-
-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
mod.rs
1855 lines (1680 loc) · 74.4 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
mod conversions;
pub mod skinning;
use bevy_transform::components::Transform;
use bitflags::bitflags;
pub use wgpu::PrimitiveTopology;
use crate::{
prelude::Image,
primitives::Aabb,
render_asset::{PrepareAssetError, RenderAsset, RenderAssetUsages, RenderAssets},
render_resource::{Buffer, TextureView, VertexBufferLayout},
renderer::RenderDevice,
texture::GpuImage,
};
use bevy_asset::{Asset, Handle};
use bevy_derive::EnumVariantMeta;
use bevy_ecs::system::{
lifetimeless::{SRes, SResMut},
SystemParamItem,
};
use bevy_math::*;
use bevy_reflect::Reflect;
use bevy_utils::tracing::{error, warn};
use bytemuck::cast_slice;
use std::{collections::BTreeMap, hash::Hash, iter::FusedIterator};
use thiserror::Error;
use wgpu::{
util::BufferInitDescriptor, BufferUsages, IndexFormat, VertexAttribute, VertexFormat,
VertexStepMode,
};
use super::{MeshVertexBufferLayoutRef, MeshVertexBufferLayouts};
pub const INDEX_BUFFER_ASSET_INDEX: u64 = 0;
pub const VERTEX_ATTRIBUTE_BUFFER_ID: u64 = 10;
/// A 3D object made out of vertices representing triangles, lines, or points,
/// with "attribute" values for each vertex.
///
/// Meshes can be automatically generated by a bevy `AssetLoader` (generally by loading a `Gltf` file),
/// or by converting a [primitive](bevy_math::primitives) using [`into`](Into).
/// It is also possible to create one manually.
/// They can be edited after creation.
///
/// Meshes can be rendered with a `Material`, like `StandardMaterial` in `PbrBundle`
/// or `ColorMaterial` in `ColorMesh2dBundle`.
///
/// A [`Mesh`] in Bevy is equivalent to a "primitive" in the glTF format, for a
/// glTF Mesh representation, see `GltfMesh`.
///
/// ## Manual creation
///
/// The following function will construct a flat mesh, to be rendered with a
/// `StandardMaterial` or `ColorMaterial`:
/// ```
/// # use bevy_render::mesh::{Mesh, Indices};
/// # use bevy_render::render_resource::PrimitiveTopology;
/// # use bevy_render::render_asset::RenderAssetUsages;
/// fn create_simple_parallelogram() -> Mesh {
/// // Create a new mesh using a triangle list topology, where each set of 3 vertices composes a triangle.
/// Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::default())
/// // Add 4 vertices, each with its own position attribute (coordinate in
/// // 3D space), for each of the corners of the parallelogram.
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_POSITION,
/// vec![[0.0, 0.0, 0.0], [1.0, 2.0, 0.0], [2.0, 2.0, 0.0], [1.0, 0.0, 0.0]]
/// )
/// // Assign a UV coordinate to each vertex.
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_UV_0,
/// vec![[0.0, 1.0], [0.5, 0.0], [1.0, 0.0], [0.5, 1.0]]
/// )
/// // Assign normals (everything points outwards)
/// .with_inserted_attribute(
/// Mesh::ATTRIBUTE_NORMAL,
/// vec![[0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0]]
/// )
/// // After defining all the vertices and their attributes, build each triangle using the
/// // indices of the vertices that make it up in a counter-clockwise order.
/// .with_inserted_indices(Indices::U32(vec![
/// // First triangle
/// 0, 3, 1,
/// // Second triangle
/// 1, 3, 2
/// ]))
/// }
/// ```
///
/// You can see how it looks like [here](https://github.com/bevyengine/bevy/blob/main/assets/docs/Mesh.png),
/// used in a `PbrBundle` with a square bevy logo texture, with added axis, points,
/// lines and text for clarity.
///
/// ## Other examples
///
/// For further visualization, explanation, and examples, see the built-in Bevy examples,
/// and the [implementation of the built-in shapes](https://github.com/bevyengine/bevy/tree/main/crates/bevy_render/src/mesh/primitives).
/// In particular, [generate_custom_mesh](https://github.com/bevyengine/bevy/blob/main/examples/3d/generate_custom_mesh.rs)
/// teaches you to access modify a Mesh's attributes after creating it.
///
/// ## Common points of confusion
///
/// - UV maps in Bevy start at the top-left, see [`ATTRIBUTE_UV_0`](Mesh::ATTRIBUTE_UV_0),
/// other APIs can have other conventions, `OpenGL` starts at bottom-left.
/// - It is possible and sometimes useful for multiple vertices to have the same
/// [position attribute](Mesh::ATTRIBUTE_POSITION) value,
/// it's a common technique in 3D modelling for complex UV mapping or other calculations.
/// - Bevy performs frustum culling based on the [`Aabb`] of meshes, which is calculated
/// and added automatically for new meshes only. If a mesh is modified, the entity's [`Aabb`]
/// needs to be updated manually or deleted so that it is re-calculated.
///
/// ## Use with `StandardMaterial`
///
/// To render correctly with `StandardMaterial`, a mesh needs to have properly defined:
/// - [`UVs`](Mesh::ATTRIBUTE_UV_0): Bevy needs to know how to map a texture onto the mesh
/// (also true for `ColorMaterial`).
/// - [`Normals`](Mesh::ATTRIBUTE_NORMAL): Bevy needs to know how light interacts with your mesh.
/// [0.0, 0.0, 1.0] is very common for simple flat meshes on the XY plane,
/// because simple meshes are smooth and they don't require complex light calculations.
/// - Vertex winding order: by default, `StandardMaterial.cull_mode` is [`Some(Face::Back)`](crate::render_resource::Face),
/// which means that Bevy would *only* render the "front" of each triangle, which
/// is the side of the triangle from where the vertices appear in a *counter-clockwise* order.
#[derive(Asset, Debug, Clone, Reflect)]
pub struct Mesh {
#[reflect(ignore)]
primitive_topology: PrimitiveTopology,
/// `std::collections::BTreeMap` with all defined vertex attributes (Positions, Normals, ...)
/// for this mesh. Attribute ids to attribute values.
/// Uses a [`BTreeMap`] because, unlike `HashMap`, it has a defined iteration order,
/// which allows easy stable `VertexBuffers` (i.e. same buffer order)
#[reflect(ignore)]
attributes: BTreeMap<MeshVertexAttributeId, MeshAttributeData>,
indices: Option<Indices>,
morph_targets: Option<Handle<Image>>,
morph_target_names: Option<Vec<String>>,
pub asset_usage: RenderAssetUsages,
}
impl Mesh {
/// Where the vertex is located in space. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x3`].
pub const ATTRIBUTE_POSITION: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Position", 0, VertexFormat::Float32x3);
/// The direction the vertex normal is facing in.
/// Use in conjunction with [`Mesh::insert_attribute`] or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x3`].
pub const ATTRIBUTE_NORMAL: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Normal", 1, VertexFormat::Float32x3);
/// Texture coordinates for the vertex. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// Generally `[0.,0.]` is mapped to the top left of the texture, and `[1.,1.]` to the bottom-right.
///
/// By default values outside will be clamped per pixel not for the vertex,
/// "stretching" the borders of the texture.
/// This behavior can be useful in some cases, usually when the borders have only
/// one color, for example a logo, and you want to "extend" those borders.
///
/// For different mapping outside of `0..=1` range,
/// see [`ImageAddressMode`](crate::texture::ImageAddressMode).
///
/// The format of this attribute is [`VertexFormat::Float32x2`].
pub const ATTRIBUTE_UV_0: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Uv", 2, VertexFormat::Float32x2);
/// Alternate texture coordinates for the vertex. Use in conjunction with
/// [`Mesh::insert_attribute`] or [`Mesh::with_inserted_attribute`].
///
/// Typically, these are used for lightmaps, textures that provide
/// precomputed illumination.
///
/// The format of this attribute is [`VertexFormat::Float32x2`].
pub const ATTRIBUTE_UV_1: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Uv_1", 3, VertexFormat::Float32x2);
/// The direction of the vertex tangent. Used for normal mapping.
/// Usually generated with [`generate_tangents`](Mesh::generate_tangents) or
/// [`with_generated_tangents`](Mesh::with_generated_tangents).
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_TANGENT: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Tangent", 4, VertexFormat::Float32x4);
/// Per vertex coloring. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_COLOR: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_Color", 5, VertexFormat::Float32x4);
/// Per vertex joint transform matrix weight. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Float32x4`].
pub const ATTRIBUTE_JOINT_WEIGHT: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_JointWeight", 6, VertexFormat::Float32x4);
/// Per vertex joint transform matrix index. Use in conjunction with [`Mesh::insert_attribute`]
/// or [`Mesh::with_inserted_attribute`].
///
/// The format of this attribute is [`VertexFormat::Uint16x4`].
pub const ATTRIBUTE_JOINT_INDEX: MeshVertexAttribute =
MeshVertexAttribute::new("Vertex_JointIndex", 7, VertexFormat::Uint16x4);
/// Construct a new mesh. You need to provide a [`PrimitiveTopology`] so that the
/// renderer knows how to treat the vertex data. Most of the time this will be
/// [`PrimitiveTopology::TriangleList`].
pub fn new(primitive_topology: PrimitiveTopology, asset_usage: RenderAssetUsages) -> Self {
Mesh {
primitive_topology,
attributes: Default::default(),
indices: None,
morph_targets: None,
morph_target_names: None,
asset_usage,
}
}
/// Returns the topology of the mesh.
pub fn primitive_topology(&self) -> PrimitiveTopology {
self.primitive_topology
}
/// Sets the data for a vertex attribute (position, normal, etc.). The name will
/// often be one of the associated constants such as [`Mesh::ATTRIBUTE_POSITION`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
///
/// # Panics
/// Panics when the format of the values does not match the attribute's format.
#[inline]
pub fn insert_attribute(
&mut self,
attribute: MeshVertexAttribute,
values: impl Into<VertexAttributeValues>,
) {
let values = values.into();
let values_format = VertexFormat::from(&values);
if values_format != attribute.format {
panic!(
"Failed to insert attribute. Invalid attribute format for {}. Given format is {values_format:?} but expected {:?}",
attribute.name, attribute.format
);
}
self.attributes
.insert(attribute.id, MeshAttributeData { attribute, values });
}
/// Consumes the mesh and returns a mesh with data set for a vertex attribute (position, normal, etc.).
/// The name will often be one of the associated constants such as [`Mesh::ATTRIBUTE_POSITION`].
///
/// (Alternatively, you can use [`Mesh::insert_attribute`] to mutate an existing mesh in-place)
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
///
/// # Panics
/// Panics when the format of the values does not match the attribute's format.
#[must_use]
#[inline]
pub fn with_inserted_attribute(
mut self,
attribute: MeshVertexAttribute,
values: impl Into<VertexAttributeValues>,
) -> Self {
self.insert_attribute(attribute, values);
self
}
/// Removes the data for a vertex attribute
pub fn remove_attribute(
&mut self,
attribute: impl Into<MeshVertexAttributeId>,
) -> Option<VertexAttributeValues> {
self.attributes
.remove(&attribute.into())
.map(|data| data.values)
}
/// Consumes the mesh and returns a mesh without the data for a vertex attribute
///
/// (Alternatively, you can use [`Mesh::remove_attribute`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_removed_attribute(mut self, attribute: impl Into<MeshVertexAttributeId>) -> Self {
self.remove_attribute(attribute);
self
}
#[inline]
pub fn contains_attribute(&self, id: impl Into<MeshVertexAttributeId>) -> bool {
self.attributes.contains_key(&id.into())
}
/// Retrieves the data currently set to the vertex attribute with the specified `name`.
#[inline]
pub fn attribute(
&self,
id: impl Into<MeshVertexAttributeId>,
) -> Option<&VertexAttributeValues> {
self.attributes.get(&id.into()).map(|data| &data.values)
}
/// Retrieves the data currently set to the vertex attribute with the specified `name` mutably.
#[inline]
pub fn attribute_mut(
&mut self,
id: impl Into<MeshVertexAttributeId>,
) -> Option<&mut VertexAttributeValues> {
self.attributes
.get_mut(&id.into())
.map(|data| &mut data.values)
}
/// Returns an iterator that yields references to the data of each vertex attribute.
pub fn attributes(
&self,
) -> impl Iterator<Item = (MeshVertexAttributeId, &VertexAttributeValues)> {
self.attributes.iter().map(|(id, data)| (*id, &data.values))
}
/// Returns an iterator that yields mutable references to the data of each vertex attribute.
pub fn attributes_mut(
&mut self,
) -> impl Iterator<Item = (MeshVertexAttributeId, &mut VertexAttributeValues)> {
self.attributes
.iter_mut()
.map(|(id, data)| (*id, &mut data.values))
}
/// Sets the vertex indices of the mesh. They describe how triangles are constructed out of the
/// vertex attributes and are therefore only useful for the [`PrimitiveTopology`] variants
/// that use triangles.
#[inline]
pub fn insert_indices(&mut self, indices: Indices) {
self.indices = Some(indices);
}
/// Consumes the mesh and returns a mesh with the given vertex indices. They describe how triangles
/// are constructed out of the vertex attributes and are therefore only useful for the
/// [`PrimitiveTopology`] variants that use triangles.
///
/// (Alternatively, you can use [`Mesh::insert_indices`] to mutate an existing mesh in-place)
#[must_use]
#[inline]
pub fn with_inserted_indices(mut self, indices: Indices) -> Self {
self.insert_indices(indices);
self
}
/// Retrieves the vertex `indices` of the mesh.
#[inline]
pub fn indices(&self) -> Option<&Indices> {
self.indices.as_ref()
}
/// Retrieves the vertex `indices` of the mesh mutably.
#[inline]
pub fn indices_mut(&mut self) -> Option<&mut Indices> {
self.indices.as_mut()
}
/// Removes the vertex `indices` from the mesh and returns them.
#[inline]
pub fn remove_indices(&mut self) -> Option<Indices> {
std::mem::take(&mut self.indices)
}
/// Consumes the mesh and returns a mesh without the vertex `indices` of the mesh.
///
/// (Alternatively, you can use [`Mesh::remove_indices`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_removed_indices(mut self) -> Self {
self.remove_indices();
self
}
/// Returns the size of a vertex in bytes.
pub fn get_vertex_size(&self) -> u64 {
self.attributes
.values()
.map(|data| data.attribute.format.get_size())
.sum()
}
/// Computes and returns the index data of the mesh as bytes.
/// This is used to transform the index data into a GPU friendly format.
pub fn get_index_buffer_bytes(&self) -> Option<&[u8]> {
self.indices.as_ref().map(|indices| match &indices {
Indices::U16(indices) => cast_slice(&indices[..]),
Indices::U32(indices) => cast_slice(&indices[..]),
})
}
/// Get this `Mesh`'s [`MeshVertexBufferLayout`], used in [`SpecializedMeshPipeline`].
///
/// [`SpecializedMeshPipeline`]: crate::render_resource::SpecializedMeshPipeline
pub fn get_mesh_vertex_buffer_layout(
&self,
mesh_vertex_buffer_layouts: &mut MeshVertexBufferLayouts,
) -> MeshVertexBufferLayoutRef {
let mut attributes = Vec::with_capacity(self.attributes.len());
let mut attribute_ids = Vec::with_capacity(self.attributes.len());
let mut accumulated_offset = 0;
for (index, data) in self.attributes.values().enumerate() {
attribute_ids.push(data.attribute.id);
attributes.push(VertexAttribute {
offset: accumulated_offset,
format: data.attribute.format,
shader_location: index as u32,
});
accumulated_offset += data.attribute.format.get_size();
}
let layout = MeshVertexBufferLayout {
layout: VertexBufferLayout {
array_stride: accumulated_offset,
step_mode: VertexStepMode::Vertex,
attributes,
},
attribute_ids,
};
mesh_vertex_buffer_layouts.insert(layout)
}
/// Counts all vertices of the mesh.
///
/// If the attributes have different vertex counts, the smallest is returned.
pub fn count_vertices(&self) -> usize {
let mut vertex_count: Option<usize> = None;
for (attribute_id, attribute_data) in &self.attributes {
let attribute_len = attribute_data.values.len();
if let Some(previous_vertex_count) = vertex_count {
if previous_vertex_count != attribute_len {
let name = self
.attributes
.get(attribute_id)
.map(|data| data.attribute.name.to_string())
.unwrap_or_else(|| format!("{attribute_id:?}"));
warn!("{name} has a different vertex count ({attribute_len}) than other attributes ({previous_vertex_count}) in this mesh, \
all attributes will be truncated to match the smallest.");
vertex_count = Some(std::cmp::min(previous_vertex_count, attribute_len));
}
} else {
vertex_count = Some(attribute_len);
}
}
vertex_count.unwrap_or(0)
}
/// Computes and returns the vertex data of the mesh as bytes.
/// Therefore the attributes are located in the order of their [`MeshVertexAttribute::id`].
/// This is used to transform the vertex data into a GPU friendly format.
///
/// If the vertex attributes have different lengths, they are all truncated to
/// the length of the smallest.
pub fn get_vertex_buffer_data(&self) -> Vec<u8> {
let mut vertex_size = 0;
for attribute_data in self.attributes.values() {
let vertex_format = attribute_data.attribute.format;
vertex_size += vertex_format.get_size() as usize;
}
let vertex_count = self.count_vertices();
let mut attributes_interleaved_buffer = vec![0; vertex_count * vertex_size];
// bundle into interleaved buffers
let mut attribute_offset = 0;
for attribute_data in self.attributes.values() {
let attribute_size = attribute_data.attribute.format.get_size() as usize;
let attributes_bytes = attribute_data.values.get_bytes();
for (vertex_index, attribute_bytes) in attributes_bytes
.chunks_exact(attribute_size)
.take(vertex_count)
.enumerate()
{
let offset = vertex_index * vertex_size + attribute_offset;
attributes_interleaved_buffer[offset..offset + attribute_size]
.copy_from_slice(attribute_bytes);
}
attribute_offset += attribute_size;
}
attributes_interleaved_buffer
}
/// Duplicates the vertex attributes so that no vertices are shared.
///
/// This can dramatically increase the vertex count, so make sure this is what you want.
/// Does nothing if no [Indices] are set.
#[allow(clippy::match_same_arms)]
pub fn duplicate_vertices(&mut self) {
fn duplicate<T: Copy>(values: &[T], indices: impl Iterator<Item = usize>) -> Vec<T> {
indices.map(|i| values[i]).collect()
}
let Some(indices) = self.indices.take() else {
return;
};
for attributes in self.attributes.values_mut() {
let indices = indices.iter();
match &mut attributes.values {
VertexAttributeValues::Float32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x3(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Float32x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm16x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm16x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm8x2(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Sint8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Snorm8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Uint8x4(vec) => *vec = duplicate(vec, indices),
VertexAttributeValues::Unorm8x4(vec) => *vec = duplicate(vec, indices),
}
}
}
/// Consumes the mesh and returns a mesh with no shared vertices.
///
/// This can dramatically increase the vertex count, so make sure this is what you want.
/// Does nothing if no [Indices] are set.
///
/// (Alternatively, you can use [`Mesh::duplicate_vertices`] to mutate an existing mesh in-place)
#[must_use]
pub fn with_duplicated_vertices(mut self) -> Self {
self.duplicate_vertices();
self
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of a mesh.
/// If the mesh is indexed, this defaults to smooth normals. Otherwise, it defaults to flat
/// normals.
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_normals(&mut self) {
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_normals` can only work on `TriangleList`s"
);
if self.indices().is_none() {
self.compute_flat_normals();
} else {
self.compute_smooth_normals();
}
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of a mesh.
///
/// # Panics
/// Panics if [`Indices`] are set or [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Consider calling [`Mesh::duplicate_vertices`] or exporting your mesh with normal
/// attributes.
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_flat_normals(&mut self) {
assert!(
self.indices().is_none(),
"`compute_flat_normals` can't work on indexed geometry. Consider calling either `Mesh::compute_smooth_normals` or `Mesh::duplicate_vertices` followed by `Mesh::compute_flat_normals`."
);
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_flat_normals` can only work on `TriangleList`s"
);
let positions = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.unwrap()
.as_float3()
.expect("`Mesh::ATTRIBUTE_POSITION` vertex attributes should be of type `float3`");
let normals: Vec<_> = positions
.chunks_exact(3)
.map(|p| face_normal(p[0], p[1], p[2]))
.flat_map(|normal| [normal; 3])
.collect();
self.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
}
/// Calculates the [`Mesh::ATTRIBUTE_NORMAL`] of an indexed mesh, smoothing normals for shared
/// vertices.
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh does not have indices defined.
///
/// FIXME: This should handle more cases since this is called as a part of gltf
/// mesh loading where we can't really blame users for loading meshes that might
/// not conform to the limitations here!
pub fn compute_smooth_normals(&mut self) {
assert!(
matches!(self.primitive_topology, PrimitiveTopology::TriangleList),
"`compute_smooth_normals` can only work on `TriangleList`s"
);
assert!(
self.indices().is_some(),
"`compute_smooth_normals` can only work on indexed meshes"
);
let positions = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.unwrap()
.as_float3()
.expect("`Mesh::ATTRIBUTE_POSITION` vertex attributes should be of type `float3`");
let mut normals = vec![Vec3::ZERO; positions.len()];
let mut adjacency_counts = vec![0_usize; positions.len()];
self.indices()
.unwrap()
.iter()
.collect::<Vec<usize>>()
.chunks_exact(3)
.for_each(|face| {
let [a, b, c] = [face[0], face[1], face[2]];
let normal = Vec3::from(face_normal(positions[a], positions[b], positions[c]));
[a, b, c].iter().for_each(|pos| {
normals[*pos] += normal;
adjacency_counts[*pos] += 1;
});
});
// average (smooth) normals for shared vertices...
// TODO: support different methods of weighting the average
for i in 0..normals.len() {
let count = adjacency_counts[i];
if count > 0 {
normals[i] = (normals[i] / (count as f32)).normalize();
}
}
self.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals);
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
/// If the mesh is indexed, this defaults to smooth normals. Otherwise, it defaults to flat
/// normals.
///
/// (Alternatively, you can use [`Mesh::compute_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
#[must_use]
pub fn with_computed_normals(mut self) -> Self {
self.compute_normals();
self
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
///
/// (Alternatively, you can use [`Mesh::compute_flat_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh has indices defined
#[must_use]
pub fn with_computed_flat_normals(mut self) -> Self {
self.compute_flat_normals();
self
}
/// Consumes the mesh and returns a mesh with calculated [`Mesh::ATTRIBUTE_NORMAL`].
///
/// (Alternatively, you can use [`Mesh::compute_smooth_normals`] to mutate an existing mesh in-place)
///
/// # Panics
/// Panics if [`Mesh::ATTRIBUTE_POSITION`] is not of type `float3`.
/// Panics if the mesh has any other topology than [`PrimitiveTopology::TriangleList`].
/// Panics if the mesh does not have indices defined.
#[must_use]
pub fn with_computed_smooth_normals(mut self) -> Self {
self.compute_smooth_normals();
self
}
/// Generate tangents for the mesh using the `mikktspace` algorithm.
///
/// Sets the [`Mesh::ATTRIBUTE_TANGENT`] attribute if successful.
/// Requires a [`PrimitiveTopology::TriangleList`] topology and the [`Mesh::ATTRIBUTE_POSITION`], [`Mesh::ATTRIBUTE_NORMAL`] and [`Mesh::ATTRIBUTE_UV_0`] attributes set.
pub fn generate_tangents(&mut self) -> Result<(), GenerateTangentsError> {
let tangents = generate_tangents_for_mesh(self)?;
self.insert_attribute(Mesh::ATTRIBUTE_TANGENT, tangents);
Ok(())
}
/// Consumes the mesh and returns a mesh with tangents generated using the `mikktspace` algorithm.
///
/// The resulting mesh will have the [`Mesh::ATTRIBUTE_TANGENT`] attribute if successful.
///
/// (Alternatively, you can use [`Mesh::generate_tangents`] to mutate an existing mesh in-place)
///
/// Requires a [`PrimitiveTopology::TriangleList`] topology and the [`Mesh::ATTRIBUTE_POSITION`], [`Mesh::ATTRIBUTE_NORMAL`] and [`Mesh::ATTRIBUTE_UV_0`] attributes set.
pub fn with_generated_tangents(mut self) -> Result<Mesh, GenerateTangentsError> {
self.generate_tangents()?;
Ok(self)
}
/// Merges the [`Mesh`] data of `other` with `self`. The attributes and indices of `other` will be appended to `self`.
///
/// Note that attributes of `other` that don't exist on `self` will be ignored.
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
///
/// # Panics
///
/// Panics if the vertex attribute values of `other` are incompatible with `self`.
/// For example, [`VertexAttributeValues::Float32`] is incompatible with [`VertexAttributeValues::Float32x3`].
#[allow(clippy::match_same_arms)]
pub fn merge(&mut self, other: &Mesh) {
use VertexAttributeValues::*;
// The indices of `other` should start after the last vertex of `self`.
let index_offset = self
.attribute(Mesh::ATTRIBUTE_POSITION)
.get_or_insert(&VertexAttributeValues::Float32x3(Vec::default()))
.len();
// Extend attributes of `self` with attributes of `other`.
for (id, values) in self.attributes_mut() {
let enum_variant_name = values.enum_variant_name();
if let Some(other_values) = other.attribute(id) {
match (values, other_values) {
(Float32(vec1), Float32(vec2)) => vec1.extend(vec2),
(Sint32(vec1), Sint32(vec2)) => vec1.extend(vec2),
(Uint32(vec1), Uint32(vec2)) => vec1.extend(vec2),
(Float32x2(vec1), Float32x2(vec2)) => vec1.extend(vec2),
(Sint32x2(vec1), Sint32x2(vec2)) => vec1.extend(vec2),
(Uint32x2(vec1), Uint32x2(vec2)) => vec1.extend(vec2),
(Float32x3(vec1), Float32x3(vec2)) => vec1.extend(vec2),
(Sint32x3(vec1), Sint32x3(vec2)) => vec1.extend(vec2),
(Uint32x3(vec1), Uint32x3(vec2)) => vec1.extend(vec2),
(Sint32x4(vec1), Sint32x4(vec2)) => vec1.extend(vec2),
(Uint32x4(vec1), Uint32x4(vec2)) => vec1.extend(vec2),
(Float32x4(vec1), Float32x4(vec2)) => vec1.extend(vec2),
(Sint16x2(vec1), Sint16x2(vec2)) => vec1.extend(vec2),
(Snorm16x2(vec1), Snorm16x2(vec2)) => vec1.extend(vec2),
(Uint16x2(vec1), Uint16x2(vec2)) => vec1.extend(vec2),
(Unorm16x2(vec1), Unorm16x2(vec2)) => vec1.extend(vec2),
(Sint16x4(vec1), Sint16x4(vec2)) => vec1.extend(vec2),
(Snorm16x4(vec1), Snorm16x4(vec2)) => vec1.extend(vec2),
(Uint16x4(vec1), Uint16x4(vec2)) => vec1.extend(vec2),
(Unorm16x4(vec1), Unorm16x4(vec2)) => vec1.extend(vec2),
(Sint8x2(vec1), Sint8x2(vec2)) => vec1.extend(vec2),
(Snorm8x2(vec1), Snorm8x2(vec2)) => vec1.extend(vec2),
(Uint8x2(vec1), Uint8x2(vec2)) => vec1.extend(vec2),
(Unorm8x2(vec1), Unorm8x2(vec2)) => vec1.extend(vec2),
(Sint8x4(vec1), Sint8x4(vec2)) => vec1.extend(vec2),
(Snorm8x4(vec1), Snorm8x4(vec2)) => vec1.extend(vec2),
(Uint8x4(vec1), Uint8x4(vec2)) => vec1.extend(vec2),
(Unorm8x4(vec1), Unorm8x4(vec2)) => vec1.extend(vec2),
_ => panic!(
"Incompatible vertex attribute types {} and {}",
enum_variant_name,
other_values.enum_variant_name()
),
}
}
}
// Extend indices of `self` with indices of `other`.
if let (Some(indices), Some(other_indices)) = (self.indices_mut(), other.indices()) {
match (indices, other_indices) {
(Indices::U16(i1), Indices::U16(i2)) => {
i1.extend(i2.iter().map(|i| *i + index_offset as u16));
}
(Indices::U32(i1), Indices::U32(i2)) => {
i1.extend(i2.iter().map(|i| *i + index_offset as u32));
}
(Indices::U16(i1), Indices::U32(i2)) => {
i1.extend(i2.iter().map(|i| *i as u16 + index_offset as u16));
}
(Indices::U32(i1), Indices::U16(i2)) => {
i1.extend(i2.iter().map(|i| *i as u32 + index_offset as u32));
}
}
}
}
/// Transforms the vertex positions, normals, and tangents of the mesh by the given [`Transform`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn transformed_by(mut self, transform: Transform) -> Self {
self.transform_by(transform);
self
}
/// Transforms the vertex positions, normals, and tangents of the mesh in place by the given [`Transform`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn transform_by(&mut self, transform: Transform) {
// Needed when transforming normals and tangents
let scale_recip = 1. / transform.scale;
debug_assert!(
transform.scale.yzx() * transform.scale.zxy() != Vec3::ZERO,
"mesh transform scale cannot be zero on more than one axis"
);
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply scale, rotation, and translation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = transform.transform_point(Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if rotation is near identity and scale is uniform
if transform.rotation.is_near_identity()
&& transform.scale.x == transform.scale.y
&& transform.scale.y == transform.scale.z
{
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals, taking into account non-uniform scaling and rotation
normals.iter_mut().for_each(|normal| {
*normal = (transform.rotation
* scale_normal(Vec3::from_array(*normal), scale_recip))
.to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents, taking into account non-uniform scaling and rotation
tangents.iter_mut().for_each(|tangent| {
let scaled_tangent = Vec3::from_slice(tangent) * transform.scale;
*tangent = (transform.rotation * scaled_tangent.normalize_or_zero()).to_array();
});
}
}
/// Translates the vertex positions of the mesh by the given [`Vec3`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn translated_by(mut self, translation: Vec3) -> Self {
self.translate_by(translation);
self
}
/// Translates the vertex positions of the mesh in place by the given [`Vec3`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn translate_by(&mut self, translation: Vec3) {
if translation == Vec3::ZERO {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply translation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (Vec3::from_slice(pos) + translation).to_array());
}
}
/// Rotates the vertex positions, normals, and tangents of the mesh by the given [`Quat`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn rotated_by(mut self, rotation: Quat) -> Self {
self.rotate_by(rotation);
self
}
/// Rotates the vertex positions, normals, and tangents of the mesh in place by the given [`Quat`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn rotate_by(&mut self, rotation: Quat) {
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply rotation to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (rotation * Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if rotation is near identity
if rotation.is_near_identity() {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals
normals.iter_mut().for_each(|normal| {
*normal = (rotation * Vec3::from_slice(normal).normalize_or_zero()).to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents
tangents.iter_mut().for_each(|tangent| {
*tangent = (rotation * Vec3::from_slice(tangent).normalize_or_zero()).to_array();
});
}
}
/// Scales the vertex positions, normals, and tangents of the mesh by the given [`Vec3`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn scaled_by(mut self, scale: Vec3) -> Self {
self.scale_by(scale);
self
}
/// Scales the vertex positions, normals, and tangents of the mesh in place by the given [`Vec3`].
///
/// [`Aabb`] of entities with modified mesh are not updated automatically.
pub fn scale_by(&mut self, scale: Vec3) {
// Needed when transforming normals and tangents
let scale_recip = 1. / scale;
debug_assert!(
scale.yzx() * scale.zxy() != Vec3::ZERO,
"mesh transform scale cannot be zero on more than one axis"
);
if let Some(VertexAttributeValues::Float32x3(ref mut positions)) =
self.attribute_mut(Mesh::ATTRIBUTE_POSITION)
{
// Apply scale to vertex positions
positions
.iter_mut()
.for_each(|pos| *pos = (scale * Vec3::from_slice(pos)).to_array());
}
// No need to transform normals or tangents if scale is uniform
if scale.x == scale.y && scale.y == scale.z {
return;
}
if let Some(VertexAttributeValues::Float32x3(ref mut normals)) =
self.attribute_mut(Mesh::ATTRIBUTE_NORMAL)
{
// Transform normals, taking into account non-uniform scaling
normals.iter_mut().for_each(|normal| {
*normal = scale_normal(Vec3::from_array(*normal), scale_recip).to_array();
});
}
if let Some(VertexAttributeValues::Float32x3(ref mut tangents)) =
self.attribute_mut(Mesh::ATTRIBUTE_TANGENT)
{
// Transform tangents, taking into account non-uniform scaling
tangents.iter_mut().for_each(|tangent| {
let scaled_tangent = Vec3::from_slice(tangent) * scale;
*tangent = scaled_tangent.normalize_or_zero().to_array();
});
}
}
/// Compute the Axis-Aligned Bounding Box of the mesh vertices in model space
///
/// Returns `None` if `self` doesn't have [`Mesh::ATTRIBUTE_POSITION`] of
/// type [`VertexAttributeValues::Float32x3`], or if `self` doesn't have any vertices.
pub fn compute_aabb(&self) -> Option<Aabb> {