Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AES CMAC in smp.c implemented with hashes #10

Closed
bilaljo opened this issue Jun 17, 2023 · 1 comment
Closed

AES CMAC in smp.c implemented with hashes #10

bilaljo opened this issue Jun 17, 2023 · 1 comment

Comments

@bilaljo
Copy link

bilaljo commented Jun 17, 2023

Hello,

I noticed that inside net/bluetooth/smp.c

https://github.com/bluez/bluetooth-next/blob/master/net/bluetooth/smp.c#L197

is for the aes_cmac a hash function used instead of the AES algorithm.

I suggest this should be replaced by an AES implantation.

@bilaljo
Copy link
Author

bilaljo commented Jun 17, 2023

I noticed now, that the kernel put (for some reason) CMAC inside the shash name space - so never mind.

@bilaljo bilaljo closed this as completed Jun 17, 2023
BluezTestBot pushed a commit that referenced this issue Jun 26, 2023
Currently, the per cpu upcall counters are allocated after the vport is
created and inserted into the system. This could lead to the datapath
accessing the counters before they are allocated resulting in a kernel
Oops.

Here is an example:

  PID: 59693    TASK: ffff0005f4f51500  CPU: 0    COMMAND: "ovs-vswitchd"
   #0 [ffff80000a39b5b0] __switch_to at ffffb70f0629f2f4
   #1 [ffff80000a39b5d0] __schedule at ffffb70f0629f5cc
   #2 [ffff80000a39b650] preempt_schedule_common at ffffb70f0629fa60
   #3 [ffff80000a39b670] dynamic_might_resched at ffffb70f0629fb58
   #4 [ffff80000a39b680] mutex_lock_killable at ffffb70f062a1388
   #5 [ffff80000a39b6a0] pcpu_alloc at ffffb70f0594460c
   #6 [ffff80000a39b750] __alloc_percpu_gfp at ffffb70f05944e68
   #7 [ffff80000a39b760] ovs_vport_cmd_new at ffffb70ee6961b90 [openvswitch]
   ...

  PID: 58682    TASK: ffff0005b2f0bf00  CPU: 0    COMMAND: "kworker/0:3"
   #0 [ffff80000a5d2f40] machine_kexec at ffffb70f056a0758
   #1 [ffff80000a5d2f70] __crash_kexec at ffffb70f057e2994
   #2 [ffff80000a5d3100] crash_kexec at ffffb70f057e2ad8
   #3 [ffff80000a5d3120] die at ffffb70f0628234c
   #4 [ffff80000a5d31e0] die_kernel_fault at ffffb70f062828a8
   #5 [ffff80000a5d3210] __do_kernel_fault at ffffb70f056a31f4
   #6 [ffff80000a5d3240] do_bad_area at ffffb70f056a32a4
   #7 [ffff80000a5d3260] do_translation_fault at ffffb70f062a9710
   #8 [ffff80000a5d3270] do_mem_abort at ffffb70f056a2f74
   #9 [ffff80000a5d32a0] el1_abort at ffffb70f06297dac
  #10 [ffff80000a5d32d0] el1h_64_sync_handler at ffffb70f06299b24
  #11 [ffff80000a5d3410] el1h_64_sync at ffffb70f056812dc
  #12 [ffff80000a5d3430] ovs_dp_upcall at ffffb70ee6963c84 [openvswitch]
  #13 [ffff80000a5d3470] ovs_dp_process_packet at ffffb70ee6963fdc [openvswitch]
  #14 [ffff80000a5d34f0] ovs_vport_receive at ffffb70ee6972c78 [openvswitch]
  #15 [ffff80000a5d36f0] netdev_port_receive at ffffb70ee6973948 [openvswitch]
  #16 [ffff80000a5d3720] netdev_frame_hook at ffffb70ee6973a28 [openvswitch]
  #17 [ffff80000a5d3730] __netif_receive_skb_core.constprop.0 at ffffb70f06079f90

We moved the per cpu upcall counter allocation to the existing vport
alloc and free functions to solve this.

Fixes: 95637d9 ("net: openvswitch: release vport resources on failure")
Fixes: 1933ea3 ("net: openvswitch: Add support to count upcall packets")
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Reviewed-by: Simon Horman <simon.horman@corigine.com>
Acked-by: Aaron Conole <aconole@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Jun 26, 2023
Petr Machata says:

====================
mlxsw: Preparations for out-of-order-operations patches

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to a bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

Over the course of the following several patchsets, mlxsw code is going to
be adjusted to diminish the space of wrongly offloaded configurations.
Ideally the offload state will reflect the actual state, regardless of the
sequence of operation used to construct that state.

No functional changes are intended in this patchset yet. Rather the patches
prepare the codebase for easier introduction of functional changes in later
patchsets.

- In patch #1, extract a helper to join a RIF of a given port, if there is
  one. In patch #2, use it in a newly-added helper to join a LAG interface.

- In patches #3, #4 and #5, add helpers that abstract away the rif->dev
  access. This will make it simpler in the future to change the way the
  deduction is done. In patch #6, do this for deduction from nexthop group
  info to RIF.

- In patch #7, add a helper to destroy a RIF. So far RIF was destroyed
  simply by kfree'ing it.

- In patch #8, add a helper to check if any IP addresses are configured on
  a netdevice. This helper will be useful later.

- In patch #9, add a helper to migrate a RIF. This will be a convenient
  place to put extensions later on.

- Patch #10 move IPIP initialization up to make ipip_ops_arr available
  earlier.
====================

Link: https://lore.kernel.org/r/cover.1686581444.git.petrm@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
BluezTestBot pushed a commit that referenced this issue Jun 27, 2023
The kernel IRQ system needs the irq affinity notifier to be clear
before attempting to free the irq, see WARN_ON log below.

On a normal driver unload we don't have this issue since we do the
complete cleanup of the irq resources.

To fix this, put the important resources cleanup in a helper function
and use it in both normal driver unload and shutdown flows.

[ 4497.498434] ------------[ cut here ]------------
[ 4497.498726] WARNING: CPU: 0 PID: 9 at kernel/irq/manage.c:2034 free_irq+0x295/0x340
[ 4497.499193] Modules linked in:
[ 4497.499386] CPU: 0 PID: 9 Comm: kworker/0:1 Tainted: G        W          6.4.0-rc4+ #10
[ 4497.499876] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-1.fc38 04/01/2014
[ 4497.500518] Workqueue: events do_poweroff
[ 4497.500849] RIP: 0010:free_irq+0x295/0x340
[ 4497.501132] Code: 85 c0 0f 84 1d ff ff ff 48 89 ef ff d0 0f 1f 00 e9 10 ff ff ff 0f 0b e9 72 ff ff ff 49 8d 7f 28 ff d0 0f 1f 00 e9 df fd ff ff <0f> 0b 48 c7 80 c0 008
[ 4497.502269] RSP: 0018:ffffc90000053da0 EFLAGS: 00010282
[ 4497.502589] RAX: ffff888100949600 RBX: ffff88810330b948 RCX: 0000000000000000
[ 4497.503035] RDX: ffff888100949600 RSI: ffff888100400490 RDI: 0000000000000023
[ 4497.503472] RBP: ffff88810330c7e0 R08: ffff8881004005d0 R09: ffffffff8273a260
[ 4497.503923] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8881009ae000
[ 4497.504359] R13: ffff8881009ae148 R14: 0000000000000000 R15: ffff888100949600
[ 4497.504804] FS:  0000000000000000(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000
[ 4497.505302] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4497.505671] CR2: 00007fce98806298 CR3: 000000000262e005 CR4: 0000000000370ef0
[ 4497.506104] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4497.506540] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4497.507002] Call Trace:
[ 4497.507158]  <TASK>
[ 4497.507299]  ? free_irq+0x295/0x340
[ 4497.507522]  ? __warn+0x7c/0x130
[ 4497.507740]  ? free_irq+0x295/0x340
[ 4497.507963]  ? report_bug+0x171/0x1a0
[ 4497.508197]  ? handle_bug+0x3c/0x70
[ 4497.508417]  ? exc_invalid_op+0x17/0x70
[ 4497.508662]  ? asm_exc_invalid_op+0x1a/0x20
[ 4497.508926]  ? free_irq+0x295/0x340
[ 4497.509146]  mlx5_irq_pool_free_irqs+0x48/0x90
[ 4497.509421]  mlx5_irq_table_free_irqs+0x38/0x50
[ 4497.509714]  mlx5_core_eq_free_irqs+0x27/0x40
[ 4497.509984]  shutdown+0x7b/0x100
[ 4497.510184]  pci_device_shutdown+0x30/0x60
[ 4497.510440]  device_shutdown+0x14d/0x240
[ 4497.510698]  kernel_power_off+0x30/0x70
[ 4497.510938]  process_one_work+0x1e6/0x3e0
[ 4497.511183]  worker_thread+0x49/0x3b0
[ 4497.511407]  ? __pfx_worker_thread+0x10/0x10
[ 4497.511679]  kthread+0xe0/0x110
[ 4497.511879]  ? __pfx_kthread+0x10/0x10
[ 4497.512114]  ret_from_fork+0x29/0x50
[ 4497.512342]  </TASK>

Fixes: 9c2d080 ("net/mlx5: Free irqs only on shutdown callback")
Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
Reviewed-by: Shay Drory <shayd@nvidia.com>
BluezTestBot pushed a commit that referenced this issue Jul 22, 2023
Shift operation of 'exp' and 'shift' variables exceeds the maximum number
of shift values in the u32 range leading to UBSAN shift-out-of-bounds.

...
[    6.120512] UBSAN: shift-out-of-bounds in drivers/hid/amd-sfh-hid/sfh1_1/amd_sfh_desc.c:149:50
[    6.120598] shift exponent 104 is too large for 64-bit type 'long unsigned int'
[    6.120659] CPU: 4 PID: 96 Comm: kworker/4:1 Not tainted 6.4.0amd_1-next-20230519-dirty #10
[    6.120665] Hardware name: AMD Birman-PHX/Birman-PHX, BIOS SFH_with_HPD_SEN.FD 04/05/2023
[    6.120667] Workqueue: events amd_sfh_work_buffer [amd_sfh]
[    6.120687] Call Trace:
[    6.120690]  <TASK>
[    6.120694]  dump_stack_lvl+0x48/0x70
[    6.120704]  dump_stack+0x10/0x20
[    6.120707]  ubsan_epilogue+0x9/0x40
[    6.120716]  __ubsan_handle_shift_out_of_bounds+0x10f/0x170
[    6.120720]  ? psi_group_change+0x25f/0x4b0
[    6.120729]  float_to_int.cold+0x18/0xba [amd_sfh]
[    6.120739]  get_input_rep+0x57/0x340 [amd_sfh]
[    6.120748]  ? __schedule+0xba7/0x1b60
[    6.120756]  ? __pfx_get_input_rep+0x10/0x10 [amd_sfh]
[    6.120764]  amd_sfh_work_buffer+0x91/0x180 [amd_sfh]
[    6.120772]  process_one_work+0x229/0x430
[    6.120780]  worker_thread+0x4a/0x3c0
[    6.120784]  ? __pfx_worker_thread+0x10/0x10
[    6.120788]  kthread+0xf7/0x130
[    6.120792]  ? __pfx_kthread+0x10/0x10
[    6.120795]  ret_from_fork+0x29/0x50
[    6.120804]  </TASK>
...

Fix this by adding the condition to validate shift ranges.

Fixes: 93ce5e0 ("HID: amd_sfh: Implement SFH1.1 functionality")
Cc: stable@vger.kernel.org
Tested-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Signed-off-by: Basavaraj Natikar <Basavaraj.Natikar@amd.com>
Signed-off-by: Akshata MukundShetty <akshata.mukundshetty@amd.com>
Link: https://lore.kernel.org/r/20230707065722.9036-3-Basavaraj.Natikar@amd.com
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
BluezTestBot pushed a commit that referenced this issue Jul 22, 2023
Petr Machata says:

====================
mlxsw: Add port range matching support

Ido Schimmel writes:

Add port range matching support in mlxsw as part of tc-flower offload.

Patches #1-#7 gradually add port range matching support in mlxsw. See
patch #3 to understand how port range matching is implemented in the
device.

Patches #8-#10 add selftests.
====================

Link: https://lore.kernel.org/r/cover.1689092769.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
BluezTestBot pushed a commit that referenced this issue Jul 22, 2023
Petr Machata says:

====================
mlxsw: Manage RIF across PVID changes

The mlxsw driver currently makes the assumption that the user applies
configuration in a bottom-up manner. Thus netdevices need to be added to
the bridge before IP addresses are configured on that bridge or SVI added
on top of it. Enslaving a netdevice to another netdevice that already has
uppers is in fact forbidden by mlxsw for this reason. Despite this safety,
it is rather easy to get into situations where the offloaded configuration
is just plain wrong.

As an example, take a front panel port, configure an IP address: it gets a
RIF. Now enslave the port to the bridge, and the RIF is gone. Remove the
port from the bridge again, but the RIF never comes back. There is a number
of similar situations, where changing the configuration there and back
utterly breaks the offload.

The situation is going to be made better by implementing a range of replays
and post-hoc offloads.

In this patch set, address the ordering issues related to creation of
bridge RIFs. Currently, mlxsw has several shortcomings with regards to RIF
handling due to PVID changes:

- In order to cause RIF for a bridge device to be created, the user is
  expected first to set PVID, then to add an IP address. The reverse
  ordering is disallowed, which is not very user-friendly.

- When such bridge gets a VLAN upper whose VID was the same as the existing
  PVID, and this VLAN netdevice gets an IP address, a RIF is created for
  this netdevice. The new RIF is then assigned to the 802.1Q FID for the
  given VID. This results in a working configuration. However, then, when
  the VLAN netdevice is removed again, the RIF for the bridge itself is
  never reassociated to the PVID.

- PVID cannot be changed once the bridge has uppers. Presumably this is
  because the driver does not manage RIFs properly in face of PVID changes.
  However, as the previous point shows, it is still possible to get into
  invalid configurations.

This patch set addresses these issues and relaxes some of the ordering
requirements that mlxsw had. The patch set proceeds as follows:

- In patch #1, pass extack to mlxsw_sp_br_ban_rif_pvid_change()

- To relax ordering between setting PVID and adding an IP address to a
  bridge, mlxsw must be able to request that a RIF is created with a given
  VLAN ID, instead of trying to deduce it from the current netdevice
  settings, which do not reflect the user-requested values yet. This is
  done in patches #2 and #3.

- Similarly, mlxsw_sp_inetaddr_bridge_event() will need to make decisions
  based on the user-requested value of PVID, not the current value. Thus in
  patches #4 and #5, add a new argument which carries the requested PVID
  value.

- Finally in patch #6 relax the ban on PVID changes when a bridge has
  uppers. Instead, add the logic necessary for creation of a RIF as a
  result of PVID change.

- Relevant selftests are presented afterwards. In patch #7 a preparatory
  helper is added to lib.sh. Patches #8, #9, #10 and #11 include selftests
  themselves.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Aug 16, 2023
Use-after-free can occur in hci_disconnect_all_sync if a connection is
deleted by concurrent processing of a controller event.

To prevent this the code now tries to iterate over the list backwards
to ensure the links are cleanup before its parents, also it no longer
relies on a cursor, instead it always uses the last element since
hci_abort_conn_sync is guaranteed to call hci_conn_del.

UAF crash log:
==================================================================
BUG: KASAN: slab-use-after-free in hci_set_powered_sync
(net/bluetooth/hci_sync.c:5424) [bluetooth]
Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124

CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G        W
6.5.0-rc1+ #10
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work [bluetooth]
Call Trace:
 <TASK>
 dump_stack_lvl+0x5b/0x90
 print_report+0xcf/0x670
 ? __virt_addr_valid+0xdd/0x160
 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 kasan_report+0xa6/0xe0
 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
 hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 ? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth]
 ? __pfx_lock_release+0x10/0x10
 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
 hci_cmd_sync_work+0x137/0x220 [bluetooth]
 process_one_work+0x526/0x9d0
 ? __pfx_process_one_work+0x10/0x10
 ? __pfx_do_raw_spin_lock+0x10/0x10
 ? mark_held_locks+0x1a/0x90
 worker_thread+0x92/0x630
 ? __pfx_worker_thread+0x10/0x10
 kthread+0x196/0x1e0
 ? __pfx_kthread+0x10/0x10
 ret_from_fork+0x2c/0x50
 </TASK>

Allocated by task 1782:
 kasan_save_stack+0x33/0x60
 kasan_set_track+0x25/0x30
 __kasan_kmalloc+0x8f/0xa0
 hci_conn_add+0xa5/0xa80 [bluetooth]
 hci_bind_cis+0x881/0x9b0 [bluetooth]
 iso_connect_cis+0x121/0x520 [bluetooth]
 iso_sock_connect+0x3f6/0x790 [bluetooth]
 __sys_connect+0x109/0x130
 __x64_sys_connect+0x40/0x50
 do_syscall_64+0x60/0x90
 entry_SYSCALL_64_after_hwframe+0x6e/0xd8

Freed by task 695:
 kasan_save_stack+0x33/0x60
 kasan_set_track+0x25/0x30
 kasan_save_free_info+0x2b/0x50
 __kasan_slab_free+0x10a/0x180
 __kmem_cache_free+0x14d/0x2e0
 device_release+0x5d/0xf0
 kobject_put+0xdf/0x270
 hci_disconn_complete_evt+0x274/0x3a0 [bluetooth]
 hci_event_packet+0x579/0x7e0 [bluetooth]
 hci_rx_work+0x287/0xaa0 [bluetooth]
 process_one_work+0x526/0x9d0
 worker_thread+0x92/0x630
 kthread+0x196/0x1e0
 ret_from_fork+0x2c/0x50
==================================================================

Fixes: 182ee45 ("Bluetooth: hci_sync: Rework hci_suspend_notifier")
Signed-off-by: Pauli Virtanen <pav@iki.fi>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
BluezTestBot pushed a commit that referenced this issue Aug 24, 2023
Use-after-free can occur in hci_disconnect_all_sync if a connection is
deleted by concurrent processing of a controller event.

To prevent this the code now tries to iterate over the list backwards
to ensure the links are cleanup before its parents, also it no longer
relies on a cursor, instead it always uses the last element since
hci_abort_conn_sync is guaranteed to call hci_conn_del.

UAF crash log:
==================================================================
BUG: KASAN: slab-use-after-free in hci_set_powered_sync
(net/bluetooth/hci_sync.c:5424) [bluetooth]
Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124

CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G        W
6.5.0-rc1+ #10
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work [bluetooth]
Call Trace:
 <TASK>
 dump_stack_lvl+0x5b/0x90
 print_report+0xcf/0x670
 ? __virt_addr_valid+0xdd/0x160
 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 kasan_report+0xa6/0xe0
 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
 hci_set_powered_sync+0x2c9/0x4a0 [bluetooth]
 ? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth]
 ? __pfx_lock_release+0x10/0x10
 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth]
 hci_cmd_sync_work+0x137/0x220 [bluetooth]
 process_one_work+0x526/0x9d0
 ? __pfx_process_one_work+0x10/0x10
 ? __pfx_do_raw_spin_lock+0x10/0x10
 ? mark_held_locks+0x1a/0x90
 worker_thread+0x92/0x630
 ? __pfx_worker_thread+0x10/0x10
 kthread+0x196/0x1e0
 ? __pfx_kthread+0x10/0x10
 ret_from_fork+0x2c/0x50
 </TASK>

Allocated by task 1782:
 kasan_save_stack+0x33/0x60
 kasan_set_track+0x25/0x30
 __kasan_kmalloc+0x8f/0xa0
 hci_conn_add+0xa5/0xa80 [bluetooth]
 hci_bind_cis+0x881/0x9b0 [bluetooth]
 iso_connect_cis+0x121/0x520 [bluetooth]
 iso_sock_connect+0x3f6/0x790 [bluetooth]
 __sys_connect+0x109/0x130
 __x64_sys_connect+0x40/0x50
 do_syscall_64+0x60/0x90
 entry_SYSCALL_64_after_hwframe+0x6e/0xd8

Freed by task 695:
 kasan_save_stack+0x33/0x60
 kasan_set_track+0x25/0x30
 kasan_save_free_info+0x2b/0x50
 __kasan_slab_free+0x10a/0x180
 __kmem_cache_free+0x14d/0x2e0
 device_release+0x5d/0xf0
 kobject_put+0xdf/0x270
 hci_disconn_complete_evt+0x274/0x3a0 [bluetooth]
 hci_event_packet+0x579/0x7e0 [bluetooth]
 hci_rx_work+0x287/0xaa0 [bluetooth]
 process_one_work+0x526/0x9d0
 worker_thread+0x92/0x630
 kthread+0x196/0x1e0
 ret_from_fork+0x2c/0x50
==================================================================

Fixes: 182ee45 ("Bluetooth: hci_sync: Rework hci_suspend_notifier")
Signed-off-by: Pauli Virtanen <pav@iki.fi>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
Noticed with:

  make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

Direct leak of 45 byte(s) in 1 object(s) allocated from:
    #0 0x7f213f87243b in strdup (/lib64/libasan.so.8+0x7243b)
    #1 0x63d15f in evsel__set_filter util/evsel.c:1371
    #2 0x63d15f in evsel__append_filter util/evsel.c:1387
    #3 0x63d15f in evsel__append_tp_filter util/evsel.c:1400
    #4 0x62cd52 in evlist__append_tp_filter util/evlist.c:1145
    #5 0x62cd52 in evlist__append_tp_filter_pids util/evlist.c:1196
    #6 0x541e49 in trace__set_filter_loop_pids /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3646
    #7 0x541e49 in trace__set_filter_pids /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3670
    #8 0x541e49 in trace__run /home/acme/git/perf-tools/tools/perf/builtin-trace.c:3970
    #9 0x541e49 in cmd_trace /home/acme/git/perf-tools/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools/tools/perf/perf.c:421
    #13 0x4196da in main /home/acme/git/perf-tools/tools/perf/perf.c:537
    #14 0x7f213e84a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

Free it on evsel__exit().

Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/20230719202951.534582-2-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
To plug these leaks detected with:

  $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

  =================================================================
  ==473890==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 112 byte(s) in 1 object(s) allocated from:
    #0 0x7fdf19aba097 in calloc (/lib64/libasan.so.8+0xba097)
    #1 0x987836 in zalloc (/home/acme/bin/perf+0x987836)
    #2 0x5367ae in thread_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1289
    #3 0x5367ae in thread__trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1307
    #4 0x5367ae in trace__sys_exit /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2468
    #5 0x52bf34 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3177
    #6 0x52bf34 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3685
    #7 0x542927 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3712
    #8 0x542927 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4055
    #9 0x542927 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    #13 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    #14 0x7fdf18a4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Direct leak of 2048 byte(s) in 1 object(s) allocated from:
    #0 0x7f788fcba6af in __interceptor_malloc (/lib64/libasan.so.8+0xba6af)
    #1 0x5337c0 in trace__sys_enter /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2342
    #2 0x52bfb4 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3191
    #3 0x52bfb4 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3699
    #4 0x542883 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3726
    #5 0x542883 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4069
    #6 0x542883 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5155
    #7 0x5ef232 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #8 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #9 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    #10 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    #11 0x7f788ec4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Indirect leak of 48 byte(s) in 1 object(s) allocated from:
    #0 0x7fdf19aba6af in __interceptor_malloc (/lib64/libasan.so.8+0xba6af)
    #1 0x77b335 in intlist__new util/intlist.c:116
    #2 0x5367fd in thread_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1293
    #3 0x5367fd in thread__trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:1307
    #4 0x5367fd in trace__sys_exit /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:2468
    #5 0x52bf34 in trace__handle_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3177
    #6 0x52bf34 in __trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3685
    #7 0x542927 in trace__deliver_event /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3712
    #8 0x542927 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:4055
    #9 0x542927 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5141
    #10 0x5ef1a2 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
    #11 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
    #12 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
    #13 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
    #14 0x7fdf18a4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/20230719202951.534582-4-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
In 3cb4d5e ("perf trace: Free syscall tp fields in
evsel->priv") it only was freeing if strcmp(evsel->tp_format->system,
"syscalls") returned zero, while the corresponding initialization of
evsel->priv was being performed if it was _not_ zero, i.e. if the tp
system wasn't 'syscalls'.

Just stop looking for that and free it if evsel->priv was set, which
should be equivalent.

Also use the pre-existing evsel_trace__delete() function.

This resolves these leaks, detected with:

  $ make EXTRA_CFLAGS="-fsanitize=address" BUILD_BPF_SKEL=1 CORESIGHT=1 O=/tmp/build/perf-tools-next -C tools/perf install-bin

  =================================================================
  ==481565==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
      #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
      #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
      #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
      #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
      #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
      #6 0x540e8b in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3212
      #7 0x540e8b in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
      #8 0x540e8b in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
      #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
      #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
      #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  Direct leak of 40 byte(s) in 1 object(s) allocated from:
      #0 0x7f7343cba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x987966 in zalloc (/home/acme/bin/perf+0x987966)
      #2 0x52f9b9 in evsel_trace__new /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:307
      #3 0x52f9b9 in evsel__syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:333
      #4 0x52f9b9 in evsel__init_raw_syscall_tp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:458
      #5 0x52f9b9 in perf_evsel__raw_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:480
      #6 0x540dd1 in trace__add_syscall_newtp /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3205
      #7 0x540dd1 in trace__run /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:3891
      #8 0x540dd1 in cmd_trace /home/acme/git/perf-tools-next/tools/perf/builtin-trace.c:5156
      #9 0x5ef262 in run_builtin /home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #10 0x4196da in handle_internal_command /home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #11 0x4196da in run_argv /home/acme/git/perf-tools-next/tools/perf/perf.c:421
      #12 0x4196da in main /home/acme/git/perf-tools-next/tools/perf/perf.c:537
      #13 0x7f7342c4a50f in __libc_start_call_main (/lib64/libc.so.6+0x2750f)

  SUMMARY: AddressSanitizer: 80 byte(s) leaked in 2 allocation(s).
  [root@quaco ~]#

With this we plug all leaks with "perf trace sleep 1".

Fixes: 3cb4d5e ("perf trace: Free syscall tp fields in evsel->priv")
Acked-by: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Riccardo Mancini <rickyman7@gmail.com>
Link: https://lore.kernel.org/lkml/20230719202951.534582-5-acme@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
…failure to add a probe

Building perf with EXTRA_CFLAGS="-fsanitize=address" a leak is detect
when trying to add a probe to a non-existent function:

  # perf probe -x ~/bin/perf dso__neW
  Probe point 'dso__neW' not found.
    Error: Failed to add events.

  =================================================================
  ==296634==ERROR: LeakSanitizer: detected memory leaks

  Direct leak of 128 byte(s) in 1 object(s) allocated from:
      #0 0x7f67642ba097 in calloc (/lib64/libasan.so.8+0xba097)
      #1 0x7f67641a76f1 in allocate_cfi (/lib64/libdw.so.1+0x3f6f1)

  Direct leak of 65 byte(s) in 1 object(s) allocated from:
      #0 0x7f67642b95b5 in __interceptor_realloc.part.0 (/lib64/libasan.so.8+0xb95b5)
      #1 0x6cac75 in strbuf_grow util/strbuf.c:64
      #2 0x6ca934 in strbuf_init util/strbuf.c:25
      #3 0x9337d2 in synthesize_perf_probe_point util/probe-event.c:2018
      #4 0x92be51 in try_to_find_probe_trace_events util/probe-event.c:964
      #5 0x93d5c6 in convert_to_probe_trace_events util/probe-event.c:3512
      #6 0x93d6d5 in convert_perf_probe_events util/probe-event.c:3529
      #7 0x56f37f in perf_add_probe_events /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:354
      #8 0x572fbc in __cmd_probe /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:738
      #9 0x5730f2 in cmd_probe /var/home/acme/git/perf-tools-next/tools/perf/builtin-probe.c:766
      #10 0x635d81 in run_builtin /var/home/acme/git/perf-tools-next/tools/perf/perf.c:323
      #11 0x6362c1 in handle_internal_command /var/home/acme/git/perf-tools-next/tools/perf/perf.c:377
      #12 0x63667a in run_argv /var/home/acme/git/perf-tools-next/tools/perf/perf.c:421
      #13 0x636b8d in main /var/home/acme/git/perf-tools-next/tools/perf/perf.c:537
      #14 0x7f676302950f in __libc_start_call_main (/lib64/libc.so.6+0x2950f)

  SUMMARY: AddressSanitizer: 193 byte(s) leaked in 2 allocation(s).
  #

synthesize_perf_probe_point() returns a "detachec" strbuf, i.e. a
malloc'ed string that needs to be free'd.

An audit will be performed to find other such cases.

Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/lkml/ZM0l1Oxamr4SVjfY@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
Currently, arch_stack_walk() can only get the full stack information
including NMI.  This is because the implementation of arch_stack_walk()
is forced to ignore the information passed by the regs parameter and use
the current stack information instead.

For some detection systems like KFENCE, only partial stack information
is needed.  In particular, the stack frame where the interrupt occurred.

To support KFENCE, this patch modifies the implementation of the
arch_stack_walk() function so that if this function is called with the
regs argument passed, it retains all the stack information in regs and
uses it to provide accurate information.

Before this patch:
[    1.531195 ] ==================================================================
[    1.531442 ] BUG: KFENCE: out-of-bounds read in stack_trace_save_regs+0x48/0x6c
[    1.531442 ]
[    1.531900 ] Out-of-bounds read at 0xffff800012267fff (1B left of kfence-#12):
[    1.532046 ]  stack_trace_save_regs+0x48/0x6c
[    1.532169 ]  kfence_report_error+0xa4/0x528
[    1.532276 ]  kfence_handle_page_fault+0x124/0x270
[    1.532388 ]  no_context+0x50/0x94
[    1.532453 ]  do_page_fault+0x1a8/0x36c
[    1.532524 ]  tlb_do_page_fault_0+0x118/0x1b4
[    1.532623 ]  test_out_of_bounds_read+0xa0/0x1d8
[    1.532745 ]  kunit_generic_run_threadfn_adapter+0x1c/0x28
[    1.532854 ]  kthread+0x124/0x130
[    1.532922 ]  ret_from_kernel_thread+0xc/0xa4
<snip>

After this patch:
[    1.320220 ] ==================================================================
[    1.320401 ] BUG: KFENCE: out-of-bounds read in test_out_of_bounds_read+0xa8/0x1d8
[    1.320401 ]
[    1.320898 ] Out-of-bounds read at 0xffff800012257fff (1B left of kfence-#10):
[    1.321134 ]  test_out_of_bounds_read+0xa8/0x1d8
[    1.321264 ]  kunit_generic_run_threadfn_adapter+0x1c/0x28
[    1.321392 ]  kthread+0x124/0x130
[    1.321459 ]  ret_from_kernel_thread+0xc/0xa4
<snip>

Suggested-by: Jinyang He <hejinyang@loongson.cn>
Signed-off-by: Enze Li <lienze@kylinos.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
Magnus Karlsson says:

====================
seltests/xsk: various improvements to xskxceiver

This patch set implements several improvements to the xsk selftests
test suite that I thought were useful while debugging the xsk
multi-buffer code and tests. The largest new feature is the ability to
be able to execute a single test instead of the whole test suite. This
required some surgery on the current code, details below.

Anatomy of the path set:

1: Print useful info on a per packet basis with the option -v

2: Add a timeout in the transmission loop too. We only used to have
   one for the Rx thread, but Tx can lock up too waiting for
   completions.

3: Add an option (-m) to only run the tests (or a single test with a
   later patch) in a single mode: skb, drv, or zc (zero-copy).

4-5: Preparatory patches to be able to specify a test to run. Need to
     define the test names in a single structure and their entry
     points, so we can use this when wanting to run a specific test.

6: Adds a command line option (-l) that lists all the tests.

7: Adds a command line option (-t) that runs a specific test instead
   of the whole test suite. Can be combined with -m to specify a
   single mode too.

8: Use ksft_print_msg() uniformly throughout the tests. It was a mix
   of printf() and ksft_print_msg() before.

9: In some places, we failed the whole test suite instead of a single
   test in certain circumstances. Fix this so only the test in
   question is failed and the rest of the test suite continues.

10: Display the available command line options with -h

v3 -> v4:
* Fixed another spelling error in patch #9 [Maciej]
* Only allow the actual strings for the -m command [Maciej]
* Move some code from patch #7 to #3 [Maciej]

v2 -> v3:
* Drop the support for environment variables. Probably not useful. [Maciej]
* Fixed spelling mistake in patch #9 [Maciej]
* Fail gracefully if unsupported mode is chosen [Maciej]
* Simplified test run loop [Maciej]

v1 -> v2:

* Introduce XSKTEST_MODE env variable to be able to set the mode to
  use [Przemyslaw]
* Introduce XSKTEST_ETH env variable to be able to set the ethernet
  interface to use by introducing a new patch (#11) [Magnus]
* Fixed spelling error in patch #5 [Przemyslaw, Maciej]
* Fixed confusing documentation in patch #10  [Przemyslaw]
* The -l option can now be used without being root [Magnus, Maciej]
* Fixed documentation error in patch #7 [Maciej]
* Added error handling to the -t option [Maciej]
* -h now displayed as an option [Maciej]

Thanks: Magnus
====================

Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/r/20230914084900.492-1-magnus.karlsson@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BluezTestBot pushed a commit that referenced this issue Sep 20, 2023
Jiri Pirko says:

====================
expose devlink instances relationships

From: Jiri Pirko <jiri@nvidia.com>

Currently, the user can instantiate new SF using "devlink port add"
command. That creates an E-switch representor devlink port.

When user activates this SF, there is an auxiliary device created and
probed for it which leads to SF devlink instance creation.

There is 1:1 relationship between E-switch representor devlink port and
the SF auxiliary device devlink instance.

Also, for example in mlx5, one devlink instance is created for
PCI device and one is created for an auxiliary device that represents
the uplink port. The relation between these is invisible to the user.

Patches #1-#3 and #5 are small preparations.

Patch #4 adds netnsid attribute for nested devlink if that in a
different namespace.

Patch #5 is the main one in this set, introduces the relationship
tracking infrastructure later on used to track SFs, linecards and
devlink instance relationships with nested devlink instances.

Expose the relation to the user by introducing new netlink attribute
DEVLINK_PORT_FN_ATTR_DEVLINK which contains the devlink instance related
to devlink port function. This is done by patch #8.
Patch #9 implements this in mlx5 driver.

Patch #10 converts the linecard nested devlink handling to the newly
introduced rel infrastructure.

Patch #11 benefits from the rel infra and introduces possiblitily to
have relation between devlink instances.
Patch #12 implements this in mlx5 driver.

Examples:
$ devlink dev
pci/0000:08:00.0: nested_devlink auxiliary/mlx5_core.eth.0
pci/0000:08:00.1: nested_devlink auxiliary/mlx5_core.eth.1
auxiliary/mlx5_core.eth.1
auxiliary/mlx5_core.eth.0

$ devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 106
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
$ devlink port function set pci/0000:08:00.0/32768 state active
$ devlink port show pci/0000:08:00.0/32768
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state active opstate attached roce enable nested_devlink auxiliary/mlx5_core.sf.2

$ devlink port show pci/0000:08:00.0/32768
pci/0000:08:00.0/32768: type eth netdev eth4 flavour pcisf controller 0 pfnum 0 sfnum 106 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state active opstate attached roce enable nested_devlink auxiliary/mlx5_core.sf.2 nested_devlink_netns ns1
====================

Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Oct 11, 2023
The following processes run into a deadlock. CPU 41 was waiting for CPU 29
to handle a CSD request while holding spinlock "crashdump_lock", but CPU 29
was hung by that spinlock with IRQs disabled.

  PID: 17360    TASK: ffff95c1090c5c40  CPU: 41  COMMAND: "mrdiagd"
  !# 0 [ffffb80edbf37b58] __read_once_size at ffffffff9b871a40 include/linux/compiler.h:185:0
  !# 1 [ffffb80edbf37b58] atomic_read at ffffffff9b871a40 arch/x86/include/asm/atomic.h:27:0
  !# 2 [ffffb80edbf37b58] dump_stack at ffffffff9b871a40 lib/dump_stack.c:54:0
   # 3 [ffffb80edbf37b78] csd_lock_wait_toolong at ffffffff9b131ad5 kernel/smp.c:364:0
   # 4 [ffffb80edbf37b78] __csd_lock_wait at ffffffff9b131ad5 kernel/smp.c:384:0
   # 5 [ffffb80edbf37bf8] csd_lock_wait at ffffffff9b13267a kernel/smp.c:394:0
   # 6 [ffffb80edbf37bf8] smp_call_function_many at ffffffff9b13267a kernel/smp.c:843:0
   # 7 [ffffb80edbf37c50] smp_call_function at ffffffff9b13279d kernel/smp.c:867:0
   # 8 [ffffb80edbf37c50] on_each_cpu at ffffffff9b13279d kernel/smp.c:976:0
   # 9 [ffffb80edbf37c78] flush_tlb_kernel_range at ffffffff9b085c4b arch/x86/mm/tlb.c:742:0
   #10 [ffffb80edbf37cb8] __purge_vmap_area_lazy at ffffffff9b23a1e0 mm/vmalloc.c:701:0
   #11 [ffffb80edbf37ce0] try_purge_vmap_area_lazy at ffffffff9b23a2cc mm/vmalloc.c:722:0
   #12 [ffffb80edbf37ce0] free_vmap_area_noflush at ffffffff9b23a2cc mm/vmalloc.c:754:0
   #13 [ffffb80edbf37cf8] free_unmap_vmap_area at ffffffff9b23bb3b mm/vmalloc.c:764:0
   #14 [ffffb80edbf37cf8] remove_vm_area at ffffffff9b23bb3b mm/vmalloc.c:1509:0
   #15 [ffffb80edbf37d18] __vunmap at ffffffff9b23bb8a mm/vmalloc.c:1537:0
   #16 [ffffb80edbf37d40] vfree at ffffffff9b23bc85 mm/vmalloc.c:1612:0
   #17 [ffffb80edbf37d58] megasas_free_host_crash_buffer [megaraid_sas] at ffffffffc020b7f2 drivers/scsi/megaraid/megaraid_sas_fusion.c:3932:0
   #18 [ffffb80edbf37d80] fw_crash_state_store [megaraid_sas] at ffffffffc01f804d drivers/scsi/megaraid/megaraid_sas_base.c:3291:0
   #19 [ffffb80edbf37dc0] dev_attr_store at ffffffff9b56dd7b drivers/base/core.c:758:0
   #20 [ffffb80edbf37dd0] sysfs_kf_write at ffffffff9b326acf fs/sysfs/file.c:144:0
   #21 [ffffb80edbf37de0] kernfs_fop_write at ffffffff9b325fd4 fs/kernfs/file.c:316:0
   #22 [ffffb80edbf37e20] __vfs_write at ffffffff9b29418a fs/read_write.c:480:0
   #23 [ffffb80edbf37ea8] vfs_write at ffffffff9b294462 fs/read_write.c:544:0
   #24 [ffffb80edbf37ee8] SYSC_write at ffffffff9b2946ec fs/read_write.c:590:0
   #25 [ffffb80edbf37ee8] SyS_write at ffffffff9b2946ec fs/read_write.c:582:0
   #26 [ffffb80edbf37f30] do_syscall_64 at ffffffff9b003ca9 arch/x86/entry/common.c:298:0
   #27 [ffffb80edbf37f58] entry_SYSCALL_64 at ffffffff9ba001b1 arch/x86/entry/entry_64.S:238:0

  PID: 17355    TASK: ffff95c1090c3d80  CPU: 29  COMMAND: "mrdiagd"
  !# 0 [ffffb80f2d3c7d30] __read_once_size at ffffffff9b0f2ab0 include/linux/compiler.h:185:0
  !# 1 [ffffb80f2d3c7d30] native_queued_spin_lock_slowpath at ffffffff9b0f2ab0 kernel/locking/qspinlock.c:368:0
   # 2 [ffffb80f2d3c7d58] pv_queued_spin_lock_slowpath at ffffffff9b0f244b arch/x86/include/asm/paravirt.h:674:0
   # 3 [ffffb80f2d3c7d58] queued_spin_lock_slowpath at ffffffff9b0f244b arch/x86/include/asm/qspinlock.h:53:0
   # 4 [ffffb80f2d3c7d68] queued_spin_lock at ffffffff9b8961a6 include/asm-generic/qspinlock.h:90:0
   # 5 [ffffb80f2d3c7d68] do_raw_spin_lock_flags at ffffffff9b8961a6 include/linux/spinlock.h:173:0
   # 6 [ffffb80f2d3c7d68] __raw_spin_lock_irqsave at ffffffff9b8961a6 include/linux/spinlock_api_smp.h:122:0
   # 7 [ffffb80f2d3c7d68] _raw_spin_lock_irqsave at ffffffff9b8961a6 kernel/locking/spinlock.c:160:0
   # 8 [ffffb80f2d3c7d88] fw_crash_buffer_store [megaraid_sas] at ffffffffc01f8129 drivers/scsi/megaraid/megaraid_sas_base.c:3205:0
   # 9 [ffffb80f2d3c7dc0] dev_attr_store at ffffffff9b56dd7b drivers/base/core.c:758:0
   #10 [ffffb80f2d3c7dd0] sysfs_kf_write at ffffffff9b326acf fs/sysfs/file.c:144:0
   #11 [ffffb80f2d3c7de0] kernfs_fop_write at ffffffff9b325fd4 fs/kernfs/file.c:316:0
   #12 [ffffb80f2d3c7e20] __vfs_write at ffffffff9b29418a fs/read_write.c:480:0
   #13 [ffffb80f2d3c7ea8] vfs_write at ffffffff9b294462 fs/read_write.c:544:0
   #14 [ffffb80f2d3c7ee8] SYSC_write at ffffffff9b2946ec fs/read_write.c:590:0
   #15 [ffffb80f2d3c7ee8] SyS_write at ffffffff9b2946ec fs/read_write.c:582:0
   #16 [ffffb80f2d3c7f30] do_syscall_64 at ffffffff9b003ca9 arch/x86/entry/common.c:298:0
   #17 [ffffb80f2d3c7f58] entry_SYSCALL_64 at ffffffff9ba001b1 arch/x86/entry/entry_64.S:238:0

The lock is used to synchronize different sysfs operations, it doesn't
protect any resource that will be touched by an interrupt. Consequently
it's not required to disable IRQs. Replace the spinlock with a mutex to fix
the deadlock.

Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Link: https://lore.kernel.org/r/20230828221018.19471-1-junxiao.bi@oracle.com
Reviewed-by: Mike Christie <michael.christie@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
BluezTestBot pushed a commit that referenced this issue Oct 11, 2023
Fix an error detected by memory sanitizer:
```
==4033==WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x55fb0fbedfc7 in read_alias_info tools/perf/util/pmu.c:457:6
    #1 0x55fb0fbea339 in check_info_data tools/perf/util/pmu.c:1434:2
    #2 0x55fb0fbea339 in perf_pmu__check_alias tools/perf/util/pmu.c:1504:9
    #3 0x55fb0fbdca85 in parse_events_add_pmu tools/perf/util/parse-events.c:1429:32
    #4 0x55fb0f965230 in parse_events_parse tools/perf/util/parse-events.y:299:6
    #5 0x55fb0fbdf6b2 in parse_events__scanner tools/perf/util/parse-events.c:1822:8
    #6 0x55fb0fbdf8c1 in __parse_events tools/perf/util/parse-events.c:2094:8
    #7 0x55fb0fa8ffa9 in parse_events tools/perf/util/parse-events.h:41:9
    #8 0x55fb0fa8ffa9 in test_event tools/perf/tests/parse-events.c:2393:8
    #9 0x55fb0fa8f458 in test__pmu_events tools/perf/tests/parse-events.c:2551:15
    #10 0x55fb0fa6d93f in run_test tools/perf/tests/builtin-test.c:242:9
    #11 0x55fb0fa6d93f in test_and_print tools/perf/tests/builtin-test.c:271:8
    #12 0x55fb0fa6d082 in __cmd_test tools/perf/tests/builtin-test.c:442:5
    #13 0x55fb0fa6d082 in cmd_test tools/perf/tests/builtin-test.c:564:9
    #14 0x55fb0f942720 in run_builtin tools/perf/perf.c:322:11
    #15 0x55fb0f942486 in handle_internal_command tools/perf/perf.c:375:8
    #16 0x55fb0f941dab in run_argv tools/perf/perf.c:419:2
    #17 0x55fb0f941dab in main tools/perf/perf.c:535:3
```

Fixes: 7b723db ("perf pmu: Be lazy about loading event info files from sysfs")
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: James Clark <james.clark@arm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20230914022425.1489035-1-irogers@google.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
BluezTestBot pushed a commit that referenced this issue Oct 11, 2023
The following call trace shows a deadlock issue due to recursive locking of
mutex "device_mutex". First lock acquire is in target_for_each_device() and
second in target_free_device().

 PID: 148266   TASK: ffff8be21ffb5d00  CPU: 10   COMMAND: "iscsi_ttx"
  #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f
  #1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224
  #2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee
  #3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7
  #4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3
  #5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c
  #6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod]
  #7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod]
  #8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f
  #9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583
 #10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod]
 #11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc
 #12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod]
 #13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod]
 #14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod]
 #15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod]
 #16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07
 #17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod]
 #18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod]
 #19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080
 #20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364

Fixes: 36d4cb4 ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion")
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Link: https://lore.kernel.org/r/20230918225848.66463-1-junxiao.bi@oracle.com
Reviewed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
BluezTestBot pushed a commit that referenced this issue Oct 23, 2023
Amit Cohen says:

====================
Extend VXLAN driver to support FDB flushing

The merge commit 9271686 ("Merge branch 'br-flush-filtering'") added
support for FDB flushing in bridge driver. Extend VXLAN driver to support
FDB flushing also. Add support for filtering by fields which are relevant
for VXLAN FDBs:
* Source VNI
* Nexthop ID
* 'router' flag
* Destination VNI
* Destination Port
* Destination IP

Without this set, flush for VXLAN device fails:
$ bridge fdb flush dev vx10
RTNETLINK answers: Operation not supported

With this set, such flush works with the relevant arguments, for example:
$ bridge fdb flush dev vx10 vni 5000 dst 193.2.2.1
< flush all vx10 entries with VNI 5000 and destination IP 193.2.2.1>

Some preparations are required, handle them before adding flushing support
in VXLAN driver. See more details in commit messages.

Patch set overview:
Patch #1 prepares flush policy to be used by VXLAN driver
Patches #2-#3 are preparations in VXLAN driver
Patch #4 adds an initial support for flushing in VXLAN driver
Patches #5-#9 add support for filtering by several attributes
Patch #10 adds a test for FDB flush with VXLAN
Patch #11 extends the test to check FDB flush with bridge
====================

Acked-by: Nikolay Aleksandrov <razor@blackwall.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Oct 23, 2023
Petr Machata says:

====================
mlxsw: Move allocation of LAG table to the driver

PGT is an in-HW table that maps addresses to sets of ports. Then when some
HW process needs a set of ports as an argument, instead of embedding the
actual set in the dynamic configuration, what gets configured is the
address referencing the set. The HW then works with the appropriate PGT
entry.

Within the PGT is placed a LAG table. That is a contiguous block of PGT
memory where each entry describes which ports are members of the
corresponding LAG port.

The PGT is split to two parts: one managed by the FW, and one managed by
the driver. Historically, the FW part included also the LAG table, referred
to as FW LAG mode. Giving the responsibility for placement of the LAG table
to the driver, referred to as SW LAG mode, makes the whole system more
flexible. The FW currently supports both FW and SW LAG modes. To shed
complexity, the FW should in the future only support SW LAG mode.

Hence this patchset, where support for placement of LAG is added to mlxsw.

There are FW versions out there that do not support SW LAG mode, and on
Spectrum-1 in particular, there is no plan to support it at all. mlxsw will
therefore have to support both modes of operation.

Another aspect is that at least on Spectrum-1, there are FW versions out
there that claim to support driver-placed LAG table, but then reject or
ignore configurations enabling the same. The driver thus has to have a say
in whether an attempt to configure SW LAG mode should even be done.

The feature is therefore expressed in terms of "does the driver prefer SW
LAG mode?", and "what LAG mode the PCI module managed to configure the FW
with". This is unlike current flood mode configuration, where the driver
can give a strict value, and that's what gets configured. But it gives a
chance to the driver to determine whether LAG mode should be enabled at
all.

The "does the driver prefer SW LAG mode?" bit is expressed as a boolean
lag_mode_prefer_sw. The reason for this is largely another feature that
will be introduced in a follow-up patchset: support for CFF flood mode. The
driver currently requires that the FW be configured with what is called
controlled flood mode. But on capable systems, CFF would be preferred. So
there are two values in flight: the preferred flood mode, and the fallback.
This could be expressed with an array of flood modes ordered by preference,
but that looks like an overkill in comparison. This flag/value model is
then reused for LAG mode as well, except the fallback value is absent and
implied to be FW, because there are no other values to choose from.

The patchset progresses as follows:

- Patches #1 to #5 adjust reg.h and cmd.h with new register fields,
  constants and remarks.

- Patches #6 and #7 add the ability to request SW LAG mode and to query the
  LAG mode that was actually negotiated. This is where the abovementioned
  lag_mode_prefer_sw flag is added.

- Patches #7 to #9 generalize PGT allocations to make it possible to
  allocate the LAG table, which is done in patch #10.

- In patch #11, toggle lag_mode_prefer_sw on Spectrum-2 and above, which
  makes the newly-added code live.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Dec 19, 2023
…gister-spills'

Andrii Nakryiko says:

====================
Complete BPF verifier precision tracking support for register spills

Add support to BPF verifier to track and support register spill/fill to/from
stack regardless if it was done through read-only R10 register (which is the
only form supported today), or through a general register after copying R10
into it, while also potentially modifying offset.

Once we add register this generic spill/fill support to precision
backtracking, we can take advantage of it to stop doing eager STACK_ZERO
conversion on register spill. Instead we can rely on (im)precision of spilled
const zero register to improve verifier state pruning efficiency. This
situation of using const zero register to initialize stack slots is very
common with __builtin_memset() usage or just zero-initializing variables on
the stack, and it causes unnecessary state duplication, as that STACK_ZERO
knowledge is often not necessary for correctness, as those zero values are
never used in precise context. Thus, relying on register imprecision helps
tremendously, especially in real-world BPF programs.

To make spilled const zero register behave completely equivalently to
STACK_ZERO, we need to improve few other small pieces, which is done in the
second part of the patch set. See individual patches for details. There are
also two small bug fixes spotted during STACK_ZERO debugging.

The patch set consists of logically three changes:
  - patch #1 (and corresponding tests in patch #2) is fixing/impoving precision
    propagation for stack spills/fills. This can be landed as a stand-alone
    improvement;
  - patches #3 through #9 is improving verification scalability by utilizing
    register (im)precision instead of eager STACK_ZERO. These changes depend
    on patch #1.
  - patch #10 is a memory efficiency improvement to how instruction/jump
    history is tracked and maintained. It depends on patch #1, but is not
    strictly speaking required, even though I believe it's a good long-term
    solution to have a path-dependent per-instruction information. Kind
    of like a path-dependent counterpart to path-agnostic insn_aux array.

v3->v3:
  - fixed up Fixes tag (Alexei);
  - fixed few more selftests to not use BPF_ST instruction in inline asm
    directly, checked with CI, it was happy (CI);
v2->v3:
  - BPF_ST instruction workaround (Eduard);
  - force dereference in added tests to catch problems (Eduard);
  - some commit message massaging (Alexei);
v1->v2:
  - clean ups, WARN_ONCE(), insn_flags helpers added (Eduard);
  - added more selftests for STACK_ZERO/STACK_MISC cases (Eduard);
  - a bit more detailed explanation of effect of avoiding STACK_ZERO in favor
    of register spill in patch #8 commit (Alexei);
  - global shared instruction history refactoring moved to be the last patch
    in the series to make it easier to revert it, if applied (Alexei).
====================

Link: https://lore.kernel.org/r/20231205184248.1502704-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BluezTestBot pushed a commit that referenced this issue Dec 19, 2023
Andrii Nakryiko says:

====================
BPF token support in libbpf's BPF object

Add fuller support for BPF token in high-level BPF object APIs. This is the
most frequently used way to work with BPF using libbpf, so supporting BPF
token there is critical.

Patch #1 is improving kernel-side BPF_TOKEN_CREATE behavior by rejecting to
create "empty" BPF token with no delegation. This seems like saner behavior
which also makes libbpf's caching better overall. If we ever want to create
BPF token with no delegate_xxx options set on BPF FS, we can use a new flag to
enable that.

Patches #2-#5 refactor libbpf internals, mostly feature detection code, to
prepare it from BPF token FD.

Patch #6 adds options to pass BPF token into BPF object open options. It also
adds implicit BPF token creation logic to BPF object load step, even without
any explicit involvement of the user. If the environment is setup properly,
BPF token will be created transparently and used implicitly. This allows for
all existing application to gain BPF token support by just linking with
latest version of libbpf library. No source code modifications are required.
All that under assumption that privileged container management agent properly
set up default BPF FS instance at /sys/bpf/fs to allow BPF token creation.

Patches #7-#8 adds more selftests, validating BPF object APIs work as expected
under unprivileged user namespaced conditions in the presence of BPF token.

Patch #9 extends libbpf with LIBBPF_BPF_TOKEN_PATH envvar knowledge, which can
be used to override custom BPF FS location used for implicit BPF token
creation logic without needing to adjust application code. This allows admins
or container managers to mount BPF token-enabled BPF FS at non-standard
location without the need to coordinate with applications.
LIBBPF_BPF_TOKEN_PATH can also be used to disable BPF token implicit creation
by setting it to an empty value. Patch #10 tests this new envvar functionality.

v2->v3:
  - move some stray feature cache refactorings into patch #4 (Alexei);
  - add LIBBPF_BPF_TOKEN_PATH envvar support (Alexei);
v1->v2:
  - remove minor code redundancies (Eduard, John);
  - add acks and rebase.
====================

Link: https://lore.kernel.org/r/20231213190842.3844987-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BluezTestBot pushed a commit that referenced this issue Jan 2, 2024
Andrii Nakryiko says:

====================
Enhance BPF global subprogs with argument tags

This patch set adds verifier support for annotating user's global BPF subprog
arguments with few commonly requested annotations, to improve global subprog
verification experience.

These tags are:
  - ability to annotate a special PTR_TO_CTX argument;
  - ability to annotate a generic PTR_TO_MEM as non-null.

We utilize btf_decl_tag attribute for this and provide two helper macros as
part of bpf_helpers.h in libbpf (patch #8).

Besides this we also add abilit to pass a pointer to dynptr into global
subprog. This is done based on type name match (struct bpf_dynptr *). This
allows to pass dynptrs into global subprogs, for use cases that deal with
variable-sized generic memory pointers.

Big chunk of the patch set (patches #1 through #5) are various refactorings to
make verifier internals around global subprog validation logic easier to
extend and support long term, eliminating BTF parsing logic duplication,
factoring out argument expectation definitions from BTF parsing, etc.

New functionality is added in patch #6 (ctx and non-null) and patch #7
(dynptr), extending global subprog checks with awareness for arg tags.

Patch #9 adds simple tests validating each of the added tags and dynptr
argument passing.

Patch #10 adds a simple negative case for freplace programs to make sure that
target BPF programs with "unreliable" BTF func proto cannot be freplaced.

v2->v3:
  - patch #10 improved by checking expected verifier error (Eduard);
v1->v2:
  - dropped packet args for now (Eduard);
  - added back unreliable=true detection for entry BPF programs (Eduard);
  - improved subprog arg validation (Eduard);
  - switched dynptr arg from tag to just type name based check (Eduard).
====================

Link: https://lore.kernel.org/r/20231215011334.2307144-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BluezTestBot pushed a commit that referenced this issue Jan 2, 2024
Wen Gu says:

====================
net/smc: implement SMCv2.1 virtual ISM device support

The fourth edition of SMCv2 adds the SMC version 2.1 feature updates for
SMC-Dv2 with virtual ISM. Virtual ISM are created and supported mainly by
OS or hypervisor software, comparable to IBM ISM which is based on platform
firmware or hardware.

With the introduction of virtual ISM, SMCv2.1 makes some updates:

- Introduce feature bitmask to indicate supplemental features.
- Reserve a range of CHIDs for virtual ISM.
- Support extended GIDs (128 bits) in CLC handshake.

So this patch set aims to implement these updates in Linux kernel. And it
acts as the first part of SMC-D virtual ISM extension & loopback-ism [1].

[1] https://lore.kernel.org/netdev/1695568613-125057-1-git-send-email-guwen@linux.alibaba.com/

v8->v7:
- Patch #7: v7 mistakenly changed the type of gid_ext in
  smc_clc_msg_accept_confirm to u64 instead of __be64 as previous versions
  when fixing the rebase conflicts. So fix this mistake.

v7->v6:
Link: https://lore.kernel.org/netdev/20231219084536.8158-1-guwen@linux.alibaba.com/
- Collect the Reviewed-by tag in v6;
- Patch #3: redefine the struct smc_clc_msg_accept_confirm;
- Patch #7: Because that the Patch #3 already adds '__packed' to
  smc_clc_msg_accept_confirm, so Patch #7 doesn't need to do the same thing.
  But this is a minor change, so I kept the 'Reviewed-by' tag.

Other changes in previous versions but not yet acked:
- Patch #1: Some minor changes in subject and fix the format issue
  (length exceeds 80 columns) compared to v3.
- Patch #5: removes useless ini->feature_mask assignment in __smc_connect()
  and smc_listen_v2_check() compared to v4.
- Patch #8: new added, compared to v3.

v6->v5:
Link: https://lore.kernel.org/netdev/1702371151-125258-1-git-send-email-guwen@linux.alibaba.com/
- Add 'Reviewed-by' label given in the previous versions:
  * Patch #4, #6, #9, #10 have nothing changed since v3;
- Patch #2:
  * fix the format issue (Alignment should match open parenthesis) compared to v5;
  * remove useless clc->hdr.length assignment in smcr_clc_prep_confirm_accept()
    compared to v5;
- Patch #3: new added compared to v5.
- Patch #7: some minor changes like aclc_v2->aclc or clc_v2->clc compared to v5
  due to the introduction of Patch #3. Since there were no major changes, I kept
  the 'Reviewed-by' label.

Other changes in previous versions but not yet acked:
- Patch #1: Some minor changes in subject and fix the format issue
  (length exceeds 80 columns) compared to v3.
- Patch #5: removes useless ini->feature_mask assignment in __smc_connect()
  and smc_listen_v2_check() compared to v4.
- Patch #8: new added, compared to v3.

v5->v4:
Link: https://lore.kernel.org/netdev/1702021259-41504-1-git-send-email-guwen@linux.alibaba.com/
- Patch #6: improve the comment of SMCD_CLC_MAX_V2_GID_ENTRIES;
- Patch #4: remove useless ini->feature_mask assignment;

v4->v3:
https://lore.kernel.org/netdev/1701920994-73705-1-git-send-email-guwen@linux.alibaba.com/
- Patch #6: use SMCD_CLC_MAX_V2_GID_ENTRIES to indicate the max gid
  entries in CLC proposal and using SMC_MAX_V2_ISM_DEVS to indicate the
  max devices to propose;
- Patch #6: use i and i+1 in smc_find_ism_v2_device_serv();
- Patch #2: replace the large if-else block in smc_clc_send_confirm_accept()
  with 2 subfunctions;
- Fix missing byte order conversion of GID and token in CLC handshake,
  which is in a separate patch sending to net:
  https://lore.kernel.org/netdev/1701882157-87956-1-git-send-email-guwen@linux.alibaba.com/
- Patch #7: add extended GID in SMC-D lgr netlink attribute;

v3->v2:
https://lore.kernel.org/netdev/1701343695-122657-1-git-send-email-guwen@linux.alibaba.com/
- Rename smc_clc_fill_fce as smc_clc_fill_fce_v2x;
- Remove ISM_IDENT_MASK from drivers/s390/net/ism.h;
- Add explicitly assigning 'false' to ism_v2_capable in ism_dev_init();
- Remove smc_ism_set_v2_capable() helper for now, and introduce it in
  later loopback-ism implementation;

v2->v1:
- Fix sparse complaint;
- Rebase to the latest net-next;
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Apr 2, 2024
…ables.c

syzkaller started to report a warning below [0] after consuming the
commit 4654467 ("netfilter: arptables: allow xtables-nft only
builds").

The change accidentally removed the dependency on NETFILTER_FAMILY_ARP
from IP_NF_ARPTABLES.

If NF_TABLES_ARP is not enabled on Kconfig, NETFILTER_FAMILY_ARP will
be removed and some code necessary for arptables will not be compiled.

  $ grep -E "(NETFILTER_FAMILY_ARP|IP_NF_ARPTABLES|NF_TABLES_ARP)" .config
  CONFIG_NETFILTER_FAMILY_ARP=y
  # CONFIG_NF_TABLES_ARP is not set
  CONFIG_IP_NF_ARPTABLES=y

  $ make olddefconfig

  $ grep -E "(NETFILTER_FAMILY_ARP|IP_NF_ARPTABLES|NF_TABLES_ARP)" .config
  # CONFIG_NF_TABLES_ARP is not set
  CONFIG_IP_NF_ARPTABLES=y

So, when nf_register_net_hooks() is called for arptables, it will
trigger the splat below.

Now IP_NF_ARPTABLES is only enabled by IP_NF_ARPFILTER, so let's
restore the dependency on NETFILTER_FAMILY_ARP in IP_NF_ARPFILTER.

[0]:
WARNING: CPU: 0 PID: 242 at net/netfilter/core.c:316 nf_hook_entry_head+0x1e1/0x2c0 net/netfilter/core.c:316
Modules linked in:
CPU: 0 PID: 242 Comm: syz-executor.0 Not tainted 6.8.0-12821-g537c2e91d354 #10
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:nf_hook_entry_head+0x1e1/0x2c0 net/netfilter/core.c:316
Code: 83 fd 04 0f 87 bc 00 00 00 e8 5b 84 83 fd 4d 8d ac ec a8 0b 00 00 e8 4e 84 83 fd 4c 89 e8 5b 5d 41 5c 41 5d c3 e8 3f 84 83 fd <0f> 0b e8 38 84 83 fd 45 31 ed 5b 5d 4c 89 e8 41 5c 41 5d c3 e8 26
RSP: 0018:ffffc90000b8f6e8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000003 RCX: ffffffff83c42164
RDX: ffff888106851180 RSI: ffffffff83c42321 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000005 R09: 000000000000000a
R10: 0000000000000003 R11: ffff8881055c2f00 R12: ffff888112b78000
R13: 0000000000000000 R14: ffff8881055c2f00 R15: ffff8881055c2f00
FS:  00007f377bd78800(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000496068 CR3: 000000011298b003 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
 <TASK>
 __nf_register_net_hook+0xcd/0x7a0 net/netfilter/core.c:428
 nf_register_net_hook+0x116/0x170 net/netfilter/core.c:578
 nf_register_net_hooks+0x5d/0xc0 net/netfilter/core.c:594
 arpt_register_table+0x250/0x420 net/ipv4/netfilter/arp_tables.c:1553
 arptable_filter_table_init+0x41/0x60 net/ipv4/netfilter/arptable_filter.c:39
 xt_find_table_lock+0x2e9/0x4b0 net/netfilter/x_tables.c:1260
 xt_request_find_table_lock+0x2b/0xe0 net/netfilter/x_tables.c:1285
 get_info+0x169/0x5c0 net/ipv4/netfilter/arp_tables.c:808
 do_arpt_get_ctl+0x3f9/0x830 net/ipv4/netfilter/arp_tables.c:1444
 nf_getsockopt+0x76/0xd0 net/netfilter/nf_sockopt.c:116
 ip_getsockopt+0x17d/0x1c0 net/ipv4/ip_sockglue.c:1777
 tcp_getsockopt+0x99/0x100 net/ipv4/tcp.c:4373
 do_sock_getsockopt+0x279/0x360 net/socket.c:2373
 __sys_getsockopt+0x115/0x1e0 net/socket.c:2402
 __do_sys_getsockopt net/socket.c:2412 [inline]
 __se_sys_getsockopt net/socket.c:2409 [inline]
 __x64_sys_getsockopt+0xbd/0x150 net/socket.c:2409
 do_syscall_x64 arch/x86/entry/common.c:52 [inline]
 do_syscall_64+0x4f/0x110 arch/x86/entry/common.c:83
 entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0x7f377beca6fe
Code: 1f 44 00 00 48 8b 15 01 97 0a 00 f7 d8 64 89 02 b8 ff ff ff ff eb b8 0f 1f 44 00 00 f3 0f 1e fa 49 89 ca b8 37 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 0a c3 66 0f 1f 84 00 00 00 00 00 48 8b 15 c9
RSP: 002b:00000000005df728 EFLAGS: 00000246 ORIG_RAX: 0000000000000037
RAX: ffffffffffffffda RBX: 00000000004966e0 RCX: 00007f377beca6fe
RDX: 0000000000000060 RSI: 0000000000000000 RDI: 0000000000000003
RBP: 000000000042938a R08: 00000000005df73c R09: 00000000005df800
R10: 00000000004966e8 R11: 0000000000000246 R12: 0000000000000003
R13: 0000000000496068 R14: 0000000000000003 R15: 00000000004bc9d8
 </TASK>

Fixes: 4654467 ("netfilter: arptables: allow xtables-nft only builds")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
BluezTestBot pushed a commit that referenced this issue Apr 2, 2024
Petr Machata says:

====================
selftests: Fixes for kernel CI

As discussed on the bi-weekly call on Jan 30, and in mailing around
kernel CI effort, some changes are desirable in the suite of forwarding
selftests the better to work with the CI tooling. Namely:

- The forwarding selftests use a configuration file where names of
  interfaces are defined and various variables can be overridden. There
  is also forwarding.config.sample that users can use as a template to
  refer to when creating the config file. What happens a fair bit is
  that users either do not know about this at all, or simply forget, and
  are confused by cryptic failures about interfaces that cannot be
  created.

  In patches #1 - #3 have lib.sh just be the single source of truth with
  regards to which variables exist. That includes the topology variables
  which were previously only in the sample file, and any "tweak
  variables", such as what tools to use, sleep times, etc.

  forwarding.config.sample then becomes just a placeholder with a couple
  examples. Unless specific HW should be exercised, or specific tools
  used, the defaults are usually just fine.

- Several net/forwarding/ selftests (and one net/ one) cannot be run on
  veth pairs, they need an actual HW interface to run on. They are
  generic in the sense that any capable HW should pass them, which is
  why they have been put to net/forwarding/ as opposed to drivers/net/,
  but they do not generalize to veth. The fact that these tests are in
  net/forwarding/, but still complaining when run, is confusing.

  In patches #4 - #6 move these tests to a new directory
  drivers/net/hw.

- The following patches extend the codebase to handle well test results
  other than pass and fail.

  Patch #7 is preparatory. It converts several log_test_skip to XFAIL,
  so that tests do not spuriously end up returning non-0 when they
  are not supposed to.

  In patches #8 - #10, introduce some missing ksft constants, then support
  having those constants in RET, and then finally in EXIT_STATUS.

- The traffic scheduler tests generate a large amount of network traffic
  to test the behavior of the scheduler. This demands a relatively
  high-performance computer. On slow machines, such as with a debugging
  kernel, the test would spuriously fail.

  It can still be useful to "go through the motions" though, to possibly
  catch bugs in setup of the scheduler graph and passing packets around.
  Thus we still want to run the tests, just with lowered demands.

  To that end, in patches #11 - #12, introduce an environment variable
  KSFT_MACHINE_SLOW, with obvious meaning. Tests can then make checks
  more lenient, such as mark failures as XFAIL. A helper, xfail_on_slow,
  is provided to mark performance-sensitive parts of the selftest.

- In patch #13, use a similar mechanism to mark a NH group stats
  selftest to XFAIL HW stats tests when run on VETH pairs.

- All these changes complicate the hitherto straightforward logging and
  checking logic, so in patch #14, add a selftest that checks this
  functionality in lib.sh.

v1 (vs. an RFC circulated through linux-kselftest):
- Patch #9:
    - Clarify intended usage by s/set_ret/ret_set_ksft_status/,
      s/nret/ksft_status/
====================

Link: https://lore.kernel.org/r/cover.1711464583.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
BluezTestBot pushed a commit that referenced this issue Apr 8, 2024
Petr Machata says:

====================
mlxsw: Preparations for improving performance

Amit Cohen writes:

mlxsw driver will use NAPI for event processing in a next patch set.
Some additional improvements will be added later. This patch set
prepares the code for NAPI usage and refactor some relevant areas. See
more details in commit messages.

Patch Set overview:
Patches #1-#2 are preparations for patch #3
Patch #3 setups tasklets as part of queue initializtion
Patch #4 removes handling of unlikely scenario
Patch #5 removes unused counters
Patch #6 makes style change in mlxsw_pci_eq_tasklet()
Patch #7-#10 poll command interface instead of EQ0 usage
Patches #11-#12 make style change and break the function
mlxsw_pci_cq_tasklet()
Patches #13-#14 remove functions which can be replaced by a stored value
Patch #15 improves accessing to descriptor queue instance
====================

Link: https://lore.kernel.org/r/cover.1712062203.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
BluezTestBot pushed a commit that referenced this issue Apr 25, 2024
Petr Machata says:

====================
selftests: Assortment of fixes

This is a loose follow-up to the Kernel CI patchset posted recently. It
contains various fixes that were supposed to be part of said patchset, but
didn't fit due to its size. The latter 4 patches were written independently
of the CI effort, but again didn't fit in their intended patchsets.

- Patch #1 unifies code of two very similar looking functions, busywait()
  and slowwait().

- Patch #2 adds sanity checks around the setting of NETIFS, which carries
  list of interfaces to run on.

- Patch #3 changes bail_on_lldpad() to SKIP instead of FAILing.

- Patches #4 to #7 fix issues in selftests.

- Patches #8 to #10 add topology diagrams to several selftests.
  This should have been part of the mlxsw leg of NH group stats patches,
  but again, it did not fit in due to size.
====================

Link: https://lore.kernel.org/r/cover.1712940759.git.petrm@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
BluezTestBot pushed a commit that referenced this issue Apr 25, 2024
vhost_worker will call tun call backs to receive packets. If too many
illegal packets arrives, tun_do_read will keep dumping packet contents.
When console is enabled, it will costs much more cpu time to dump
packet and soft lockup will be detected.

net_ratelimit mechanism can be used to limit the dumping rate.

PID: 33036    TASK: ffff949da6f20000  CPU: 23   COMMAND: "vhost-32980"
 #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253
 #1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3
 #2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e
 #3 [fffffe00003fced0] do_nmi at ffffffff8922660d
 #4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663
    [exception RIP: io_serial_in+20]
    RIP: ffffffff89792594  RSP: ffffa655314979e8  RFLAGS: 00000002
    RAX: ffffffff89792500  RBX: ffffffff8af428a0  RCX: 0000000000000000
    RDX: 00000000000003fd  RSI: 0000000000000005  RDI: ffffffff8af428a0
    RBP: 0000000000002710   R8: 0000000000000004   R9: 000000000000000f
    R10: 0000000000000000  R11: ffffffff8acbf64f  R12: 0000000000000020
    R13: ffffffff8acbf698  R14: 0000000000000058  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #5 [ffffa655314979e8] io_serial_in at ffffffff89792594
 #6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470
 #7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6
 #8 [ffffa65531497a20] uart_console_write at ffffffff8978b605
 #9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558
 #10 [ffffa65531497ac8] console_unlock at ffffffff89316124
 #11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07
 #12 [ffffa65531497b68] printk at ffffffff89318306
 #13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765
 #14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun]
 #15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun]
 #16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net]
 #17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost]
 #18 [ffffa65531497f10] kthread at ffffffff892d2e72
 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f

Fixes: ef3db4a ("tun: avoid BUG, dump packet on GSO errors")
Signed-off-by: Lei Chen <lei.chen@smartx.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://lore.kernel.org/r/20240415020247.2207781-1-lei.chen@smartx.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
BluezTestBot pushed a commit that referenced this issue Apr 30, 2024
Wen Gu says:

====================
net/smc: SMC intra-OS shortcut with loopback-ism

This patch set acts as the second part of the new version of [1] (The first
part can be referred from [2]), the updated things of this version are listed
at the end.

- Background

SMC-D is now used in IBM z with ISM function to optimize network interconnect
for intra-CPC communications. Inspired by this, we try to make SMC-D available
on the non-s390 architecture through a software-implemented Emulated-ISM device,
that is the loopback-ism device here, to accelerate inter-process or
inter-containers communication within the same OS instance.

- Design

This patch set includes 3 parts:

 - Patch #1: some prepare work for loopback-ism.
 - Patch #2-#7: implement loopback-ism device and adapt SMC-D for it.
   loopback-ism now serves only SMC and no userspace interfaces exposed.
 - Patch #8-#11: memory copy optimization for intra-OS scenario.

The loopback-ism device is designed as an ISMv2 device and not be limited to
a specific net namespace, ends of both inter-process connection (1/1' in diagram
below) or inter-container connection (2/2' in diagram below) can find the same
available loopback-ism and choose it during the CLC handshake.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+      +-------+      +-------+ |    |        +-------+        |
 | | App A |      | App B |      | App C | |    |        | App D |<-+     |
 | +-------+      +---^---+      +-------+ |    |        +-------+  |(2') |
 |     |127.0.0.1 (1')|             |192.168.0.11       192.168.0.12|     |
 |  (1)|   +--------+ | +--------+  |(2)   |    | +--------+   +--------+ |
 |     `-->|   lo   |-` |  eth0  |<-`      |    | |   lo   |   |  eth0  | |
 +---------+--|---^-+---+-----|--+---------+    +-+--------+---+-^------+-+
              |   |           |                                  |
 Kernel       |   |           |                                  |
 +----+-------v---+-----------v----------------------------------+---+----+
 |    |                            TCP                               |    |
 |    |                                                              |    |
 |    +--------------------------------------------------------------+    |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

loopback-ism device creates DMBs (shared memory) for each connection peer.
Since data transfer occurs within the same kernel, the sndbuf of each peer
is only a descriptor and point to the same memory region as peer DMB, so that
the data copy from sndbuf to peer DMB can be avoided in loopback-ism case.

 Container 1 (ns1)                              Container 2 (ns2)
 +-----------------------------------------+    +-------------------------+
 | +-------+                               |    |        +-------+        |
 | | App C |-----+                         |    |        | App D |        |
 | +-------+     |                         |    |        +-^-----+        |
 |               |                         |    |          |              |
 |           (2) |                         |    |     (2') |              |
 |               |                         |    |          |              |
 +---------------|-------------------------+    +----------|--------------+
                 |                                         |
 Kernel          |                                         |
 +---------------|-----------------------------------------|--------------+
 | +--------+ +--v-----+                           +--------+ +--------+  |
 | |dmb_desc| |snd_desc|                           |dmb_desc| |snd_desc|  |
 | +-----|--+ +--|-----+                           +-----|--+ +--------+  |
 | +-----|--+    |                                 +-----|--+             |
 | | DMB C  |    +---------------------------------| DMB D  |             |
 | +--------+                                      +--------+             |
 |                                                                        |
 |                           +--------------+                             |
 |                           | smc loopback |                             |
 +---------------------------+--------------+-----------------------------+

- Benchmark Test

 * Test environments:
      - VM with Intel Xeon Platinum 8 core 2.50GHz, 16 GiB mem.
      - SMC sndbuf/DMB size 1MB.

 * Test object:
      - TCP: run on TCP loopback.
      - SMC lo: run on SMC loopback-ism.

1. ipc-benchmark (see [3])

 - ./<foo> -c 1000000 -s 100

                            TCP                  SMC-lo
Message
rate (msg/s)              84991                  151293(+78.01%)

2. sockperf

 - serv: <smc_run> sockperf sr --tcp
 - clnt: <smc_run> sockperf { tp | pp } --tcp --msg-size={ 64000 for tp | 14 for pp } -i 127.0.0.1 -t 30

                            TCP                  SMC-lo
Bandwidth(MBps)        5033.569                7987.732(+58.69%)
Latency(us)               5.986                   3.398(-43.23%)

3. nginx/wrk

 - serv: <smc_run> nginx
 - clnt: <smc_run> wrk -t 8 -c 1000 -d 30 http://127.0.0.1:80

                           TCP                   SMC-lo
Requests/s           187951.76                267107.90(+42.12%)

4. redis-benchmark

 - serv: <smc_run> redis-server
 - clnt: <smc_run> redis-benchmark -h 127.0.0.1 -q -t set,get -n 400000 -c 200 -d 1024

                           TCP                   SMC-lo
GET(Requests/s)       86132.64                118133.49(+37.15%)
SET(Requests/s)       87374.40                122887.86(+40.65%)

Change log:
v7->v6
- Patch #2: minor: remove unnecessary 'return' of inline smc_loopback_exit().
- Patch #10: minor: directly return 0 instead of 'rc' in smcd_cdc_msg_send().
- all: collect the Reviewed-by tags.

v6->RFC v5
Link: https://lore.kernel.org/netdev/20240414040304.54255-1-guwen@linux.alibaba.com/
- Patch #2: make the use of CONFIG_SMC_LO cleaner.
- Patch #5: mark some smcd_ops that loopback-ism doesn't support as
  optional and check for the support when they are called.
- Patch #7: keep loopback-ism at the beginning of the SMC-D device list.
- Some expression changes in commit logs and comments.

RFC v5->RFC v4:
Link: https://lore.kernel.org/netdev/20240324135522.108564-1-guwen@linux.alibaba.com/
- Patch #2: minor changes in description of config SMC_LO and comments.
- Patch #10: minor changes in comments and if(smc_ism_support_dmb_nocopy())
  check in smcd_cdc_msg_send().
- Patch #3: change smc_lo_generate_id() to smc_lo_generate_ids() and SMC_LO_CHID
  to SMC_LO_RESERVED_CHID.
- Patch #5: memcpy while holding the ldev->dmb_ht_lock.
- Some expression changes in commit logs.

RFC v4->v3:
Link: https://lore.kernel.org/netdev/20240317100545.96663-1-guwen@linux.alibaba.com/
- The merge window of v6.9 is open, so post this series as an RFC.
- Patch #6: since some information fed back by smc_nl_handle_smcd_dev() dose
  not apply to Emulated-ISM (including loopback-ism here), loopback-ism is
  not exposed through smc netlink for the time being. we may refactor this
  part when smc netlink interface is updated.

v3->v2:
Link: https://lore.kernel.org/netdev/20240312142743.41406-1-guwen@linux.alibaba.com/
- Patch #11: use tasklet_schedule(&conn->rx_tsklet) instead of smcd_cdc_rx_handler()
  to avoid possible recursive locking of conn->send_lock and use {read|write}_lock_bh()
  to acquire dmb_ht_lock.

v2->v1:
Link: https://lore.kernel.org/netdev/20240307095536.29648-1-guwen@linux.alibaba.com/
- All the patches: changed the term virtual-ISM to Emulated-ISM as defined by SMCv2.1.
- Patch #3: optimized the description of SMC_LO config. Avoid exposing loopback-ism
  to sysfs and remove all the knobs until future definition clear.
- Patch #3: try to make lockdep happy by using read_lock_bh() in smc_lo_move_data().
- Patch #6: defaultly use physical contiguous DMB buffers.
- Patch #11: defaultly enable DMB no-copy for loopback-ism and free the DMB in
  unregister_dmb or detach_dmb when dmb_node->refcnt reaches 0, instead of using
  wait_event to keep waiting in unregister_dmb.

v1->RFC:
Link: https://lore.kernel.org/netdev/20240111120036.109903-1-guwen@linux.alibaba.com/
- Patch #9: merge rx_bytes and tx_bytes as xfer_bytes statistics:
  /sys/devices/virtual/smc/loopback-ism/xfer_bytes
- Patch #10: add support_dmb_nocopy operation to check if SMC-D device supports
  merging sndbuf with peer DMB.
- Patch #13 & #14: introduce loopback-ism device control of DMB memory type and
  control of whether to merge sndbuf and DMB. They can be respectively set by:
  /sys/devices/virtual/smc/loopback-ism/dmb_type
  /sys/devices/virtual/smc/loopback-ism/dmb_copy
  The motivation for these two control is that a performance bottleneck was
  found when using vzalloced DMB and sndbuf is merged with DMB, and there are
  many CPUs and CONFIG_HARDENED_USERCOPY is set [4]. The bottleneck is caused
  by the lock contention in vmap_area_lock [5] which is involved in memcpy_from_msg()
  or memcpy_to_msg(). Currently, Uladzislau Rezki is working on mitigating the
  vmap lock contention [6]. It has significant effects, but using virtual memory
  still has additional overhead compared to using physical memory.
  So this new version provides controls of dmb_type and dmb_copy to suit
  different scenarios.
- Some minor changes and comments improvements.

RFC->old version([1]):
Link: https://lore.kernel.org/netdev/1702214654-32069-1-git-send-email-guwen@linux.alibaba.com/
- Patch #1: improve the loopback-ism dump, it shows as follows now:
  # smcd d
  FID  Type  PCI-ID        PCHID  InUse  #LGs  PNET-ID
  0000 0     loopback-ism  ffff   No        0
- Patch #3: introduce the smc_ism_set_v2_capable() helper and set
  smc_ism_v2_capable when ISMv2 or virtual ISM is registered,
  regardless of whether there is already a device in smcd device list.
- Patch #3: loopback-ism will be added into /sys/devices/virtual/smc/loopback-ism/.
- Patch #8: introduce the runtime switch /sys/devices/virtual/smc/loopback-ism/active
  to activate or deactivate the loopback-ism.
- Patch #9: introduce the statistics of loopback-ism by
  /sys/devices/virtual/smc/loopback-ism/{{tx|rx}_tytes|dmbs_cnt}.
- Some minor changes and comments improvements.

[1] https://lore.kernel.org/netdev/1695568613-125057-1-git-send-email-guwen@linux.alibaba.com/
[2] https://lore.kernel.org/netdev/20231219142616.80697-1-guwen@linux.alibaba.com/
[3] https://github.com/goldsborough/ipc-bench
[4] https://lore.kernel.org/all/3189e342-c38f-6076-b730-19a6efd732a5@linux.alibaba.com/
[5] https://lore.kernel.org/all/238e63cd-e0e8-4fbf-852f-bc4d5bc35d5a@linux.alibaba.com/
[6] https://lore.kernel.org/all/20240102184633.748113-1-urezki@gmail.com/
====================

Link: https://lore.kernel.org/r/20240428060738.60843-1-guwen@linux.alibaba.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
BluezTestBot pushed a commit that referenced this issue May 15, 2024
When LSE atomics are available, BPF atomic instructions are implemented
as single ARM64 atomic instructions, therefore it is easy to enable
these in bpf_arena using the currently available exception handling
setup.

LL_SC atomics use loops and therefore would need more work to enable in
bpf_arena.

Enable LSE atomics based instructions in bpf_arena and use the
bpf_jit_supports_insn() callback to reject atomics in bpf_arena if LSE
atomics are not available.

All atomics and arena_atomics selftests are passing:

  [root@ip-172-31-2-216 bpf]# ./test_progs -a atomics,arena_atomics
  #3/1     arena_atomics/add:OK
  #3/2     arena_atomics/sub:OK
  #3/3     arena_atomics/and:OK
  #3/4     arena_atomics/or:OK
  #3/5     arena_atomics/xor:OK
  #3/6     arena_atomics/cmpxchg:OK
  #3/7     arena_atomics/xchg:OK
  #3       arena_atomics:OK
  #10/1    atomics/add:OK
  #10/2    atomics/sub:OK
  #10/3    atomics/and:OK
  #10/4    atomics/or:OK
  #10/5    atomics/xor:OK
  #10/6    atomics/cmpxchg:OK
  #10/7    atomics/xchg:OK
  #10      atomics:OK
  Summary: 2/14 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Puranjay Mohan <puranjay@kernel.org>
Link: https://lore.kernel.org/r/20240426161116.441-1-puranjay@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BluezTestBot pushed a commit that referenced this issue May 15, 2024
…/git/pablo/gtp

Pablo neira Ayuso says:

====================
gtp pull request 24-05-07

This v3 includes:
- fix for clang uninitialized variable per Jakub.
- address Smatch and Coccinelle reports per Simon
- remove inline in new IPv6 support per Simon
- fix memleaks in netlink control plane per Simon
-o-

The following patchset contains IPv6 GTP driver support for net-next,
this also includes IPv6 over IPv4 and vice-versa:

Patch #1 removes a unnecessary stack variable initialization in the
         socket routine.

Patch #2 deals with GTP extension headers. This variable length extension
         header to decapsulate packets accordingly. Otherwise, packets are
         dropped when these extension headers are present which breaks
         interoperation with other non-Linux based GTP implementations.

Patch #3 prepares for IPv6 support by moving IPv4 specific fields in PDP
         context objects to a union.

Patch #4 adds IPv6 support while retaining backward compatibility.
         Three new attributes allows to declare an IPv6 GTP tunnel
         GTPA_FAMILY, GTPA_PEER_ADDR6 and GTPA_MS_ADDR6 as well as
         IFLA_GTP_LOCAL6 to declare the IPv6 GTP UDP socket. Up to this
         patch, only IPv6 outer in IPv6 inner is supported.

Patch #5 uses IPv6 address /64 prefix for UE/MS in the inner headers.
         Unlike IPv4, which provides a 1:1 mapping between UE/MS,
         IPv6 tunnel encapsulates traffic for /64 address as specified
         by 3GPP TS. Patch has been split from Patch #4 to highlight
         this behaviour.

Patch #6 passes up IPv6 link-local traffic, such as IPv6 SLAAC, for
         handling to userspace so they are handled as control packets.

Patch #7 prepares to allow for GTP IPv4 over IPv6 and vice-versa by
         moving IP specific debugging out of the function to build
         IPv4 and IPv6 GTP packets.

Patch #8 generalizes TOS/DSCP handling following similar approach as
         in the existing iptunnel infrastructure.

Patch #9 adds a helper function to build an IPv4 GTP packet in the outer
         header.

Patch #10 adds a helper function to build an IPv6 GTP packet in the outer
          header.

Patch #11 adds support for GTP IPv4-over-IPv6 and vice-versa.

Patch #12 allows to use the same TID/TEID (tunnel identifier) for inner
          IPv4 and IPv6 packets for better UE/MS dual stack integration.

This series integrates with the osmocom.org project CI and TTCN-3 test
infrastructure (Oliver Smith) as well as the userspace libgtpnl library.

Thanks to Harald Welte, Oliver Smith and Pau Espin for reviewing and
providing feedback through the osmocom.org redmine platform to make this
happen.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
BluezTestBot pushed a commit that referenced this issue Jun 20, 2024
…PLES event"

This reverts commit 7d1405c.

This causes segfaults in some cases, as reported by Milian:

  ```
  sudo /usr/bin/perf record -z --call-graph dwarf -e cycles -e
  raw_syscalls:sys_enter ls
  ...
  [ perf record: Woken up 3 times to write data ]
  malloc(): invalid next size (unsorted)
  Aborted
  ```

  Backtrace with GDB + debuginfod:

  ```
  malloc(): invalid next size (unsorted)

  Thread 1 "perf" received signal SIGABRT, Aborted.
  __pthread_kill_implementation (threadid=<optimized out>, signo=signo@entry=6,
  no_tid=no_tid@entry=0) at pthread_kill.c:44
  Downloading source file /usr/src/debug/glibc/glibc/nptl/pthread_kill.c
  44            return INTERNAL_SYSCALL_ERROR_P (ret) ? INTERNAL_SYSCALL_ERRNO
  (ret) : 0;
  (gdb) bt
  #0  __pthread_kill_implementation (threadid=<optimized out>,
  signo=signo@entry=6, no_tid=no_tid@entry=0) at pthread_kill.c:44
  #1  0x00007ffff6ea8eb3 in __pthread_kill_internal (threadid=<optimized out>,
  signo=6) at pthread_kill.c:78
  #2  0x00007ffff6e50a30 in __GI_raise (sig=sig@entry=6) at ../sysdeps/posix/
  raise.c:26
  #3  0x00007ffff6e384c3 in __GI_abort () at abort.c:79
  #4  0x00007ffff6e39354 in __libc_message_impl (fmt=fmt@entry=0x7ffff6fc22ea
  "%s\n") at ../sysdeps/posix/libc_fatal.c:132
  #5  0x00007ffff6eb3085 in malloc_printerr (str=str@entry=0x7ffff6fc5850
  "malloc(): invalid next size (unsorted)") at malloc.c:5772
  #6  0x00007ffff6eb657c in _int_malloc (av=av@entry=0x7ffff6ff6ac0
  <main_arena>, bytes=bytes@entry=368) at malloc.c:4081
  #7  0x00007ffff6eb877e in __libc_calloc (n=<optimized out>,
  elem_size=<optimized out>) at malloc.c:3754
  #8  0x000055555569bdb6 in perf_session.do_write_header ()
  #9  0x00005555555a373a in __cmd_record.constprop.0 ()
  #10 0x00005555555a6846 in cmd_record ()
  #11 0x000055555564db7f in run_builtin ()
  #12 0x000055555558ed77 in main ()
  ```

  Valgrind memcheck:
  ```
  ==45136== Invalid write of size 8
  ==45136==    at 0x2B38A5: perf_event__synthesize_id_sample (in /usr/bin/perf)
  ==45136==    by 0x157069: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
  ==45136== Syscall param write(buf) points to unaddressable byte(s)
  ==45136==    at 0x575953D: __libc_write (write.c:26)
  ==45136==    by 0x575953D: write (write.c:24)
  ==45136==    by 0x35761F: ion (in /usr/bin/perf)
  ==45136==    by 0x357778: writen (in /usr/bin/perf)
  ==45136==    by 0x1548F7: record__write (in /usr/bin/perf)
  ==45136==    by 0x15708A: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==  Address 0x6a866a8 is 0 bytes after a block of size 40 alloc'd
  ==45136==    at 0x4849BF3: calloc (vg_replace_malloc.c:1675)
  ==45136==    by 0x3574AB: zalloc (in /usr/bin/perf)
  ==45136==    by 0x1570E0: __cmd_record.constprop.0 (in /usr/bin/perf)
  ==45136==    by 0x15A845: cmd_record (in /usr/bin/perf)
  ==45136==    by 0x201B7E: run_builtin (in /usr/bin/perf)
  ==45136==    by 0x142D76: main (in /usr/bin/perf)
  ==45136==
 -----

Closes: https://lore.kernel.org/linux-perf-users/23879991.0LEYPuXRzz@milian-workstation/
Reported-by: Milian Wolff <milian.wolff@kdab.com>
Tested-by: Milian Wolff <milian.wolff@kdab.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: stable@kernel.org # 6.8+
Link: https://lore.kernel.org/lkml/Zl9ksOlHJHnKM70p@x1
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
BluezTestBot pushed a commit that referenced this issue Jun 20, 2024
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():

  BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
  ------------[ cut here ]------------
  kernel BUG at fs/btrfs/ctree.c:2620!
  invalid opcode: 0000 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
  RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]

With the following stack trace:

  #0  btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
  #1  btrfs_drop_extents (fs/btrfs/file.c:411:4)
  #2  log_one_extent (fs/btrfs/tree-log.c:4732:9)
  #3  btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
  #4  btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
  #5  btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
  #6  btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
  #7  btrfs_sync_file (fs/btrfs/file.c:1933:8)
  #8  vfs_fsync_range (fs/sync.c:188:9)
  #9  vfs_fsync (fs/sync.c:202:9)
  #10 do_fsync (fs/sync.c:212:9)
  #11 __do_sys_fdatasync (fs/sync.c:225:9)
  #12 __se_sys_fdatasync (fs/sync.c:223:1)
  #13 __x64_sys_fdatasync (fs/sync.c:223:1)
  #14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
  #15 do_syscall_64 (arch/x86/entry/common.c:83:7)
  #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)

So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().

This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:

  >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
  leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
  leaf 33439744 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
          item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
                  generation 7 transid 9 size 8192 nbytes 8473563889606862198
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 204 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417704.983333333 (2024-05-22 15:41:44)
                  mtime 1716417704.983333333 (2024-05-22 15:41:44)
                  otime 17592186044416.000000000 (559444-03-08 01:40:16)
          item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
                  index 195 namelen 3 name: 193
          item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 4096 ram 12288
                  extent compression 0 (none)
          item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 4096 nr 8192
          item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096
  ...

So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.

Here is the state of the filesystem tree at the time of the crash:

  >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root
  >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0))
  >>> print_extent_buffer(nodes[0])
  leaf 30425088 level 0 items 184 generation 9 owner 5
  leaf 30425088 flags 0x100000000000000
  fs uuid e5bd3946-400c-4223-8923-190ef1f18677
  chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
  	...
          item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160
                  generation 7 transid 7 size 4096 nbytes 12288
                  block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
                  sequence 6 flags 0x10(PREALLOC)
                  atime 1716417703.220000000 (2024-05-22 15:41:43)
                  ctime 1716417703.220000000 (2024-05-22 15:41:43)
                  mtime 1716417703.220000000 (2024-05-22 15:41:43)
                  otime 1716417703.220000000 (2024-05-22 15:41:43)
          item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13
                  index 195 namelen 3 name: 193
          item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37
                  location key (0 UNKNOWN.0 0) type XATTR
                  transid 7 data_len 1 name_len 6
                  name: user.a
                  data a
          item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53
                  generation 9 type 1 (regular)
                  extent data disk byte 303144960 nr 12288
                  extent data offset 0 nr 8192 ram 12288
                  extent compression 0 (none)
          item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53
                  generation 9 type 2 (prealloc)
                  prealloc data disk byte 303144960 nr 12288
                  prealloc data offset 8192 nr 4096

Item 5 in the log tree corresponds to item 183 in the filesystem tree,
but nothing matches item 4. Furthermore, item 183 is the last item in
the leaf.

btrfs_log_prealloc_extents() is responsible for logging prealloc extents
beyond i_size. It first truncates any previously logged prealloc extents
that start beyond i_size. Then, it walks the filesystem tree and copies
the prealloc extent items to the log tree.

If it hits the end of a leaf, then it calls btrfs_next_leaf(), which
unlocks the tree and does another search. However, while the filesystem
tree is unlocked, an ordered extent completion may modify the tree. In
particular, it may insert an extent item that overlaps with an extent
item that was already copied to the log tree.

This may manifest in several ways depending on the exact scenario,
including an EEXIST error that is silently translated to a full sync,
overlapping items in the log tree, or this crash. This particular crash
is triggered by the following sequence of events:

- Initially, the file has i_size=4k, a regular extent from 0-4k, and a
  prealloc extent beyond i_size from 4k-12k. The prealloc extent item is
  the last item in its B-tree leaf.
- The file is fsync'd, which copies its inode item and both extent items
  to the log tree.
- An xattr is set on the file, which sets the
  BTRFS_INODE_COPY_EVERYTHING flag.
- The range 4k-8k in the file is written using direct I/O. i_size is
  extended to 8k, but the ordered extent is still in flight.
- The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this
  calls copy_inode_items_to_log(), which calls
  btrfs_log_prealloc_extents().
- btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the
  filesystem tree. Since it starts before i_size, it skips it. Since it
  is the last item in its B-tree leaf, it calls btrfs_next_leaf().
- btrfs_next_leaf() unlocks the path.
- The ordered extent completion runs, which converts the 4k-8k part of
  the prealloc extent to written and inserts the remaining prealloc part
  from 8k-12k.
- btrfs_next_leaf() does a search and finds the new prealloc extent
  8k-12k.
- btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into
  the log tree. Note that it overlaps with the 4k-12k prealloc extent
  that was copied to the log tree by the first fsync.
- fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k
  extent that was written.
- This tries to drop the range 4k-8k in the log tree, which requires
  adjusting the start of the 4k-12k prealloc extent in the log tree to
  8k.
- btrfs_set_item_key_safe() sees that there is already an extent
  starting at 8k in the log tree and calls BUG().

Fix this by detecting when we're about to insert an overlapping file
extent item in the log tree and truncating the part that would overlap.

CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BluezTestBot pushed a commit that referenced this issue Jun 28, 2024
The code in ocfs2_dio_end_io_write() estimates number of necessary
transaction credits using ocfs2_calc_extend_credits().  This however does
not take into account that the IO could be arbitrarily large and can
contain arbitrary number of extents.

Extent tree manipulations do often extend the current transaction but not
in all of the cases.  For example if we have only single block extents in
the tree, ocfs2_mark_extent_written() will end up calling
ocfs2_replace_extent_rec() all the time and we will never extend the
current transaction and eventually exhaust all the transaction credits if
the IO contains many single block extents.  Once that happens a
WARN_ON(jbd2_handle_buffer_credits(handle) <= 0) is triggered in
jbd2_journal_dirty_metadata() and subsequently OCFS2 aborts in response to
this error.  This was actually triggered by one of our customers on a
heavily fragmented OCFS2 filesystem.

To fix the issue make sure the transaction always has enough credits for
one extent insert before each call of ocfs2_mark_extent_written().

Heming Zhao said:

------
PANIC: "Kernel panic - not syncing: OCFS2: (device dm-1): panic forced after error"

PID: xxx  TASK: xxxx  CPU: 5  COMMAND: "SubmitThread-CA"
  #0 machine_kexec at ffffffff8c069932
  #1 __crash_kexec at ffffffff8c1338fa
  #2 panic at ffffffff8c1d69b9
  #3 ocfs2_handle_error at ffffffffc0c86c0c [ocfs2]
  #4 __ocfs2_abort at ffffffffc0c88387 [ocfs2]
  #5 ocfs2_journal_dirty at ffffffffc0c51e98 [ocfs2]
  #6 ocfs2_split_extent at ffffffffc0c27ea3 [ocfs2]
  #7 ocfs2_change_extent_flag at ffffffffc0c28053 [ocfs2]
  #8 ocfs2_mark_extent_written at ffffffffc0c28347 [ocfs2]
  #9 ocfs2_dio_end_io_write at ffffffffc0c2bef9 [ocfs2]
#10 ocfs2_dio_end_io at ffffffffc0c2c0f5 [ocfs2]
#11 dio_complete at ffffffff8c2b9fa7
#12 do_blockdev_direct_IO at ffffffff8c2bc09f
#13 ocfs2_direct_IO at ffffffffc0c2b653 [ocfs2]
#14 generic_file_direct_write at ffffffff8c1dcf14
#15 __generic_file_write_iter at ffffffff8c1dd07b
#16 ocfs2_file_write_iter at ffffffffc0c49f1f [ocfs2]
#17 aio_write at ffffffff8c2cc72e
#18 kmem_cache_alloc at ffffffff8c248dde
#19 do_io_submit at ffffffff8c2ccada
#20 do_syscall_64 at ffffffff8c004984
#21 entry_SYSCALL_64_after_hwframe at ffffffff8c8000ba

Link: https://lkml.kernel.org/r/20240617095543.6971-1-jack@suse.cz
Link: https://lkml.kernel.org/r/20240614145243.8837-1-jack@suse.cz
Fixes: c15471f ("ocfs2: fix sparse file & data ordering issue in direct io")
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Heming Zhao <heming.zhao@suse.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
BluezTestBot pushed a commit that referenced this issue Jul 18, 2024
Bos can be put with multiple unrelated dma-resv locks held. But
imported bos attempt to grab the bo dma-resv during dma-buf detach
that typically happens during cleanup. That leads to lockde splats
similar to the below and a potential ABBA deadlock.

Fix this by always taking the delayed workqueue cleanup path for
imported bos.

Requesting stable fixes from when the Xe driver was introduced,
since its usage of drm_exec and wide vm dma_resvs appear to be
the first reliable trigger of this.

[22982.116427] ============================================
[22982.116428] WARNING: possible recursive locking detected
[22982.116429] 6.10.0-rc2+ #10 Tainted: G     U  W
[22982.116430] --------------------------------------------
[22982.116430] glxgears:sh0/5785 is trying to acquire lock:
[22982.116431] ffff8c2bafa539a8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: dma_buf_detach+0x3b/0xf0
[22982.116438]
               but task is already holding lock:
[22982.116438] ffff8c2d9aba6da8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: drm_exec_lock_obj+0x49/0x2b0 [drm_exec]
[22982.116442]
               other info that might help us debug this:
[22982.116442]  Possible unsafe locking scenario:

[22982.116443]        CPU0
[22982.116444]        ----
[22982.116444]   lock(reservation_ww_class_mutex);
[22982.116445]   lock(reservation_ww_class_mutex);
[22982.116447]
                *** DEADLOCK ***

[22982.116447]  May be due to missing lock nesting notation

[22982.116448] 5 locks held by glxgears:sh0/5785:
[22982.116449]  #0: ffff8c2d9aba58c8 (&xef->vm.lock){+.+.}-{3:3}, at: xe_file_close+0xde/0x1c0 [xe]
[22982.116507]  #1: ffff8c2e28cc8480 (&vm->lock){++++}-{3:3}, at: xe_vm_close_and_put+0x161/0x9b0 [xe]
[22982.116578]  #2: ffff8c2e31982970 (&val->lock){.+.+}-{3:3}, at: xe_validation_ctx_init+0x6d/0x70 [xe]
[22982.116647]  #3: ffffacdc469478a8 (reservation_ww_class_acquire){+.+.}-{0:0}, at: xe_vma_destroy_unlocked+0x7f/0xe0 [xe]
[22982.116716]  #4: ffff8c2d9aba6da8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: drm_exec_lock_obj+0x49/0x2b0 [drm_exec]
[22982.116719]
               stack backtrace:
[22982.116720] CPU: 8 PID: 5785 Comm: glxgears:sh0 Tainted: G     U  W          6.10.0-rc2+ #10
[22982.116721] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023
[22982.116723] Call Trace:
[22982.116724]  <TASK>
[22982.116725]  dump_stack_lvl+0x77/0xb0
[22982.116727]  __lock_acquire+0x1232/0x2160
[22982.116730]  lock_acquire+0xcb/0x2d0
[22982.116732]  ? dma_buf_detach+0x3b/0xf0
[22982.116734]  ? __lock_acquire+0x417/0x2160
[22982.116736]  __ww_mutex_lock.constprop.0+0xd0/0x13b0
[22982.116738]  ? dma_buf_detach+0x3b/0xf0
[22982.116741]  ? dma_buf_detach+0x3b/0xf0
[22982.116743]  ? ww_mutex_lock+0x2b/0x90
[22982.116745]  ww_mutex_lock+0x2b/0x90
[22982.116747]  dma_buf_detach+0x3b/0xf0
[22982.116749]  drm_prime_gem_destroy+0x2f/0x40 [drm]
[22982.116775]  xe_ttm_bo_destroy+0x32/0x220 [xe]
[22982.116818]  ? __mutex_unlock_slowpath+0x3a/0x290
[22982.116821]  drm_exec_unlock_all+0xa1/0xd0 [drm_exec]
[22982.116823]  drm_exec_fini+0x12/0xb0 [drm_exec]
[22982.116824]  xe_validation_ctx_fini+0x15/0x40 [xe]
[22982.116892]  xe_vma_destroy_unlocked+0xb1/0xe0 [xe]
[22982.116959]  xe_vm_close_and_put+0x41a/0x9b0 [xe]
[22982.117025]  ? xa_find+0xe3/0x1e0
[22982.117028]  xe_file_close+0x10a/0x1c0 [xe]
[22982.117074]  drm_file_free+0x22a/0x280 [drm]
[22982.117099]  drm_release_noglobal+0x22/0x70 [drm]
[22982.117119]  __fput+0xf1/0x2d0
[22982.117122]  task_work_run+0x59/0x90
[22982.117125]  do_exit+0x330/0xb40
[22982.117127]  do_group_exit+0x36/0xa0
[22982.117129]  get_signal+0xbd2/0xbe0
[22982.117131]  arch_do_signal_or_restart+0x3e/0x240
[22982.117134]  syscall_exit_to_user_mode+0x1e7/0x290
[22982.117137]  do_syscall_64+0xa1/0x180
[22982.117139]  ? lock_acquire+0xcb/0x2d0
[22982.117140]  ? __set_task_comm+0x28/0x1e0
[22982.117141]  ? find_held_lock+0x2b/0x80
[22982.117144]  ? __set_task_comm+0xe1/0x1e0
[22982.117145]  ? lock_release+0xca/0x290
[22982.117147]  ? __do_sys_prctl+0x245/0xab0
[22982.117149]  ? lockdep_hardirqs_on_prepare+0xde/0x190
[22982.117150]  ? syscall_exit_to_user_mode+0xb0/0x290
[22982.117152]  ? do_syscall_64+0xa1/0x180
[22982.117154]  ? __lock_acquire+0x417/0x2160
[22982.117155]  ? reacquire_held_locks+0xd1/0x1f0
[22982.117156]  ? do_user_addr_fault+0x30c/0x790
[22982.117158]  ? lock_acquire+0xcb/0x2d0
[22982.117160]  ? find_held_lock+0x2b/0x80
[22982.117162]  ? do_user_addr_fault+0x357/0x790
[22982.117163]  ? lock_release+0xca/0x290
[22982.117164]  ? do_user_addr_fault+0x361/0x790
[22982.117166]  ? trace_hardirqs_off+0x4b/0xc0
[22982.117168]  ? clear_bhb_loop+0x45/0xa0
[22982.117170]  ? clear_bhb_loop+0x45/0xa0
[22982.117172]  ? clear_bhb_loop+0x45/0xa0
[22982.117174]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
[22982.117176] RIP: 0033:0x7f943d267169
[22982.117192] Code: Unable to access opcode bytes at 0x7f943d26713f.
[22982.117193] RSP: 002b:00007f9430bffc80 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
[22982.117195] RAX: fffffffffffffe00 RBX: 0000000000000000 RCX: 00007f943d267169
[22982.117196] RDX: 0000000000000000 RSI: 0000000000000189 RDI: 00005622f89579d0
[22982.117197] RBP: 00007f9430bffcb0 R08: 0000000000000000 R09: 00000000ffffffff
[22982.117198] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[22982.117199] R13: 0000000000000000 R14: 0000000000000000 R15: 00005622f89579d0
[22982.117202]  </TASK>

Fixes: dd08ebf ("drm/xe: Introduce a new DRM driver for Intel GPUs")
Cc: Christian König <christian.koenig@amd.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: dri-devel@lists.freedesktop.org
Cc: intel-xe@lists.freedesktop.org
Cc: <stable@vger.kernel.org> # v6.8+
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Christian König <christian.koenig@amd.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240628153848.4989-1-thomas.hellstrom@linux.intel.com
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant