forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 1
/
builder.go
165 lines (156 loc) · 5.52 KB
/
builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package statistics
import (
"github.com/juju/errors"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/types"
)
// SortedBuilder is used to build histograms for PK and index.
type SortedBuilder struct {
sc *stmtctx.StatementContext
numBuckets int64
valuesPerBucket int64
lastNumber int64
bucketIdx int64
Count int64
hist *Histogram
}
// NewSortedBuilder creates a new SortedBuilder.
func NewSortedBuilder(sc *stmtctx.StatementContext, numBuckets, id int64, tp *types.FieldType) *SortedBuilder {
return &SortedBuilder{
sc: sc,
numBuckets: numBuckets,
valuesPerBucket: 1,
hist: NewHistogram(id, 0, 0, 0, tp, int(numBuckets), 0),
}
}
// Hist returns the histogram built by SortedBuilder.
func (b *SortedBuilder) Hist() *Histogram {
return b.hist
}
// Iterate updates the histogram incrementally.
func (b *SortedBuilder) Iterate(data types.Datum) error {
b.Count++
if b.Count == 1 {
b.hist.AppendBucket(&data, &data, 1, 1)
b.hist.NDV = 1
return nil
}
cmp, err := b.hist.GetUpper(int(b.bucketIdx)).CompareDatum(b.sc, &data)
if err != nil {
return errors.Trace(err)
}
if cmp == 0 {
// The new item has the same value as current bucket value, to ensure that
// a same value only stored in a single bucket, we do not increase bucketIdx even if it exceeds
// valuesPerBucket.
b.hist.Buckets[b.bucketIdx].Count++
b.hist.Buckets[b.bucketIdx].Repeat++
} else if b.hist.Buckets[b.bucketIdx].Count+1-b.lastNumber <= b.valuesPerBucket {
// The bucket still have room to store a new item, update the bucket.
b.hist.updateLastBucket(&data, b.hist.Buckets[b.bucketIdx].Count+1, 1)
b.hist.NDV++
} else {
// All buckets are full, we should merge buckets.
if b.bucketIdx+1 == b.numBuckets {
b.hist.mergeBuckets(int(b.bucketIdx))
b.valuesPerBucket *= 2
b.bucketIdx = b.bucketIdx / 2
if b.bucketIdx == 0 {
b.lastNumber = 0
} else {
b.lastNumber = b.hist.Buckets[b.bucketIdx-1].Count
}
}
// We may merge buckets, so we should check it again.
if b.hist.Buckets[b.bucketIdx].Count+1-b.lastNumber <= b.valuesPerBucket {
b.hist.updateLastBucket(&data, b.hist.Buckets[b.bucketIdx].Count+1, 1)
} else {
b.lastNumber = b.hist.Buckets[b.bucketIdx].Count
b.bucketIdx++
b.hist.AppendBucket(&data, &data, b.lastNumber+1, 1)
}
b.hist.NDV++
}
return nil
}
// BuildColumn builds histogram from samples for column.
func BuildColumn(ctx sessionctx.Context, numBuckets, id int64, collector *SampleCollector, tp *types.FieldType) (*Histogram, error) {
count := collector.Count
if count == 0 {
return &Histogram{ID: id, NullCount: collector.NullCount}, nil
}
sc := ctx.GetSessionVars().StmtCtx
samples := collector.Samples
err := types.SortDatums(sc, samples)
if err != nil {
return nil, errors.Trace(err)
}
ndv := collector.FMSketch.NDV()
if ndv > count {
ndv = count
}
hg := NewHistogram(id, ndv, collector.NullCount, 0, tp, int(numBuckets), collector.TotalSize)
sampleNum := int64(len(samples))
// As we use samples to build the histogram, the bucket number and repeat should multiply a factor.
sampleFactor := float64(count) / float64(len(samples))
// Since bucket count is increased by sampleFactor, so the actual max values per bucket is
// floor(valuesPerBucket/sampleFactor)*sampleFactor, which may less than valuesPerBucket,
// thus we need to add a sampleFactor to avoid building too many buckets.
valuesPerBucket := float64(count)/float64(numBuckets) + sampleFactor
ndvFactor := float64(count) / float64(hg.NDV)
if ndvFactor > sampleFactor {
ndvFactor = sampleFactor
}
bucketIdx := 0
var lastCount int64
hg.AppendBucket(&samples[0], &samples[0], int64(sampleFactor), int64(ndvFactor))
for i := int64(1); i < sampleNum; i++ {
cmp, err := hg.GetUpper(bucketIdx).CompareDatum(sc, &samples[i])
if err != nil {
return nil, errors.Trace(err)
}
totalCount := float64(i+1) * sampleFactor
if cmp == 0 {
// The new item has the same value as current bucket value, to ensure that
// a same value only stored in a single bucket, we do not increase bucketIdx even if it exceeds
// valuesPerBucket.
hg.Buckets[bucketIdx].Count = int64(totalCount)
if float64(hg.Buckets[bucketIdx].Repeat) == ndvFactor {
hg.Buckets[bucketIdx].Repeat = int64(2 * sampleFactor)
} else {
hg.Buckets[bucketIdx].Repeat += int64(sampleFactor)
}
} else if totalCount-float64(lastCount) <= valuesPerBucket {
// The bucket still have room to store a new item, update the bucket.
hg.updateLastBucket(&samples[i], int64(totalCount), int64(ndvFactor))
} else {
lastCount = hg.Buckets[bucketIdx].Count
// The bucket is full, store the item in the next bucket.
bucketIdx++
hg.AppendBucket(&samples[i], &samples[i], int64(totalCount), int64(ndvFactor))
}
}
return hg, nil
}
// AnalyzeResult is used to represent analyze result.
type AnalyzeResult struct {
TableID int64
Hist []*Histogram
Cms []*CMSketch
Count int64
IsIndex int
Err error
}