse_flag):
with tf.variable_scope(tf.get_variable_scope(),reuse=reuse_flag):
#Caption encoder
d_w0=tf.get_variable('d_w0',shape=[4800,4*4*128],initializer=tf.contrib.layers.xavier_initializer())
d_b0=tf.get_variable('d_b0',shape=[4*4*128],initializer=tf.contrib.layers.xavier_initializer())
d_a0=tf.matmul(encoded_sentences_tensor,d_w0)+d_b0
d_a0=tf.maximum(d_a0,beta*d_a0)
d_a0=tf.reshape(d_a0,shape=[batch_size,4,4,128])
#Encoder network
d_w1=tf.get_variable('d_w1',shape=[3,3,3,64],initializer=tf.contrib.layers.xavier_initializer())
d_b1=tf.get_variable('d_b1',shape=[64],initializer=tf.contrib.layers.xavier_initializer())
d_a1=tf.nn.conv2d(image_tensor,d_w1,strides=[1,2,2,1],padding='SAME')+d_b1
d_a1=tf.maximum(d_a1,beta*d_a1)
d_a1=tf.nn.dropout(d_a1,keep_prob)
d_w2=tf.get_variable('d_w2',shape=[3,3,64,128],initializer=tf.contrib.layers.xavier_initializer())
d_b2=tf.get_variable('d_b2',shape=[128],initializer=tf.contrib.layers.xavier_initializer())
d_a2=tf.nn.conv2d(d_a1,d_w2,strides=[1,2,2,1],padding='SAME')+d_b2
d_a2=tf.maximum(d_a2,beta*d_a2)
d_a2=tf.nn.dropout(d_a2,keep_prob)
d_w3=tf.get_variable('d_w3',shape=[3,3,128,256],initializer=tf.contrib.layers.xavier_initializer())
d_b3=tf.get_variable('d_b3',shape=[256],initializer=tf.contrib.layers.xavier_initializer())
d_a3=tf.nn.conv2d(d_a2,d_w3,strides=[1,2,2,1],padding='SAME')+d_b3
d_a3=tf.maximum(d_a3,beta*d_a3)
d_a3=tf.nn.dropout(d_a3,keep_prob)
d_w4=tf.get_variable('d_w4',shape=[3,3,256,512],initializer=tf.contrib.layers.xavier_initializer())
d_b4=tf.get_variable('d_b4',shape=[512],initializer=tf.contrib.layers.xavier_initializer())
d_a4=tf.nn.conv2d(d_a3,d_w4,strides=[1,2,2,1],padding='SAME')+d_b4
d_a4=tf.maximum(d_a4,beta*d_a4)
d_a4=tf.nn.dropout(d_a4,keep_prob)
#Augmenting condition
d_a4=tf.concat([d_a4,d_a0],axis=3)
d_w5=tf.get_variable('d_w5',shape=[4,4,512+128,1024],initializer=tf.contrib.layers.xavier_initializer())
d_b5=tf.get_variable('d_b5',shape=[1024],initializer=tf.contrib.layers.xavier_initializer())
d_a5=tf.nn.conv2d(d_a4,d_w5,strides=[1,1,1,1],padding='VALID')+d_b5
d_a5=tf.maximum(d_a5,beta*d_a5)
d_a5=tf.nn.dropout(d_a5,keep_prob)
d_a5=tf.reshape(d_a5,[batch_size,1024])
d_w6=tf.get_variable('d_w6',shape=[1024,1],initializer=tf.contrib.layers.xavier_initializer())
d_b6=tf.get_variable('d_b6',shape=[1],initializer=tf.contrib.layers.xavier_initializer())
d_a6=tf.matmul(d_a5,d_w6)+d_b6
return d_a6
#Defining placeholders
encoded_sentences_tensor=tf.placeholder(tf.float32,shape=[batch_size,4800])
real_images_tensor=tf.placeholder(tf.float32,shape=[batch_size,64,64,3])
arbit_sentences_tensor=tf.placeholder(tf.float32,shape=[batch_size,4800])
training_flag = tf.placeholder(tf.bool)
#Generating images from sentence embeddings
generated_images_tensor,mu1,sd1=Generator(batch_size,noise_length,encoded_sentences_tensor,False,training_flag)
#Discrminating generated images, real images with real descriptions and real images with unmatched descriptions
Dg=Discriminator(generated_images_tensor,encoded_sentences_tensor,False)
Dx=Discriminator(real_images_tensor,encoded_sentences_tensor,True)
Db=Discriminator(real_images_tensor,arbit_sentences_tensor,True)
#Cross entropy loss for generator
W_g_ce=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg,labels=tf.ones_like(Dg)-0.1))
#KLD loss for conditioning latent variable
N_1=tf.distributions.Normal(mu1,sd1)
N_1_n=tf.distributions.Normal(tf.zeros([1,128]),tf.ones([1,128]))
W_g_kl=tf.reduce_mean(tf.contrib.distributions.kl_divergence(N_1,N_1_n))
W_g=W_g_ce+lam*W_g_kl
#Cross entropy loss for discriminator
W_d_real=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dx,labels=tf.ones_like(Dx)-0.1))
W_d_fake=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg,labels=tf.zeros_like(Dg)+0.1))
W_d_bad=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Df,labels=tf.zeros_like(Db)+0.1))
W_d=W_d_real+W_d_fake+W_d_bad
#Segregating generator and discriminator variables
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'd_' in var.name]
g_vars = [var for var in tvars if 'g_' in var.name]
var_names=[var.name for var in tf.trainable_variables()]
#Defining optimizers
update_ops=tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
d_trainer=tf.train.AdamOptimizer(25e-6,beta1=0.5).minimize(W_d,var_list=d_vars)
g_trainer=tf.train.AdamOptimizer(25e-6,beta1=0.5).minimize(W_g, var_list=g_vars)
#Initialize networks and define saver
sess.run(tf.global_variables_initializer())
saver=tf.train.Saver()
# saver.restore(sess,'/home/SharedData/yagnesh/c2i/saved_model_stage1/c2i-'+str(epoch))
#Training code
while epoch<=epochs:
#Sampling mini batch
real_images,encoded_sentences=generate_cub_batch(batch_size)
_,arbit_sentences=generate_cub_batch(batch_size)
#Discriminator update
_,dLoss=sess.run([d_trainer,W_d],feed_dict={real_images_tensor:real_images,
encoded_sentences_tensor:encoded_sentences,
arbit_sentences_tensor:arbit_sentences,
training_flag:True})
#Sampling mini batch
real_images,encoded_sentences=generate_cub_batch(batch_size)
#Generator update
_,gLoss=sess.run([g_trainer,W_g],feed_dict={real_images_tensor:real_images,
encoded_sentences_tensor:encoded_sentences,
training_flag:True})
print(epoch,gLoss,dLoss)
#Saving model and images
if epoch%100==0:
saver.save(sess,'/home/SharedData/yagnesh/c2i/saved_model_stage1/c2i',global_step=epoch)
gen_images=sess.run(generated_images_tensor,feed_dict={real_images_tensor:real_images,
encoded_sentences_tensor:encoded_sentences,
training_flag:False})
plt.imsave(arr=gen_images[0],fname='/home/SharedData/yagnesh/c2i/outputs_stage1/'+str(epoch)+'_gen.png')
plt.imsave(arr=real_images[0],fname='/home/SharedData/yagnesh/c2i/outputs_stage1/'+str(epoch)+'_gt.png')
epoch=epoch+1