-
Notifications
You must be signed in to change notification settings - Fork 9
/
train_simclr.py
585 lines (484 loc) · 25.5 KB
/
train_simclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import getpass
import itertools
import json
import logging
import os
import random
import shutil
# Imports for yaspi
import sys
import time
import warnings
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchsummary
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from numpy.linalg import matrix_power
import hybrid_resnet
import moco.builder
import moco.loader
from yaspi.yaspi import Yaspi
os.environ['KMP_WARNINGS'] = '0'
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch Quantum self-sup training')
parser.add_argument('-d', '--datadir', metavar='DIR', default='./data', help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
choices=model_names,
help='model arch: {"|".join(model_names)} (default: resnet50)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--epoch-size', default=50000, type=int,
help='size of training set to use (default:50000, size of CIFAR10)')
parser.add_argument('--classes', default=10, type=int,
help='Number of classes in the training set (default:10)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[320, 360], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--save-freq', default=1, type=int,
metavar='N', help='Save trained model every x epochs or batches (see --save-batches)')
parser.add_argument('--save-batches', dest='save_batches', action='store_true',
help='Save model every x batches rather than epochs')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--fdim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--temperature', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--sigtemp', default=1.0, type=float,
help='Pre-quantum Sigmoid temperature (default: 1.0)')
parser.add_argument('--batchnorm', dest='batchnorm', action='store_true',
help='If enabled, apply BatchNorm1d to the input of the pre-quantum Sigmoid.')
parser.add_argument('--identity', dest='identity', action='store_true',
help='If enabled, the test network is replaced by the identity. The previous and subsequent layer '
'still compress to n_qubits however.')
parser.add_argument('-w', '--width', type=int, default=8,
help='Width of the test network (default: 8). If quantum, this is the number of qubits.')
parser.add_argument('--layers', type=int, default=2,
help='Number of layers in the test network (default: 2).')
parser.add_argument('-q', '--quantum', dest='quantum', action='store_true',
help='If enabled, use a minimised version of ResNet-18 with QNet as the final layer')
parser.add_argument('--q_backend', type=str, default='qasm_simulator',
help='Type of backend simulator to run quantum circuits on (default: qasm_simulator)')
parser.add_argument('--encoding', type=str, default='vector',
help='Data encoding method (default: vector)')
parser.add_argument('--q_ansatz', type=str, default='sim_circ_14_half',
help='Variational ansatz method (default: sim_circ_14_half)')
parser.add_argument('--q_sweeps', type=int, default=1,
help='Number of ansatz sweeeps.')
parser.add_argument('--activation', type=str, default='null',
help='Quantum layer activation function type (default: null)')
parser.add_argument('--shots', type=int, default=100,
help='Number of shots for quantum circuit evaluations.')
parser.add_argument('--save-dhs', action='store_true',
help='If enabled, compute the Hilbert-Schmidt distance of the quantum statevectors belonging to'
' each class. Only works for -q and --classes 2.')
parser.add_argument('--save-overlap', action='store_true',
help='If enabled, compute the overlap between statevectors corresponding to positive training'
'pairs. Saves average for overlap of each batch.')
parser.add_argument('--submission-time', type=str, default='',
help='Date and time of yaspify submission to create output directory.')
# --------------------------------------------------------------------------------
# cluster grid optionsssh
parser.add_argument("--yaspify", action="store_true")
parser.add_argument("--slurm", action="store_true")
parser.add_argument("--worker_id", type=int, default=0)
parser.add_argument("--yaspi_defaults_path", default="yaspi_train_defaults.json")
parser.add_argument("--exp_config", default="yaspi_train.json", type=Path)
# --------------------------------------------------------------------------------
def main():
args = parser.parse_args()
# --------------------------------------------------------------------------------
# Support cluster grid search
if args.yaspify:
# Load cluster job options
with open(args.yaspi_defaults_path, "r") as f:
yaspi_defaults = json.load(f)
# Load experiment hyperparams for the demo
with open(args.exp_config, "r") as f:
exp_kwargs = json.load(f)
cmd_args = sys.argv
cmd_args.remove("--yaspify")
cmd_args.append('--submission-time')
cmd_args.append(datetime.now().strftime(r"%Y-%m-%d_%H-%M-%S"))
base_cmd = f"python {' '.join(cmd_args)} --slurm"
job_name = f"train-simclr-{args.exp_config.stem}"
# compute cartesian product of options
job_queue = []
hparam_vals = [x for x in exp_kwargs.values()]
grid_vals = list(itertools.product(*hparam_vals))
hparams = list(exp_kwargs)
for vals in grid_vals:
kwargs = " ".join(f"--{hparam} {val}" for hparam, val in zip(hparams, vals))
job_queue.append(f'"{kwargs}"')
job = Yaspi(
cmd=base_cmd,
job_queue=" ".join(job_queue),
job_name=job_name,
job_array_size=len(job_queue),
**yaspi_defaults,
)
job.submit(watch=True, conserve_resources=5)
else:
if args.slurm:
# add any cluster-specific setup you need to do here. E.g. I run a script
# sets up some temporary symlinks
if getpass.getuser() == "albanie":
os.system(str(Path.home() / "configure_tmp_data.sh"))
print('=' * 30)
print('==> Training Setting: \n {}'.format(args))
print('=' * 30)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print('=' * 30)
print("Use GPU: {} for training".format(args.gpu))
print('=' * 30)
# create model
print("=> creating model '{}'".format(args.arch))
model = moco.builder.SimCLR(hybrid_resnet.resnet18, args.width, args)
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
print('=> Training with CPU.')
torchsummary.summary(model, (3, 32, 32))
# define loss function (criterion) and optimizer
criterion = None
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Normalization for ImageNet
# normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
# Normalization for CIFAR
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
augmentation = [
transforms.RandomResizedCrop(32, scale=(0.2, 1.0)),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
# transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
normalize
]
train_dataset = datasets.CIFAR10(root=args.datadir, train=True, download=True,
transform=moco.loader.TwoCropsTransform(
transforms.Compose(augmentation)))
train_labels = np.array(train_dataset.targets)
num_classes = args.classes
train_idx = np.array(
[np.where(train_labels == i)[0][:int(args.epoch_size / num_classes)] for i in range(0, num_classes)]).flatten()
train_dataset.targets = train_labels[train_idx]
train_dataset.data = train_dataset.data[train_idx]
if len(train_idx) < args.epoch_size:
logging.warning(
f"Requested epoch size ({args.epoch_size}) is greater than available images for chosen classes "
f"({len(train_idx)}). Training will use the set of available images, output files will save requested "
f"epoch size.")
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
model_path = create_output_model_path(args)
print('Training model saved at {}'.format(model_path))
with open(os.path.join(model_path, "train_args.json"), 'w') as fp:
args.exp_config = str(args.exp_config)
json.dump(vars(args), fp)
repr_network_params = []
dhs_list = []
dhs_positive_pair_list = []
overlap_list = []
loss_list = []
# Wipe metric information accumulated during TorchSummary
if hasattr(model.encoder.repr_network[0], 'qnn'):
model.encoder.repr_network[0].qnn.gradients = []
model.encoder.repr_network[0].qnn.statevectors = []
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, model_path, criterion, optimizer, epoch, args, repr_network_params, dhs_list,
dhs_positive_pair_list,
overlap_list, loss_list)
if not args.save_batches:
fname = 'checkpoint_{:04d}.path.tar'.format(epoch)
checkpoint_name = os.path.join(model_path, fname)
if epoch % args.save_freq == 0 or epoch == args.epochs - 1:
ckpt = {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
save_checkpoint(ckpt, is_best=False, filename=checkpoint_name)
def train(train_loader, model, model_path, criterion, optimizer, epoch, args, repr_network_params, dhs_list,
dhs_positive_pair_list, overlap_list, loss_list):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top2],
prefix="Epoch: [{}/{}]".format(epoch, args.epochs))
# switch to train mode
model.train()
end = time.time()
for batch_index, (images, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# Wipe the previous quantum statevectors
if hasattr(model.encoder.repr_network[0], 'qnn'):
model.encoder.repr_network[0].qnn.statevectors = []
# Labels are NOT used for training, only for quantum metrics
labels = _
target = torch.zeros(2 * args.batch_size, dtype=torch.long)
if args.gpu is not None:
images[0] = images[0].cuda(args.gpu, non_blocking=True)
images[1] = images[1].cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
out_1 = model(x=images[0])
out_2 = model(x=images[1])
# [2*B, D]
out = torch.cat([out_1, out_2], dim=0)
# [2*B, 2*B]
sim_matrix = torch.exp(torch.mm(out, out.t().contiguous()) / args.temperature)
mask = (torch.ones_like(sim_matrix) - torch.eye(2 * args.batch_size, device=sim_matrix.device)).type(torch.bool)
# [2*B, 2*B-1]
sim_matrix = sim_matrix.masked_select(mask).view(2 * args.batch_size, -1)
# compute loss
pos_sim = torch.exp(torch.sum(out_1 * out_2, dim=-1) / args.temperature)
# [2*B]
pos_sim = torch.cat([pos_sim, pos_sim], dim=0)
loss = (- torch.log(pos_sim / sim_matrix.sum(dim=-1))).mean()
loss_list.append(loss.item())
# to compute acc, concate the positive and negatives
M = torch.cat([pos_sim.view(2 * args.batch_size, 1), sim_matrix], dim=-1)
acc1, acc2 = accuracy(M, target, topk=(1, 2))
losses.update(loss.item(), images[0].size(0))
top1.update(acc1[0], 2 * args.batch_size)
top2.update(acc2[0], 2 * args.batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if batch_index % args.print_freq == 0:
progress.display(batch_index)
if args.save_batches:
if batch_index % args.save_freq == 0 or batch_index == np.floor(args.epoch_size / args.batch_size):
fname = 'checkpoint_{:04d}_{:04d}.path.tar'.format(epoch, batch_index)
checkpoint_name = os.path.join(model_path, fname)
ckpt = {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
save_checkpoint(ckpt, is_best=False, filename=checkpoint_name)
if not args.identity:
parameters = list(model.encoder.repr_network[0].parameters())
repr_network_params.append(parameters[0].detach().cpu().numpy().flatten().tolist())
metrics_name = os.path.join(model_path, 'training_metrics')
if hasattr(model.encoder.repr_network[0], 'qnn'):
gradients = model.encoder.repr_network[0].qnn.gradients
if args.q_backend == 'statevector_simulator':
statevectors = np.array(model.encoder.repr_network[0].qnn.statevectors)
if args.save_dhs:
labels = np.array(labels)
total_labels = np.append(labels, labels)
class_0_statevectors = statevectors[total_labels == 0]
class_1_statevectors = statevectors[total_labels != 0]
rho = np.mean([np.outer(vector, np.conj(vector)) for vector in class_0_statevectors],
axis=0)
sigma = np.mean([np.outer(vector, np.conj(vector)) for vector in class_1_statevectors],
axis=0)
rho_squared = np.trace(matrix_power(rho, 2))
sigma_squared = np.trace(matrix_power(sigma, 2))
rho_sigma = np.trace(np.matmul(rho, sigma))
dhs = np.trace(matrix_power((rho - sigma), 2))
dhs_list.append([rho_squared.real, sigma_squared.real, rho_sigma.real, dhs.real])
# Calculate DHS for positive pair as one class
aug_1_statevectors = statevectors[:int(len(statevectors) / 2)]
aug_2_statevectors = statevectors[int(len(statevectors) / 2):]
positive_pairs = list(zip(aug_1_statevectors, aug_2_statevectors))
rhos = []
sigmas = []
for i, positive_pair in enumerate(positive_pairs):
rho = np.mean([np.outer(vector, np.conj(vector)) for vector in positive_pair], axis=0)
rhos.append(rho)
negatives = positive_pairs[:i] + positive_pairs[i + 1:]
sigma = np.mean(
[np.outer(vector, np.conj(vector)) for pair in negatives for vector in pair],
axis=0)
sigmas.append(sigma)
average_rho_squared = np.mean([np.trace(matrix_power(rho, 2)) for rho in rhos], axis=0)
average_sigma_squared = np.mean([np.trace(matrix_power(sigma, 2)) for sigma in sigmas],
axis=0)
average_rho_sigma = np.mean(
[np.trace(np.matmul(rho, sigma)) for (rho, sigma) in zip(rhos, sigmas)], axis=0)
average_dhs = np.mean(
[np.trace(matrix_power((rho - sigma), 2)) for (rho, sigma) in zip(rhos, sigmas)],
axis=0)
dhs_positive_pair_list.append(
[average_rho_squared.real, average_sigma_squared.real, average_rho_sigma.real,
average_dhs.real])
if args.save_overlap:
aug_1_statevectors = statevectors[:int(len(statevectors) / 2)]
aug_2_statevectors = statevectors[int(len(statevectors) / 2):]
positive_pairs_overlaps = [abs(np.dot(np.conj(vec_1), vec_2)) ** 2 for (vec_1, vec_2)
in zip(aug_1_statevectors, aug_2_statevectors)]
overlap_list.append(np.mean(positive_pairs_overlaps))
else:
gradients = []
np.save(metrics_name, np.array([loss_list, repr_network_params, gradients, dhs_list,
dhs_positive_pair_list, overlap_list], dtype=object))
def create_output_model_path(args, version=0):
if args.quantum:
model_path = os.path.join('model', 'selfsup', 'simclr', args.submission_time,
'SimCLR-{}-quantum_{}-backend_{}-classes_{}--ansatz_{}-netwidth_{}-nlayers_{}'
'-nsweeps_{}-activation_{}-shots_{}-epochsize_{}-bsize_{}-tepochs_{}_{}'.format(
args.arch, args.quantum, args.q_backend, args.classes, args.q_ansatz, args.width,
args.layers, args.q_sweeps, args.activation, args.shots, args.epoch_size,
args.batch_size, args.epochs, version))
else:
model_path = os.path.join('model', 'selfsup', 'simclr', args.submission_time,
'SimCLR-{}-quantum_{}-classes_{}-netwidth_{}-nlayers_{}-identity_{}-epochsize_{}-'
'bsize_{}-tepochs_{}_{}'.format(
args.arch, args.quantum, args.classes, args.width, args.layers, args.identity,
args.epoch_size, args.batch_size, args.epochs, version))
if os.path.exists(model_path):
return create_output_model_path(args, version=version + 1)
else:
os.makedirs(model_path)
return model_path
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logging.info('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1, 2)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()