-
Notifications
You must be signed in to change notification settings - Fork 0
/
pkcs8.go
341 lines (291 loc) · 10.5 KB
/
pkcs8.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Package utils contains tuf related utility functions however this file is hard
// forked from https://github.com/youmark/pkcs8 package. It has been further modified
// based on the requirements of Notary. For converting keys into PKCS#8 format,
// original package expected *crypto.PrivateKey interface, which then type inferred
// to either *rsa.PrivateKey or *ecdsa.PrivateKey depending on the need and later
// converted to ASN.1 DER encoded form, this whole process was superfluous here as
// keys are already being kept in ASN.1 DER format wrapped in data.PrivateKey
// structure. With these changes, package has became tightly coupled with notary as
// most of the method signatures have been updated. Moreover support for ED25519
// keys has been added as well. License for original package is following:
//
// The MIT License (MIT)
//
// Copyright (c) 2014 youmark
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package utils
import (
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"crypto/sha1"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"golang.org/x/crypto/pbkdf2"
"github.com/docker/notary/tuf/data"
)
// Copy from crypto/x509
var (
oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
// crypto/x509 doesn't have support for ED25519
// http://www.oid-info.com/get/1.3.6.1.4.1.11591.15.1
oidPublicKeyED25519 = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 11591, 15, 1}
)
// Copy from crypto/x509
var (
oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
)
// Copy from crypto/x509
func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
switch curve {
case elliptic.P224():
return oidNamedCurveP224, true
case elliptic.P256():
return oidNamedCurveP256, true
case elliptic.P384():
return oidNamedCurveP384, true
case elliptic.P521():
return oidNamedCurveP521, true
}
return nil, false
}
// Unecrypted PKCS8
var (
oidPKCS5PBKDF2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 12}
oidPBES2 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 5, 13}
oidAES256CBC = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 1, 42}
)
type ecPrivateKey struct {
Version int
PrivateKey []byte
NamedCurveOID asn1.ObjectIdentifier `asn1:"optional,explicit,tag:0"`
PublicKey asn1.BitString `asn1:"optional,explicit,tag:1"`
}
type privateKeyInfo struct {
Version int
PrivateKeyAlgorithm []asn1.ObjectIdentifier
PrivateKey []byte
}
// Encrypted PKCS8
type pbkdf2Params struct {
Salt []byte
IterationCount int
}
type pbkdf2Algorithms struct {
IDPBKDF2 asn1.ObjectIdentifier
PBKDF2Params pbkdf2Params
}
type pbkdf2Encs struct {
EncryAlgo asn1.ObjectIdentifier
IV []byte
}
type pbes2Params struct {
KeyDerivationFunc pbkdf2Algorithms
EncryptionScheme pbkdf2Encs
}
type pbes2Algorithms struct {
IDPBES2 asn1.ObjectIdentifier
PBES2Params pbes2Params
}
type encryptedPrivateKeyInfo struct {
EncryptionAlgorithm pbes2Algorithms
EncryptedData []byte
}
// pkcs8 reflects an ASN.1, PKCS#8 PrivateKey.
// copied from https://github.com/golang/go/blob/964639cc338db650ccadeafb7424bc8ebb2c0f6c/src/crypto/x509/pkcs8.go#L17
type pkcs8 struct {
Version int
Algo pkix.AlgorithmIdentifier
PrivateKey []byte
}
func parsePKCS8ToTufKey(der []byte) (data.PrivateKey, error) {
var key pkcs8
if _, err := asn1.Unmarshal(der, &key); err != nil {
if _, ok := err.(asn1.StructuralError); ok {
return nil, errors.New("could not decrypt private key")
}
return nil, err
}
if key.Algo.Algorithm.Equal(oidPublicKeyED25519) {
tufED25519PrivateKey, err := ED25519ToPrivateKey(key.PrivateKey)
if err != nil {
return nil, fmt.Errorf("could not convert ed25519.PrivateKey to data.PrivateKey: %v", err)
}
return tufED25519PrivateKey, nil
}
privKey, err := x509.ParsePKCS8PrivateKey(der)
if err != nil {
return nil, err
}
switch priv := privKey.(type) {
case *rsa.PrivateKey:
tufRSAPrivateKey, err := RSAToPrivateKey(priv)
if err != nil {
return nil, fmt.Errorf("could not convert rsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufRSAPrivateKey, nil
case *ecdsa.PrivateKey:
tufECDSAPrivateKey, err := ECDSAToPrivateKey(priv)
if err != nil {
return nil, fmt.Errorf("could not convert ecdsa.PrivateKey to data.PrivateKey: %v", err)
}
return tufECDSAPrivateKey, nil
}
return nil, errors.New("unsupported key type")
}
// ParsePKCS8ToTufKey requires PKCS#8 key in DER format and returns data.PrivateKey
// Password should be provided in case of Encrypted PKCS#8 key, else it should be nil.
func ParsePKCS8ToTufKey(der []byte, password []byte) (data.PrivateKey, error) {
if password == nil {
return parsePKCS8ToTufKey(der)
}
var privKey encryptedPrivateKeyInfo
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("pkcs8: only PKCS #5 v2.0 supported")
}
if !privKey.EncryptionAlgorithm.IDPBES2.Equal(oidPBES2) {
return nil, errors.New("pkcs8: only PBES2 supported")
}
if !privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.IDPBKDF2.Equal(oidPKCS5PBKDF2) {
return nil, errors.New("pkcs8: only PBKDF2 supported")
}
encParam := privKey.EncryptionAlgorithm.PBES2Params.EncryptionScheme
kdfParam := privKey.EncryptionAlgorithm.PBES2Params.KeyDerivationFunc.PBKDF2Params
switch {
case encParam.EncryAlgo.Equal(oidAES256CBC):
iv := encParam.IV
salt := kdfParam.Salt
iter := kdfParam.IterationCount
encryptedKey := privKey.EncryptedData
symkey := pbkdf2.Key(password, salt, iter, 32, sha1.New)
block, err := aes.NewCipher(symkey)
if err != nil {
return nil, err
}
mode := cipher.NewCBCDecrypter(block, iv)
mode.CryptBlocks(encryptedKey, encryptedKey)
// no need to explicitly remove padding, as ASN.1 unmarshalling will automatically discard it
key, err := parsePKCS8ToTufKey(encryptedKey)
if err != nil {
return nil, errors.New("pkcs8: incorrect password")
}
return key, nil
default:
return nil, errors.New("pkcs8: only AES-256-CBC supported")
}
}
func convertTUFKeyToPKCS8(priv data.PrivateKey) ([]byte, error) {
var pkey privateKeyInfo
switch priv.Algorithm() {
case data.RSAKey, data.RSAx509Key:
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 0
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyRSA
pkey.PrivateKey = priv.Private()
case data.ECDSAKey, data.ECDSAx509Key:
// To extract Curve value, parsing ECDSA key to *ecdsa.PrivateKey
eckey, err := x509.ParseECPrivateKey(priv.Private())
if err != nil {
return nil, err
}
oidNamedCurve, ok := oidFromNamedCurve(eckey.Curve)
if !ok {
return nil, errors.New("pkcs8: unknown elliptic curve")
}
// Per RFC5958, if publicKey is present, then version is set to v2(1) else version is set to v1(0).
// But openssl set to v1 even publicKey is present
pkey.Version = 1
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 2)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyECDSA
pkey.PrivateKeyAlgorithm[1] = oidNamedCurve
pkey.PrivateKey = priv.Private()
case data.ED25519Key:
pkey.Version = 0
pkey.PrivateKeyAlgorithm = make([]asn1.ObjectIdentifier, 1)
pkey.PrivateKeyAlgorithm[0] = oidPublicKeyED25519
pkey.PrivateKey = priv.Private()
default:
return nil, fmt.Errorf("algorithm %s not supported", priv.Algorithm())
}
return asn1.Marshal(pkey)
}
func convertTUFKeyToPKCS8Encrypted(priv data.PrivateKey, password []byte) ([]byte, error) {
// Convert private key into PKCS8 format
pkey, err := convertTUFKeyToPKCS8(priv)
if err != nil {
return nil, err
}
// Calculate key from password based on PKCS5 algorithm
// Use 8 byte salt, 16 byte IV, and 2048 iteration
iter := 2048
salt := make([]byte, 8)
iv := make([]byte, 16)
_, err = rand.Reader.Read(salt)
if err != nil {
return nil, err
}
_, err = rand.Reader.Read(iv)
if err != nil {
return nil, err
}
key := pbkdf2.Key(password, salt, iter, 32, sha1.New)
// Use AES256-CBC mode, pad plaintext with PKCS5 padding scheme
padding := aes.BlockSize - len(pkey)%aes.BlockSize
if padding > 0 {
n := len(pkey)
pkey = append(pkey, make([]byte, padding)...)
for i := 0; i < padding; i++ {
pkey[n+i] = byte(padding)
}
}
encryptedKey := make([]byte, len(pkey))
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(encryptedKey, pkey)
pbkdf2algo := pbkdf2Algorithms{oidPKCS5PBKDF2, pbkdf2Params{salt, iter}}
pbkdf2encs := pbkdf2Encs{oidAES256CBC, iv}
pbes2algo := pbes2Algorithms{oidPBES2, pbes2Params{pbkdf2algo, pbkdf2encs}}
encryptedPkey := encryptedPrivateKeyInfo{pbes2algo, encryptedKey}
return asn1.Marshal(encryptedPkey)
}
// ConvertTUFKeyToPKCS8 converts a private key (data.Private) to PKCS#8 and returns in DER format
// if password is not nil, it would convert the Private Key to Encrypted PKCS#8.
func ConvertTUFKeyToPKCS8(priv data.PrivateKey, password []byte) ([]byte, error) {
if password == nil {
return convertTUFKeyToPKCS8(priv)
}
return convertTUFKeyToPKCS8Encrypted(priv, password)
}