-
Notifications
You must be signed in to change notification settings - Fork 23
/
surf.cpp
993 lines (878 loc) · 39 KB
/
surf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/* Original code has been submitted by Liu Liu. Here is the copyright.
----------------------------------------------------------------------------------
* An OpenCV Implementation of SURF
* Further Information Refer to "SURF: Speed-Up Robust Feature"
* Author: Liu Liu
* liuliu.1987+opencv@gmail.com
*
* There are still serveral lacks for this experimental implementation:
* 1.The interpolation of sub-pixel mentioned in article was not implemented yet;
* 2.A comparision with original libSurf.so shows that the hessian detector is not a 100% match to their implementation;
* 3.Due to above reasons, I recommanded the original one for study and reuse;
*
* However, the speed of this implementation is something comparable to original one.
*
* Copyright© 2008, Liu Liu All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
* The name of Contributor may not be used to endorse or
* promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
The following changes have been made, comparing to the original contribution:
1. A lot of small optimizations, less memory allocations, got rid of global buffers
2. Reversed order of cvGetQuadrangleSubPix and cvResize calls; probably less accurate, but much faster
3. The descriptor computing part (which is most expensive) is threaded using OpenMP
(subpixel-accurate keypoint localization and scale estimation are still TBD)
*/
/*
KeyPoint position and scale interpolation has been implemented as described in
the Brown and Lowe paper cited by the SURF paper.
The sampling step along the x and y axes of the image for the determinant of the
Hessian is now the same for each layer in an octave. While this increases the
computation time, it ensures that a true 3x3x3 neighbourhood exists, with
samples calculated at the same position in the layers above and below. This
results in improved maxima detection and non-maxima suppression, and I think it
is consistent with the description in the SURF paper.
The wavelet size sampling interval has also been made consistent. The wavelet
size at the first layer of the first octave is now 9 instead of 7. Along with
regular position sampling steps, this makes location and scale interpolation
easy. I think this is consistent with the SURF paper and original
implementation.
The scaling of the wavelet parameters has been fixed to ensure that the patterns
are symmetric around the centre. Previously the truncation caused by integer
division in the scaling ratio caused a bias towards the top left of the wavelet,
resulting in inconsistent keypoint positions.
The matrices for the determinant and trace of the Hessian are now reused in each
octave.
The extraction of the patch of pixels surrounding a keypoint used to build a
descriptor has been simplified.
KeyPoint descriptor normalisation has been changed from normalising each 4x4
cell (resulting in a descriptor of magnitude 16) to normalising the entire
descriptor to magnitude 1.
The default number of octaves has been increased from 3 to 4 to match the
original SURF binary default. The increase in computation time is minimal since
the higher octaves are sampled sparsely.
The default number of layers per octave has been reduced from 3 to 2, to prevent
redundant calculation of similar sizes in consecutive octaves. This decreases
computation time. The number of features extracted may be less, however the
additional features were mostly redundant.
The radius of the circle of gradient samples used to assign an orientation has
been increased from 4 to 6 to match the description in the SURF paper. This is
now defined by ORI_RADIUS, and could be made into a parameter.
The size of the sliding window used in orientation assignment has been reduced
from 120 to 60 degrees to match the description in the SURF paper. This is now
defined by ORI_WIN, and could be made into a parameter.
Other options like HAAR_SIZE0, HAAR_SIZE_INC, SAMPLE_STEP0, ORI_SEARCH_INC,
ORI_SIGMA and DESC_SIGMA have been separated from the code and documented.
These could also be made into parameters.
Modifications by Ian Mahon
*/
#include "precomp.hpp"
namespace cv
{
static const int SURF_ORI_SEARCH_INC = 5;
static const float SURF_ORI_SIGMA = 2.5f;
static const float SURF_DESC_SIGMA = 3.3f;
// Wavelet size at first layer of first octave.
static const int SURF_HAAR_SIZE0 = 9;
// Wavelet size increment between layers. This should be an even number,
// such that the wavelet sizes in an octave are either all even or all odd.
// This ensures that when looking for the neighbours of a sample, the layers
// above and below are aligned correctly.
static const int SURF_HAAR_SIZE_INC = 6;
struct SurfHF
{
int p0, p1, p2, p3;
float w;
SurfHF(): p0(0), p1(0), p2(0), p3(0), w(0) {}
};
inline float calcHaarPattern( const int* origin, const SurfHF* f, int n )
{
double d = 0;
for( int k = 0; k < n; k++ )
d += (origin[f[k].p0] + origin[f[k].p3] - origin[f[k].p1] - origin[f[k].p2])*f[k].w;
return (float)d;
}
static void
resizeHaarPattern( const int src[][5], SurfHF* dst, int n, int oldSize, int newSize, int widthStep )
{
float ratio = (float)newSize/oldSize;
for( int k = 0; k < n; k++ )
{
int dx1 = cvRound( ratio*src[k][0] );
int dy1 = cvRound( ratio*src[k][1] );
int dx2 = cvRound( ratio*src[k][2] );
int dy2 = cvRound( ratio*src[k][3] );
dst[k].p0 = dy1*widthStep + dx1;
dst[k].p1 = dy2*widthStep + dx1;
dst[k].p2 = dy1*widthStep + dx2;
dst[k].p3 = dy2*widthStep + dx2;
dst[k].w = src[k][4]/((float)(dx2-dx1)*(dy2-dy1));
}
}
/*
* Calculate the determinant and trace of the Hessian for a layer of the
* scale-space pyramid
*/
static void calcLayerDetAndTrace( const Mat& sum, int size, int sampleStep,
Mat& det, Mat& trace )
{
const int NX=3, NY=3, NXY=4;
const int dx_s[NX][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
const int dy_s[NY][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
const int dxy_s[NXY][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
SurfHF Dx[NX], Dy[NY], Dxy[NXY];
if( size > sum.rows-1 || size > sum.cols-1 )
return;
resizeHaarPattern( dx_s , Dx , NX , 9, size, sum.cols );
resizeHaarPattern( dy_s , Dy , NY , 9, size, sum.cols );
resizeHaarPattern( dxy_s, Dxy, NXY, 9, size, sum.cols );
/* The integral image 'sum' is one pixel bigger than the source image */
int samples_i = 1+(sum.rows-1-size)/sampleStep;
int samples_j = 1+(sum.cols-1-size)/sampleStep;
/* Ignore pixels where some of the kernel is outside the image */
int margin = (size/2)/sampleStep;
for( int i = 0; i < samples_i; i++ )
{
const int* sum_ptr = sum.ptr<int>(i*sampleStep);
float* det_ptr = &det.at<float>(i+margin, margin);
float* trace_ptr = &trace.at<float>(i+margin, margin);
for( int j = 0; j < samples_j; j++ )
{
float dx = calcHaarPattern( sum_ptr, Dx , 3 );
float dy = calcHaarPattern( sum_ptr, Dy , 3 );
float dxy = calcHaarPattern( sum_ptr, Dxy, 4 );
sum_ptr += sampleStep;
det_ptr[j] = dx*dy - 0.81f*dxy*dxy;
trace_ptr[j] = dx + dy;
}
}
}
/*
* Maxima location interpolation as described in "Invariant Features from
* Interest Point Groups" by Matthew Brown and David Lowe. This is performed by
* fitting a 3D quadratic to a set of neighbouring samples.
*
* The gradient vector and Hessian matrix at the initial keypoint location are
* approximated using central differences. The linear system Ax = b is then
* solved, where A is the Hessian, b is the negative gradient, and x is the
* offset of the interpolated maxima coordinates from the initial estimate.
* This is equivalent to an iteration of Netwon's optimisation algorithm.
*
* N9 contains the samples in the 3x3x3 neighbourhood of the maxima
* dx is the sampling step in x
* dy is the sampling step in y
* ds is the sampling step in size
* point contains the keypoint coordinates and scale to be modified
*
* Return value is 1 if interpolation was successful, 0 on failure.
*/
static int
interpolateKeypoint( float N9[3][9], int dx, int dy, int ds, KeyPoint& kpt )
{
Vec3f b(-(N9[1][5]-N9[1][3])/2, // Negative 1st deriv with respect to x
-(N9[1][7]-N9[1][1])/2, // Negative 1st deriv with respect to y
-(N9[2][4]-N9[0][4])/2); // Negative 1st deriv with respect to s
Matx33f A(
N9[1][3]-2*N9[1][4]+N9[1][5], // 2nd deriv x, x
(N9[1][8]-N9[1][6]-N9[1][2]+N9[1][0])/4, // 2nd deriv x, y
(N9[2][5]-N9[2][3]-N9[0][5]+N9[0][3])/4, // 2nd deriv x, s
(N9[1][8]-N9[1][6]-N9[1][2]+N9[1][0])/4, // 2nd deriv x, y
N9[1][1]-2*N9[1][4]+N9[1][7], // 2nd deriv y, y
(N9[2][7]-N9[2][1]-N9[0][7]+N9[0][1])/4, // 2nd deriv y, s
(N9[2][5]-N9[2][3]-N9[0][5]+N9[0][3])/4, // 2nd deriv x, s
(N9[2][7]-N9[2][1]-N9[0][7]+N9[0][1])/4, // 2nd deriv y, s
N9[0][4]-2*N9[1][4]+N9[2][4]); // 2nd deriv s, s
Vec3f x = A.solve(b, DECOMP_LU);
bool ok = (x[0] != 0 || x[1] != 0 || x[2] != 0) &&
std::abs(x[0]) <= 1 && std::abs(x[1]) <= 1 && std::abs(x[2]) <= 1;
if( ok )
{
kpt.pt.x += x[0]*dx;
kpt.pt.y += x[1]*dy;
kpt.size = (float)cvRound( kpt.size + x[2]*ds );
}
return ok;
}
// Multi-threaded construction of the scale-space pyramid
struct SURFBuildInvoker : ParallelLoopBody
{
SURFBuildInvoker( const Mat& _sum, const vector<int>& _sizes,
const vector<int>& _sampleSteps,
vector<Mat>& _dets, vector<Mat>& _traces )
{
sum = &_sum;
sizes = &_sizes;
sampleSteps = &_sampleSteps;
dets = &_dets;
traces = &_traces;
}
void operator()(const Range& range) const
{
for( int i=range.start; i<range.end; i++ )
calcLayerDetAndTrace( *sum, (*sizes)[i], (*sampleSteps)[i], (*dets)[i], (*traces)[i] );
}
const Mat *sum;
const vector<int> *sizes;
const vector<int> *sampleSteps;
vector<Mat>* dets;
vector<Mat>* traces;
};
// Multi-threaded search of the scale-space pyramid for keypoints
struct SURFFindInvoker : ParallelLoopBody
{
SURFFindInvoker( const Mat& _sum, const Mat& _mask_sum,
const vector<Mat>& _dets, const vector<Mat>& _traces,
const vector<int>& _sizes, const vector<int>& _sampleSteps,
const vector<int>& _middleIndices, vector<KeyPoint>& _keypoints,
int _nOctaveLayers, float _hessianThreshold )
{
sum = &_sum;
mask_sum = &_mask_sum;
dets = &_dets;
traces = &_traces;
sizes = &_sizes;
sampleSteps = &_sampleSteps;
middleIndices = &_middleIndices;
keypoints = &_keypoints;
nOctaveLayers = _nOctaveLayers;
hessianThreshold = _hessianThreshold;
}
static void findMaximaInLayer( const Mat& sum, const Mat& mask_sum,
const vector<Mat>& dets, const vector<Mat>& traces,
const vector<int>& sizes, vector<KeyPoint>& keypoints,
int octave, int layer, float hessianThreshold, int sampleStep );
void operator()(const Range& range) const
{
for( int i=range.start; i<range.end; i++ )
{
int layer = (*middleIndices)[i];
int octave = i / nOctaveLayers;
findMaximaInLayer( *sum, *mask_sum, *dets, *traces, *sizes,
*keypoints, octave, layer, hessianThreshold,
(*sampleSteps)[layer] );
}
}
const Mat *sum;
const Mat *mask_sum;
const vector<Mat>* dets;
const vector<Mat>* traces;
const vector<int>* sizes;
const vector<int>* sampleSteps;
const vector<int>* middleIndices;
vector<KeyPoint>* keypoints;
int nOctaveLayers;
float hessianThreshold;
static Mutex findMaximaInLayer_m;
};
Mutex SURFFindInvoker::findMaximaInLayer_m;
/*
* Find the maxima in the determinant of the Hessian in a layer of the
* scale-space pyramid
*/
void SURFFindInvoker::findMaximaInLayer( const Mat& sum, const Mat& mask_sum,
const vector<Mat>& dets, const vector<Mat>& traces,
const vector<int>& sizes, vector<KeyPoint>& keypoints,
int octave, int layer, float hessianThreshold, int sampleStep )
{
// Wavelet Data
const int NM=1;
const int dm[NM][5] = { {0, 0, 9, 9, 1} };
SurfHF Dm;
int size = sizes[layer];
// The integral image 'sum' is one pixel bigger than the source image
int layer_rows = (sum.rows-1)/sampleStep;
int layer_cols = (sum.cols-1)/sampleStep;
// Ignore pixels without a 3x3x3 neighbourhood in the layer above
int margin = (sizes[layer+1]/2)/sampleStep+1;
if( !mask_sum.empty() )
resizeHaarPattern( dm, &Dm, NM, 9, size, mask_sum.cols );
int step = (int)(dets[layer].step/dets[layer].elemSize());
for( int i = margin; i < layer_rows - margin; i++ )
{
const float* det_ptr = dets[layer].ptr<float>(i);
const float* trace_ptr = traces[layer].ptr<float>(i);
for( int j = margin; j < layer_cols-margin; j++ )
{
float val0 = det_ptr[j];
if( val0 > hessianThreshold )
{
/* Coordinates for the start of the wavelet in the sum image. There
is some integer division involved, so don't try to simplify this
(cancel out sampleStep) without checking the result is the same */
int sum_i = sampleStep*(i-(size/2)/sampleStep);
int sum_j = sampleStep*(j-(size/2)/sampleStep);
/* The 3x3x3 neighbouring samples around the maxima.
The maxima is included at N9[1][4] */
const float *det1 = &dets[layer-1].at<float>(i, j);
const float *det2 = &dets[layer].at<float>(i, j);
const float *det3 = &dets[layer+1].at<float>(i, j);
float N9[3][9] = { { det1[-step-1], det1[-step], det1[-step+1],
det1[-1] , det1[0] , det1[1],
det1[step-1] , det1[step] , det1[step+1] },
{ det2[-step-1], det2[-step], det2[-step+1],
det2[-1] , det2[0] , det2[1],
det2[step-1] , det2[step] , det2[step+1] },
{ det3[-step-1], det3[-step], det3[-step+1],
det3[-1] , det3[0] , det3[1],
det3[step-1] , det3[step] , det3[step+1] } };
/* Check the mask - why not just check the mask at the center of the wavelet? */
if( !mask_sum.empty() )
{
const int* mask_ptr = &mask_sum.at<int>(sum_i, sum_j);
float mval = calcHaarPattern( mask_ptr, &Dm, 1 );
if( mval < 0.5 )
continue;
}
/* Non-maxima suppression. val0 is at N9[1][4]*/
if( val0 > N9[0][0] && val0 > N9[0][1] && val0 > N9[0][2] &&
val0 > N9[0][3] && val0 > N9[0][4] && val0 > N9[0][5] &&
val0 > N9[0][6] && val0 > N9[0][7] && val0 > N9[0][8] &&
val0 > N9[1][0] && val0 > N9[1][1] && val0 > N9[1][2] &&
val0 > N9[1][3] && val0 > N9[1][5] &&
val0 > N9[1][6] && val0 > N9[1][7] && val0 > N9[1][8] &&
val0 > N9[2][0] && val0 > N9[2][1] && val0 > N9[2][2] &&
val0 > N9[2][3] && val0 > N9[2][4] && val0 > N9[2][5] &&
val0 > N9[2][6] && val0 > N9[2][7] && val0 > N9[2][8] )
{
/* Calculate the wavelet center coordinates for the maxima */
float center_i = sum_i + (size-1)*0.5f;
float center_j = sum_j + (size-1)*0.5f;
KeyPoint kpt( center_j, center_i, (float)sizes[layer],
-1, val0, octave, CV_SIGN(trace_ptr[j]) );
/* Interpolate maxima location within the 3x3x3 neighbourhood */
int ds = size - sizes[layer-1];
int interp_ok = interpolateKeypoint( N9, sampleStep, sampleStep, ds, kpt );
/* Sometimes the interpolation step gives a negative size etc. */
if( interp_ok )
{
/*printf( "KeyPoint %f %f %d\n", point.pt.x, point.pt.y, point.size );*/
cv::AutoLock lock(findMaximaInLayer_m);
keypoints.push_back(kpt);
}
}
}
}
}
}
struct KeypointGreater
{
inline bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) const
{
if(kp1.response > kp2.response) return true;
if(kp1.response < kp2.response) return false;
if(kp1.size > kp2.size) return true;
if(kp1.size < kp2.size) return false;
if(kp1.octave > kp2.octave) return true;
if(kp1.octave < kp2.octave) return false;
if(kp1.pt.y < kp2.pt.y) return false;
if(kp1.pt.y > kp2.pt.y) return true;
return kp1.pt.x < kp2.pt.x;
}
};
static void fastHessianDetector( const Mat& sum, const Mat& mask_sum, vector<KeyPoint>& keypoints,
int nOctaves, int nOctaveLayers, float hessianThreshold )
{
/* Sampling step along image x and y axes at first octave. This is doubled
for each additional octave. WARNING: Increasing this improves speed,
however keypoint extraction becomes unreliable. */
const int SAMPLE_STEP0 = 1;
int nTotalLayers = (nOctaveLayers+2)*nOctaves;
int nMiddleLayers = nOctaveLayers*nOctaves;
vector<Mat> dets(nTotalLayers);
vector<Mat> traces(nTotalLayers);
vector<int> sizes(nTotalLayers);
vector<int> sampleSteps(nTotalLayers);
vector<int> middleIndices(nMiddleLayers);
keypoints.clear();
// Allocate space and calculate properties of each layer
int index = 0, middleIndex = 0, step = SAMPLE_STEP0;
for( int octave = 0; octave < nOctaves; octave++ )
{
for( int layer = 0; layer < nOctaveLayers+2; layer++ )
{
/* The integral image sum is one pixel bigger than the source image*/
dets[index].create( (sum.rows-1)/step, (sum.cols-1)/step, CV_32F );
traces[index].create( (sum.rows-1)/step, (sum.cols-1)/step, CV_32F );
sizes[index] = (SURF_HAAR_SIZE0 + SURF_HAAR_SIZE_INC*layer) << octave;
sampleSteps[index] = step;
if( 0 < layer && layer <= nOctaveLayers )
middleIndices[middleIndex++] = index;
index++;
}
step *= 2;
}
// Calculate hessian determinant and trace samples in each layer
parallel_for_( Range(0, nTotalLayers),
SURFBuildInvoker(sum, sizes, sampleSteps, dets, traces) );
// Find maxima in the determinant of the hessian
parallel_for_( Range(0, nMiddleLayers),
SURFFindInvoker(sum, mask_sum, dets, traces, sizes,
sampleSteps, middleIndices, keypoints,
nOctaveLayers, hessianThreshold) );
std::sort(keypoints.begin(), keypoints.end(), KeypointGreater());
}
struct SURFInvoker : ParallelLoopBody
{
enum { ORI_RADIUS = 6, ORI_WIN = 60, PATCH_SZ = 20 };
SURFInvoker( const Mat& _img, const Mat& _sum,
vector<KeyPoint>& _keypoints, Mat& _descriptors,
bool _extended, bool _upright )
{
keypoints = &_keypoints;
descriptors = &_descriptors;
img = &_img;
sum = &_sum;
extended = _extended;
upright = _upright;
// Simple bound for number of grid points in circle of radius ORI_RADIUS
const int nOriSampleBound = (2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
// Allocate arrays
apt.resize(nOriSampleBound);
aptw.resize(nOriSampleBound);
DW.resize(PATCH_SZ*PATCH_SZ);
/* Coordinates and weights of samples used to calculate orientation */
Mat G_ori = getGaussianKernel( 2*ORI_RADIUS+1, SURF_ORI_SIGMA, CV_32F );
nOriSamples = 0;
for( int i = -ORI_RADIUS; i <= ORI_RADIUS; i++ )
{
for( int j = -ORI_RADIUS; j <= ORI_RADIUS; j++ )
{
if( i*i + j*j <= ORI_RADIUS*ORI_RADIUS )
{
apt[nOriSamples] = cvPoint(i,j);
aptw[nOriSamples++] = G_ori.at<float>(i+ORI_RADIUS,0) * G_ori.at<float>(j+ORI_RADIUS,0);
}
}
}
CV_Assert( nOriSamples <= nOriSampleBound );
/* Gaussian used to weight descriptor samples */
Mat G_desc = getGaussianKernel( PATCH_SZ, SURF_DESC_SIGMA, CV_32F );
for( int i = 0; i < PATCH_SZ; i++ )
{
for( int j = 0; j < PATCH_SZ; j++ )
DW[i*PATCH_SZ+j] = G_desc.at<float>(i,0) * G_desc.at<float>(j,0);
}
}
void operator()(const Range& range) const
{
/* X and Y gradient wavelet data */
const int NX=2, NY=2;
const int dx_s[NX][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
const int dy_s[NY][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
// Optimisation is better using nOriSampleBound than nOriSamples for
// array lengths. Maybe because it is a constant known at compile time
const int nOriSampleBound =(2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
float X[nOriSampleBound], Y[nOriSampleBound], angle[nOriSampleBound];
uchar PATCH[PATCH_SZ+1][PATCH_SZ+1];
float DX[PATCH_SZ][PATCH_SZ], DY[PATCH_SZ][PATCH_SZ];
CvMat matX = cvMat(1, nOriSampleBound, CV_32F, X);
CvMat matY = cvMat(1, nOriSampleBound, CV_32F, Y);
CvMat _angle = cvMat(1, nOriSampleBound, CV_32F, angle);
Mat _patch(PATCH_SZ+1, PATCH_SZ+1, CV_8U, PATCH);
int dsize = extended ? 128 : 64;
int k, k1 = range.start, k2 = range.end;
float maxSize = 0;
for( k = k1; k < k2; k++ )
{
maxSize = std::max(maxSize, (*keypoints)[k].size);
}
int imaxSize = std::max(cvCeil((PATCH_SZ+1)*maxSize*1.2f/9.0f), 1);
Ptr<CvMat> winbuf = cvCreateMat( 1, imaxSize*imaxSize, CV_8U );
for( k = k1; k < k2; k++ )
{
int i, j, kk, nangle;
float* vec;
SurfHF dx_t[NX], dy_t[NY];
KeyPoint& kp = (*keypoints)[k];
float size = kp.size;
Point2f center = kp.pt;
/* The sampling intervals and wavelet sized for selecting an orientation
and building the keypoint descriptor are defined relative to 's' */
float s = size*1.2f/9.0f;
/* To find the dominant orientation, the gradients in x and y are
sampled in a circle of radius 6s using wavelets of size 4s.
We ensure the gradient wavelet size is even to ensure the
wavelet pattern is balanced and symmetric around its center */
int grad_wav_size = 2*cvRound( 2*s );
if( sum->rows < grad_wav_size || sum->cols < grad_wav_size )
{
/* when grad_wav_size is too big,
* the sampling of gradient will be meaningless
* mark keypoint for deletion. */
kp.size = -1;
continue;
}
float descriptor_dir = 360.f - 90.f;
if (upright == 0)
{
resizeHaarPattern( dx_s, dx_t, NX, 4, grad_wav_size, sum->cols );
resizeHaarPattern( dy_s, dy_t, NY, 4, grad_wav_size, sum->cols );
for( kk = 0, nangle = 0; kk < nOriSamples; kk++ )
{
int x = cvRound( center.x + apt[kk].x*s - (float)(grad_wav_size-1)/2 );
int y = cvRound( center.y + apt[kk].y*s - (float)(grad_wav_size-1)/2 );
if( y < 0 || y >= sum->rows - grad_wav_size ||
x < 0 || x >= sum->cols - grad_wav_size )
continue;
const int* ptr = &sum->at<int>(y, x);
float vx = calcHaarPattern( ptr, dx_t, 2 );
float vy = calcHaarPattern( ptr, dy_t, 2 );
X[nangle] = vx*aptw[kk];
Y[nangle] = vy*aptw[kk];
nangle++;
}
if( nangle == 0 )
{
// No gradient could be sampled because the keypoint is too
// near too one or more of the sides of the image. As we
// therefore cannot find a dominant direction, we skip this
// keypoint and mark it for later deletion from the sequence.
kp.size = -1;
continue;
}
matX.cols = matY.cols = _angle.cols = nangle;
cvCartToPolar( &matX, &matY, 0, &_angle, 1 );
float bestx = 0, besty = 0, descriptor_mod = 0;
for( i = 0; i < 360; i += SURF_ORI_SEARCH_INC )
{
float sumx = 0, sumy = 0, temp_mod;
for( j = 0; j < nangle; j++ )
{
int d = std::abs(cvRound(angle[j]) - i);
if( d < ORI_WIN/2 || d > 360-ORI_WIN/2 )
{
sumx += X[j];
sumy += Y[j];
}
}
temp_mod = sumx*sumx + sumy*sumy;
if( temp_mod > descriptor_mod )
{
descriptor_mod = temp_mod;
bestx = sumx;
besty = sumy;
}
}
descriptor_dir = fastAtan2( -besty, bestx );
}
kp.angle = descriptor_dir;
if( !descriptors || !descriptors->data )
continue;
/* Extract a window of pixels around the keypoint of size 20s */
int win_size = (int)((PATCH_SZ+1)*s);
CV_Assert( winbuf->cols >= win_size*win_size );
Mat win(win_size, win_size, CV_8U, winbuf->data.ptr);
if( !upright )
{
descriptor_dir *= (float)(CV_PI/180);
float sin_dir = -std::sin(descriptor_dir);
float cos_dir = std::cos(descriptor_dir);
/* Subpixel interpolation version (slower). Subpixel not required since
the pixels will all get averaged when we scale down to 20 pixels */
/*
float w[] = { cos_dir, sin_dir, center.x,
-sin_dir, cos_dir , center.y };
CvMat W = cvMat(2, 3, CV_32F, w);
cvGetQuadrangleSubPix( img, &win, &W );
*/
float win_offset = -(float)(win_size-1)/2;
float start_x = center.x + win_offset*cos_dir + win_offset*sin_dir;
float start_y = center.y - win_offset*sin_dir + win_offset*cos_dir;
uchar* WIN = win.data;
#if 0
// Nearest neighbour version (faster)
for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
{
float pixel_x = start_x;
float pixel_y = start_y;
for( j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
{
int x = std::min(std::max(cvRound(pixel_x), 0), img->cols-1);
int y = std::min(std::max(cvRound(pixel_y), 0), img->rows-1);
WIN[i*win_size + j] = img->at<uchar>(y, x);
}
}
#else
int ncols1 = img->cols-1, nrows1 = img->rows-1;
size_t imgstep = img->step;
for( i = 0; i < win_size; i++, start_x += sin_dir, start_y += cos_dir )
{
double pixel_x = start_x;
double pixel_y = start_y;
for( j = 0; j < win_size; j++, pixel_x += cos_dir, pixel_y -= sin_dir )
{
int ix = cvFloor(pixel_x), iy = cvFloor(pixel_y);
if( (unsigned)ix < (unsigned)ncols1 &&
(unsigned)iy < (unsigned)nrows1 )
{
float a = (float)(pixel_x - ix), b = (float)(pixel_y - iy);
const uchar* imgptr = &img->at<uchar>(iy, ix);
WIN[i*win_size + j] = (uchar)
cvRound(imgptr[0]*(1.f - a)*(1.f - b) +
imgptr[1]*a*(1.f - b) +
imgptr[imgstep]*(1.f - a)*b +
imgptr[imgstep+1]*a*b);
}
else
{
int x = std::min(std::max(cvRound(pixel_x), 0), ncols1);
int y = std::min(std::max(cvRound(pixel_y), 0), nrows1);
WIN[i*win_size + j] = img->at<uchar>(y, x);
}
}
}
#endif
}
else
{
// extract rect - slightly optimized version of the code above
// TODO: find faster code, as this is simply an extract rect operation,
// e.g. by using cvGetSubRect, problem is the border processing
// descriptor_dir == 90 grad
// sin_dir == 1
// cos_dir == 0
float win_offset = -(float)(win_size-1)/2;
int start_x = cvRound(center.x + win_offset);
int start_y = cvRound(center.y - win_offset);
uchar* WIN = win.data;
for( i = 0; i < win_size; i++, start_x++ )
{
int pixel_x = start_x;
int pixel_y = start_y;
for( j = 0; j < win_size; j++, pixel_y-- )
{
int x = MAX( pixel_x, 0 );
int y = MAX( pixel_y, 0 );
x = MIN( x, img->cols-1 );
y = MIN( y, img->rows-1 );
WIN[i*win_size + j] = img->at<uchar>(y, x);
}
}
}
// Scale the window to size PATCH_SZ so each pixel's size is s. This
// makes calculating the gradients with wavelets of size 2s easy
resize(win, _patch, _patch.size(), 0, 0, INTER_AREA);
// Calculate gradients in x and y with wavelets of size 2s
for( i = 0; i < PATCH_SZ; i++ )
for( j = 0; j < PATCH_SZ; j++ )
{
float dw = DW[i*PATCH_SZ + j];
float vx = (PATCH[i][j+1] - PATCH[i][j] + PATCH[i+1][j+1] - PATCH[i+1][j])*dw;
float vy = (PATCH[i+1][j] - PATCH[i][j] + PATCH[i+1][j+1] - PATCH[i][j+1])*dw;
DX[i][j] = vx;
DY[i][j] = vy;
}
// Construct the descriptor
vec = descriptors->ptr<float>(k);
for( kk = 0; kk < dsize; kk++ )
vec[kk] = 0;
double square_mag = 0;
if( extended )
{
// 128-bin descriptor
for( i = 0; i < 4; i++ )
for( j = 0; j < 4; j++ )
{
for(int y = i*5; y < i*5+5; y++ )
{
for(int x = j*5; x < j*5+5; x++ )
{
float tx = DX[y][x], ty = DY[y][x];
if( ty >= 0 )
{
vec[0] += tx;
vec[1] += (float)fabs(tx);
} else {
vec[2] += tx;
vec[3] += (float)fabs(tx);
}
if ( tx >= 0 )
{
vec[4] += ty;
vec[5] += (float)fabs(ty);
} else {
vec[6] += ty;
vec[7] += (float)fabs(ty);
}
}
}
for( kk = 0; kk < 8; kk++ )
square_mag += vec[kk]*vec[kk];
vec += 8;
}
}
else
{
// 64-bin descriptor
for( i = 0; i < 4; i++ )
for( j = 0; j < 4; j++ )
{
for(int y = i*5; y < i*5+5; y++ )
{
for(int x = j*5; x < j*5+5; x++ )
{
float tx = DX[y][x], ty = DY[y][x];
vec[0] += tx; vec[1] += ty;
vec[2] += (float)fabs(tx); vec[3] += (float)fabs(ty);
}
}
for( kk = 0; kk < 4; kk++ )
square_mag += vec[kk]*vec[kk];
vec+=4;
}
}
// unit vector is essential for contrast invariance
vec = descriptors->ptr<float>(k);
float scale = (float)(1./(sqrt(square_mag) + DBL_EPSILON));
for( kk = 0; kk < dsize; kk++ )
vec[kk] *= scale;
}
}
// Parameters
const Mat* img;
const Mat* sum;
vector<KeyPoint>* keypoints;
Mat* descriptors;
bool extended;
bool upright;
// Pre-calculated values
int nOriSamples;
vector<Point> apt;
vector<float> aptw;
vector<float> DW;
};
SURF::SURF()
{
hessianThreshold = 100;
extended = false;
upright = false;
nOctaves = 4;
nOctaveLayers = 3;
}
SURF::SURF(double _threshold, int _nOctaves, int _nOctaveLayers, bool _extended, bool _upright)
{
hessianThreshold = _threshold;
extended = _extended;
upright = _upright;
nOctaves = _nOctaves;
nOctaveLayers = _nOctaveLayers;
}
int SURF::descriptorSize() const { return extended ? 128 : 64; }
int SURF::descriptorType() const { return CV_32F; }
void SURF::operator()(InputArray imgarg, InputArray maskarg,
CV_OUT vector<KeyPoint>& keypoints) const
{
(*this)(imgarg, maskarg, keypoints, noArray(), false);
}
void SURF::operator()(InputArray _img, InputArray _mask,
CV_OUT vector<KeyPoint>& keypoints,
OutputArray _descriptors,
bool useProvidedKeypoints) const
{
Mat img = _img.getMat(), mask = _mask.getMat(), mask1, sum, msum;
bool doDescriptors = _descriptors.needed();
CV_Assert(!img.empty() && img.depth() == CV_8U);
if( img.channels() > 1 )
cvtColor(img, img, COLOR_BGR2GRAY);
CV_Assert(mask.empty() || (mask.type() == CV_8U && mask.size() == img.size()));
CV_Assert(hessianThreshold >= 0);
CV_Assert(nOctaves > 0);
CV_Assert(nOctaveLayers > 0);
integral(img, sum, CV_32S);
// Compute keypoints only if we are not asked for evaluating the descriptors are some given locations:
if( !useProvidedKeypoints )
{
if( !mask.empty() )
{
cv::min(mask, 1, mask1);
integral(mask1, msum, CV_32S);
}
fastHessianDetector( sum, msum, keypoints, nOctaves, nOctaveLayers, (float)hessianThreshold );
}
int i, j, N = (int)keypoints.size();
if( N > 0 )
{
Mat descriptors;
bool _1d = false;
int dcols = extended ? 128 : 64;
size_t dsize = dcols*sizeof(float);
if( doDescriptors )
{
_1d = _descriptors.kind() == _InputArray::STD_VECTOR && _descriptors.type() == CV_32F;
if( _1d )
{
_descriptors.create(N*dcols, 1, CV_32F);
descriptors = _descriptors.getMat().reshape(1, N);
}
else
{
_descriptors.create(N, dcols, CV_32F);
descriptors = _descriptors.getMat();
}
}
// we call SURFInvoker in any case, even if we do not need descriptors,
// since it computes orientation of each feature.
parallel_for_(Range(0, N), SURFInvoker(img, sum, keypoints, descriptors, extended, upright) );
// remove keypoints that were marked for deletion
for( i = j = 0; i < N; i++ )
{
if( keypoints[i].size > 0 )
{
if( i > j )
{
keypoints[j] = keypoints[i];
if( doDescriptors )
memcpy( descriptors.ptr(j), descriptors.ptr(i), dsize);
}
j++;
}
}
if( N > j )
{
N = j;
keypoints.resize(N);
if( doDescriptors )
{
Mat d = descriptors.rowRange(0, N);
if( _1d )
d = d.reshape(1, N*dcols);
d.copyTo(_descriptors);
}
}
}
}
void SURF::detectImpl( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
(*this)(image, mask, keypoints, noArray(), false);
}
void SURF::computeImpl( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors) const
{
(*this)(image, Mat(), keypoints, descriptors, true);
}
}