forked from Ombarus/clashAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TicTacToe.py
574 lines (484 loc) · 18.8 KB
/
TicTacToe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import sys
import os
os.environ["path"] = os.path.dirname(sys.executable) + ";" + os.environ["path"]
import glob
import copy
import win32gui
import win32ui
import win32con
import win32api
import datetime
import dateutil.relativedelta
import operator
import random
import numpy
import json
import pickle
import scipy.ndimage
import multiprocessing
import matplotlib.pyplot as plt
from PIL import Image
from sklearn.externals import joblib
from sklearn.neural_network import MLPClassifier, MLPRegressor
###############################################################################
# CONSTANTS GLOBALS
###############################################################################
PRINT_LEVEL=4
DATA_FOLDER = "data"
Discount_factor = 0.9
Learning_rate = 0.5
#Epsilon = 0.5
#EpsilonStep = 0.1
#EpsilonParts = 11
Epsilon = 0.5
EpsilonStep = 0.1
EpsilonParts = 11
EMPTY = 0
X = 1
O = 2
REWARD = 100.0
LOSS = -100.0
NULL = -10.0
#REWARD = 1.0
#LOSS = -1.0
#NULL = -0.1
EXPERIENCE_SIZE = 500
###############################################################################
# UTILITY CLASS
###############################################################################
def myprint(msg, level=0):
if (level >= PRINT_LEVEL):
#sys.stdout.write((str(msg) + "\n").encode('UTF-8'))
if sys.version_info[0] < 3:
print((str(msg) + "\n").encode('UTF-8'))
else:
sys.stdout.buffer.write((str(msg) + "\n").encode('UTF-8'))
class ScopedTimer:
totals = {}
def __init__(self, name, level=3):
self.starttime = datetime.datetime.now()
self.name = name
self.level = level
def __del__(self):
delta = datetime.datetime.now() - self.starttime
if self.name not in ScopedTimer.totals:
ScopedTimer.totals[self.name] = datetime.timedelta(0)
ScopedTimer.totals[self.name] += delta
myprint("{name} : {delta} / {total}".format(name=self.name, delta=str(delta), total=str(ScopedTimer.totals[self.name])), self.level)
#myprint(str(self.name) + " : " + str(delta),self.level)
class TicTacToe:
def __init__(self, size=3, fromstr=None):
self.size = size
self.board = numpy.zeros(size * size, numpy.int8)
if fromstr is not None:
index = 0
for move in list(fromstr):
key = int(move)
self.board[index] = key
index += 1
self.board = self.board.reshape(size,size)
def __str__(self):
line = ""
for y in range(self.size):
line += "\t"
for x in range(self.size):
if self.board[y][x] == EMPTY:
line += " "
if self.board[y][x] == X:
line += "X"
if self.board[y][x] == O:
line += "O"
if x < self.size - 1:
line += "\t|\t"
line += "\n"
if y < self.size - 1:
line += "-" * (self.size * 25)
line += "\n"
return line
def __repr__(self):
return "".join(map(str,self.board.reshape(self.size * self.size).tolist()))
def X(self):
return self.board.reshape(self.size * self.size)
def play_x(self, x, y):
self.board[y][x] = X
if self.winner():
return True
else:
return False
def play_o(self, x, y):
self.board[y][x] = O
if self.winner():
return True
else:
return False
def play(self, owner, x, y):
self.board[y][x] = owner
if self.winner():
return True
else:
return False
def is_valid_move(self, x,y):
return self.board[y][x] == 0
def get_valid_moves_list(self):
valid_move_list = []
for x in range(self.size):
for y in range(self.size):
if self.board[y][x] == EMPTY:
valid_move_list.append( (x,y) )
return valid_move_list
def winner(self):
full_line = False
for a in range(len(self.board)):
row = self.board[a]
full_line |= (row[0] != EMPTY and row.tolist().count(row[0]) == len(row))
col = self.board[:,a]
full_line |= (col[0] != EMPTY and col.tolist().count(col[0]) == len(col))
diag = numpy.diagonal(self.board)
full_line |= (diag[0] != EMPTY and diag.tolist().count(diag[0]) == len(diag))
diag = numpy.diagonal(self.board[::-1,:])
full_line |= (diag[0] != EMPTY and diag.tolist().count(diag[0]) == len(diag))
return full_line
###############################################################################
# FUNCTIONS
###############################################################################
def init_cost_action(Q, state, valid_actions):
res = {action : 0 for action in valid_actions}
Q[repr(state)] = res
def get_max(Q_row):
Q_values = numpy.array(list(Q_row.values()))
max_val = Q_values[Q_values.argmax()]
return max_val
def back_propagate(Q, leaf_reward, moves):
prev = None
for obj_state, action in reversed(moves):
state = repr(obj_state)
if prev == None:
Q[state][action] = leaf_reward
prev = state
continue
max = get_max(Q[prev])
Q[state][action] = Q[state][action] + Learning_rate * (0 + Discount_factor * max - Q[state][action])
prev = state
def find_best_action(Q_row):
Q_values = numpy.array(list(Q_row.values()))
max_val = Q_values[Q_values.argmax()]
ideal_moves = []
for entry in Q_row:
if Q_row[entry] == max_val:
ideal_moves.append(entry)
return random.choice(ideal_moves)
def to_index(x, y, board_size):
return x + y * board_size
def to_xy(move, board_size):
x = int(move) % board_size
y = int(int(move) / board_size)
return x,y
def play_a_move(Q, cur_state, turn):
if type(Q) is MLPRegressor:
possible_actions = Q.predict([cur_state.X()])
possible_actions = [(x, possible_actions[0][x]) for x in range(len(possible_actions[0]))]
possible_actions = sorted(possible_actions, key=lambda x: x[1], reverse=True)
myprint(repr(cur_state) + " : " + str(possible_actions))
#index = numpy.argmax(possible_actions)
for val in possible_actions:
action = to_xy(val[0], cur_state.size)
if cur_state.is_valid_move(*action):
break
else:
if repr(cur_state) not in Q:
init_cost_action(Q, cur_state, cur_state.get_valid_moves_list())
action = find_best_action(Q[repr(cur_state)])
return action, cur_state.play(turn, *action)
def play_a_game(Q, size, epsilon=0.0):
cur_state = TicTacToe(size)
x_moves = []
o_moves = []
move = 0
winner = False
while winner == False and move < size * size:
if type(Q) is MLPRegressor:
rnd = random.random()
possible_actions = Q.predict([cur_state.X()])
possible_actions = [(x, possible_actions[0][x]) for x in range(len(possible_actions[0]))]
possible_actions = sorted(possible_actions, key=lambda x: x[1], reverse=True)
myprint("Possible Actions (" + repr(cur_state) + ") : " + str(possible_actions))
#index = numpy.argmax(possible_actions)
for val in possible_actions:
action = to_xy(val[0], cur_state.size)
if rnd < epsilon:
action = to_xy(random.choice(possible_actions)[0], cur_state.size)
myprint("Choosing Randomly {} / {}".format(rnd, epsilon),2)
if cur_state.is_valid_move(*action):
break
else:
if repr(cur_state) not in Q:
init_cost_action(Q, cur_state, cur_state.get_valid_moves_list())
action = find_best_action(Q[repr(cur_state)])
if move % 2 == 0:
x_moves.append([copy.deepcopy(cur_state), action])
winner = cur_state.play_x(*action)
else:
o_moves.append([copy.deepcopy(cur_state), action])
winner = cur_state.play_o(*action)
myprint(str(cur_state))
if not winner:
move += 1
is_null = False
if move >= size * size and not winner:
myprint("Game ended in NULL",3)
winner_moves = x_moves
loser_moves = o_moves
is_null = True
elif move % 2 == 0:
myprint("X Won", 3)
winner_moves = x_moves
loser_moves = o_moves
else:
myprint("O Won", 3)
winner_moves = o_moves
loser_moves = x_moves
myprint(str(cur_state),2)
return winner_moves, loser_moves, is_null
def play_interactive(Q, final_game):
won = None
keypad_remap = '-678345012'
symbols = [X, O]
players = ['Player', 'AI']
#players = ['AI', 'Player']
myprint(str(final_game), 10)
move_count = 0
x_moves = []
o_moves = []
while not won and move_count < 9:
p = players[0]
s = symbols[0]
if p == 'Player':
move = None
while move is None:
try:
move = input('Your turn (1-9 on keypad): ') # Python 3
move = keypad_remap[int(move)]
x, y = to_xy(move, final_game.size)
print('playing ' + str((x, y)))
if final_game.is_valid_move(x, y):
if s == X:
x_moves.append([copy.deepcopy(final_game), (x,y)])
won = final_game.play_x(x, y)
else:
o_moves.append([copy.deepcopy(final_game), (x,y)])
won = final_game.play_o(x, y)
move_count += 1
else:
print('Invalid move ' + str(move))
move = None
except Exception as e:
print(e)
print('Invalid move ' + str(move))
print(final_game.board)
move = None
else:
cur_state = final_game
ai_move, won = play_a_move(Q, final_game, s)
if s == X:
x_moves.append([copy.deepcopy(cur_state), ai_move])
else:
o_moves.append([copy.deepcopy(cur_state), ai_move])
move_count += 1
myprint(str(final_game), 10)
if won:
myprint(str(p) + ' won the game !',5)
elif move_count >= 9:
myprint("This game ended in a NULL",5)
del players[0]
players += [p]
del symbols[0]
symbols += [s]
is_null = False
if move_count >= final_game.size * final_game.size and not won:
myprint("Game ended in NULL",3)
winner_moves = x_moves
loser_moves = o_moves
is_null = True
elif move_count % 2 == 1:
myprint("X Won", 3)
winner_moves = x_moves
loser_moves = o_moves
else:
myprint("O Won", 3)
winner_moves = o_moves
loser_moves = x_moves
return winner_moves, loser_moves, is_null
def train_using_Q_table(board_size):
Q = {}
for i in range(10000):
winner_moves, loser_moves, is_null = play_a_game(Q, board_size)
if is_null:
back_propagate(Q, NULL, winner_moves)
back_propagate(Q, NULL, loser_moves)
else:
back_propagate(Q, REWARD, winner_moves)
back_propagate(Q, LOSS, loser_moves)
save_Q_table(Q)
final_game = TicTacToe(board_size)
play_interactive(Q, final_game)
def MLP_training(machine, moves, board_size, reward):
X = []
new_y = []
next_state = None
next_action = None
next_adjusted_y = None
for state, action in reversed(moves):
X.append(state.X())
index = to_index(*action, board_size)
if next_state is None:
max_Q = reward / Discount_factor
else:
#estimated_ynext = machine.predict([next_state.X()])
possible_actions = [i for i in range(len(next_state.X())) if next_state.X()[i] == 0]
possible_y = [next_adjusted_y[i] for i in possible_actions]
myprint("possible_actions : {}, possible_y : {}".format(possible_actions, possible_y))
max_Q = max(possible_y)
estimated_y = machine.predict([state.X()])
#estimated_y[0][index] = ((1-Learning_rate) * estimated_y[0][index]) + (Learning_rate * (Discount_factor * max_Q))
estimated_y[0][index] = (Discount_factor * max_Q)
new_y.append(estimated_y[0])
next_state = state
next_action = action
next_adjusted_y = estimated_y[0]
return X, new_y
def run_MLP_game(machine, board_size, data):
winner_moves, loser_moves, is_null = play_a_game(machine, board_size, data["actual_epsilon"])
X, new_y = MLP_training(machine, winner_moves, board_size, NULL if is_null else REWARD)
X2, new_y2 = MLP_training(machine, loser_moves, board_size, NULL if is_null else LOSS)
X.extend(X2)
new_y.extend(new_y2)
combined = [(valX, valy) for valX, valy in zip(X, new_y)]
data["experience"].extend(combined)
#random.shuffle(data["experience"])
if EXPERIENCE_SIZE > 0 and len(data["experience"]) >= EXPERIENCE_SIZE:
exp = [random.choice(data["experience"]) for i in range(EXPERIENCE_SIZE)]
a,b = zip(*exp)
X.extend(a)
new_y.extend(b)
myprint("partial_fit X : " + str(X))
myprint("partial_fit y : " + str(new_y))
machine.partial_fit(X, new_y)
def save_Q_table(Q):
with open("q_table.save", 'wb') as f:
pickle.dump(Q, f)
def load_Q_table():
with open("q_table.save", 'rb') as f:
Q = pickle.load(f)
return Q
def save_machine(MACHINE_ALL):
joblib.dump(MACHINE_ALL, 'machine.save')
def load_machine():
return joblib.load('machine.save')
def train_machine_interactive(board_size):
X = [[0,0,0,0,0,0,0,0,0]]
y = [[0,0,0,0,0,0,0,0,0]]
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=1.0, hidden_layer_sizes=(1500, 29), random_state=1000, activation="relu", max_iter=4000, batch_size=5, learning_rate="constant", learning_rate_init=0.001)
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0000001, alpha=0.0001, hidden_layer_sizes=(350,185), random_state=1000, activation="relu", max_iter=4000, learning_rate="invscaling", learning_rate_init=0.0000001, warm_start=True) # 3 loss # home 19
MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0000001, alpha=0.0001, hidden_layer_sizes=(350,185), random_state=1000, activation="relu", max_iter=4000, learning_rate="invscaling", learning_rate_init=0.01, warm_start=True) # 3 loss # home 19
MACHINE_ALL.fit(X, y)
while True:
myprint("loss : {}, n_iter : {}".format(MACHINE_ALL.loss_, MACHINE_ALL.n_iter_),5)
a_game = TicTacToe(board_size)
winner_moves, loser_moves, is_null = play_interactive(MACHINE_ALL, a_game)
X, new_y = MLP_training(MACHINE_ALL, winner_moves, board_size, NULL if is_null else REWARD)
X2, new_y2 = MLP_training(MACHINE_ALL, loser_moves, board_size, NULL if is_null else LOSS)
myprint("X2 " + str(X2))
myprint("new_y2 " + str(new_y2))
myprint("loser_moves " + str(loser_moves))
X.extend(X2)
new_y.extend(new_y2)
myprint("partial_fit X : " + str(X))
myprint("partial_fit y : " + str(new_y))
MACHINE_ALL.partial_fit(X, new_y)
def train_machine(board_size):
global PRINT_LEVEL
X = [[0,0,0,0,0,0,0,0,0]]
y = [[0,0,0,0,0,0,0,0,0]]
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=1.0, hidden_layer_sizes=(1500, 29), random_state=1000, activation="relu", max_iter=4000, batch_size=5, learning_rate="constant", learning_rate_init=0.001)
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0000001, alpha=0.0001, hidden_layer_sizes=(350,185), random_state=1000, activation="relu", max_iter=4000, learning_rate="invscaling", learning_rate_init=0.0000001, warm_start=True) # 3 loss # home 19
MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0000001, alpha=0.0001, hidden_layer_sizes=(350,185), random_state=1000, activation="relu", max_iter=4000, learning_rate="invscaling", learning_rate_init=0.0001, warm_start=True) # 3 loss # home 19
MACHINE_ALL.fit(X, y)
game_data = {}
game_data["actual_epsilon"] = Epsilon
game_data["experience"] = []
max_game = 50000
actual_epsilon = Epsilon
dec_every = int(max_game / EpsilonParts)
average_total = 0
for i in range(max_game):
average_total += MACHINE_ALL.loss_
if i % 10 == 0:
myprint("Game {} of {} -> loss : {}, n_iter : {}, avg : {}".format(i, max_game, MACHINE_ALL.loss_, MACHINE_ALL.n_iter_, average_total / i),5)
run_MLP_game(MACHINE_ALL, board_size, game_data)
if i % dec_every == 0:
actual_epsilon -= EpsilonStep
if actual_epsilon < 0.0 :
actual_epsilon = 0.0
game_data["actual_epsilon"] = actual_epsilon
myprint("Epsilon now : " + str(actual_epsilon),2)
save_machine(MACHINE_ALL)
return MACHINE_ALL
def train_MLP_using_saved_Q_table(board_size):
a = ScopedTimer("train_MLP_using_saved_Q_table",5)
Q = load_Q_table()
#myprint("Q : " + str(Q))
X = []
y = []
for state_str in Q:
state_obj = TicTacToe(board_size, state_str)
X.append(state_obj.X())
cur_y = []
for y_coord in range(board_size):
for x_coord in range(board_size):
if (x_coord,y_coord) in Q[state_str]:
cur_y.append(Q[state_str][(x_coord,y_coord)])
else:
cur_y.append(0.0) # maybe should append like -1000 ?
y.append(cur_y)
# fake more training data to help regression
#for z in range(2):
# X += X
# y += y
#myprint("X : " + str(X))
#myprint("y : " + str(y))
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=0.0001, hidden_layer_sizes=(350,75), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # 67 loss # home 208
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0005, alpha=0.00005, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 175
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0001, alpha=0.00001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.001) # home 170
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0001, alpha=0.00001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.003) # home 166
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0001, alpha=0.00001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 162
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=0.0001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 151
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0005, alpha=0.00001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 124
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=0.00001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 120
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=0.0001, hidden_layer_sizes=(350,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # 41 loss
#MACHINE_ALL = MLPRegressor(solver='sgd', alpha=0.01, hidden_layer_sizes=(350,75), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # 89 loss
#MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0005, alpha=0.00001, hidden_layer_sizes=(500,85), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # home 95
MACHINE_ALL = MLPRegressor(solver='sgd', tol=0.0000001, alpha=0.00001, hidden_layer_sizes=(350,185), random_state=1000, activation="logistic", max_iter=4000, learning_rate="adaptive", learning_rate_init=0.002) # 3 loss # home 19
MACHINE_ALL.fit(X, y)
myprint("loss : {}, n_iter : {}".format(MACHINE_ALL.loss_, MACHINE_ALL.n_iter_),5)
del a
final_game = TicTacToe(board_size)
play_interactive(MACHINE_ALL, final_game)
def train_using_MLP(board_size):
#MACHINE_ALL = load_machine()
MACHINE_ALL = train_machine(board_size)
final_game = TicTacToe(board_size)
play_interactive(MACHINE_ALL, final_game)
def train_using_MLP_interactive(board_size):
MACHINE_ALL = train_machine_interactive(board_size)
###############################################################################
# MAIN
###############################################################################
if __name__ == '__main__':
board_size = 3
#b = '100011202'
#a = TicTacToe(3, b)
#myprint(str(a))
#train_MLP_using_saved_Q_table(board_size)
train_using_MLP(board_size)
#train_using_MLP_interactive(board_size)
#train_using_Q_table(board_size)