official implementation of When Spiking neural networks meet temporal attention image decoding and adaptive spiking neuron
Accepted to ICLR Tiny 2023 (oral)!!
paper: https://openreview.net/forum?id=MuOFB0LQKcy
install dependencies
pip install -r requirements.txt
initialize the fid stats
python init_fid_stats.py
As a comparison method, we prepared vanilla VAEs of the same network architecture built with ANN, and trained on the same settings.
python main_ann_vae exp_name -dataset dataset_name
args:
1.name: [required] experiment name
2.dataset:[required] dataset name [mnist, fashion, celeba, cifar10]
3.batch_size: default 250
4.latent_dim: default 128
5.checkpoint: checkpoint path (if use pretrained model)
6.device: device id of gpu, default 0
If you find ALIF and TAID module useful in your work, please cite the following source:
@misc{
qiu2023when,
title={When Spiking Neural Networks Meet Temporal Attention Image Decoding and Adaptive Spiking Neuron},
author={Xuerui Qiu and Zheng Luan and Zhaorui Wang and Rui-Jie Zhu},
year={2023},
url={https://openreview.net/forum?id=MuOFB0LQKcy}
}