Skip to content

Reproducible results for the various types of reinforcement algorithms I have implemented

License

Notifications You must be signed in to change notification settings

BeeGass/Agents

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL Agents
Jax | Flux | PyTorch

A collection of Reinforcement Learning (RL) Methods I have implemented in jax/flax, flux and pytorch with particular effort put into readability and reproducibility.

Python

Requirements For Jax

  • Python >= 3.8
  • jax

Installation

$ git clone https://github.com/BeeGass/Agents.git

Usage

$ cd Agents/agents-jax
$ python main.py 

Requirements For PyTorch

  • PyTorch >= 1.10

Usage

$ cd Agents/agents-pytorch
$ python main.py 

Julia

Requirements For Flux

  • TODO
  • TODO

Usage

$ cd Agents/agents-flux
$ # TBA 

Config File Template

TBA

Weights And Biases Integration

TBA

Preliminary RL Implementations

Model NumPy/Vanilla Jax/Flax Flux Config Paper
Policy Evaluation DS595-RL-Projects
Policy Improvement DS595-RL-Projects
Policy Iteration DS595-RL-Projects
Value Iteration DS595-RL-Projects
On-policy first visit Monte-Carlo prediction DS595-RL-Projects
On-policy first visit Monte-Carlo control DS595-RL-Projects
Sarsa (on-policy TD control) DS595-RL-Projects
Q-learing (off-policy TD control) DS595-RL-Projects

Off-Policy Results

Model PyTorch Jax/Flax Flux Config Paper
DQN Link
DDPG Link
DRQN Link
Dueling-DQN Link
Double-DQN Link
PER Link
Rainbow Link

Policy Results

Model PyTorch Jax/Flax Flux Config Paper
PPO Link
TRPO Link
SAC Link
A2C Link
A3C Link
TD3 Link

Fun Stuff

Model PyTorch Jax/Flax Flux Config Paper
World Models Link
Dream to Control Link
Dream to Control v2 Link

Citation

@software{Gass_Agents_2021,
  author = {Gass, B.A., Gass, B.A.},
  doi = {10.5281/zenodo.1234},
  month = {12},
  title = {{Agents}},
  url = {https://github.com/BeeGass/Agents},
  version = {1.0.0},
  year = {2021}
}

About

Reproducible results for the various types of reinforcement algorithms I have implemented

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published