-
Notifications
You must be signed in to change notification settings - Fork 8
/
MarkZero.py
508 lines (449 loc) · 15.5 KB
/
MarkZero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
# -*- coding: utf-8 -*-
# @Time : 2020/5/3 15:27
# @Author : luyekang
# @Email : glasslucas00@gmail.com
# @File : meter.py
# @Software: PyCharm
import datetime
import pandas as pd
from random import sample
import cv2
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import random
from sympy import *
import math
class mential():
def get_max_point(self, cnt):
lmost = tuple(cnt[cnt[:, :, 0].argmin()][0])
rmost = tuple(cnt[cnt[:, :, 0].argmax()][0])
tmost = tuple(cnt[cnt[:, :, 1].argmin()][0])
bmost = tuple(cnt[cnt[:, :, 1].argmax()][0])
pmost = [lmost, rmost, tmost, bmost]
return pmost
def distance(self, pmost, centerpoint):
cx, cy = centerpoint
distantion = []
for point in pmost:
dx, dy = point
distantion.append((cx - dx) ** 2 + (cy - dy) ** 2)
index_of_max = distantion.index((max(distantion)))
return index_of_max
def ds_ofpoint(self, a, b):
x1, y1 = a
x2, y2 = b
distances = int(sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2))
return distances
def findline(self, cp, lines):
x, y = cp
cntareas = []
for line in lines:
x1, y1, x2, y2 = line[0]
aa = sqrt(min((x1 - x) ** 2 + (y1 - x) ** 2, (x2 - x) ** 2 + (y2 - x) ** 2))
if (aa < 50):
cntareas.append(line)
print(cntareas)
return cntareas
def angle(v1, v2):
dx1 = v1[2] - v1[0]
dy1 = v1[3] - v1[1]
dx2 = v2[2] - v2[0]
dy2 = v2[3] - v2[1]
angle1 = math.atan2(dy1, dx1)
angle1 = angle1 * 180 / math.pi
# print(angle1)
angle2 = math.atan2(dy2, dx2)
angle2 = angle2 * 180 / math.pi
# print(angle2)
if angle1 * angle2 >= 0:
included_angle = abs(angle1 - angle2)
else:
included_angle = abs(angle1) + abs(angle2)
# if included_angle > 180:
# included_angle = 360 - included_angle
return included_angle
def get_mode(arr):
while 0 in arr:
arr.remove(0)
mode = []
arr_appear = dict((a, arr.count(a)) for a in arr) # 统计各个元素出现的次数
if max(arr_appear.values()) == 1: # 如果最大的出现为1
arrs = np.array(arr)
oo = np.median(arrs)
return oo
else:
for k, v in arr_appear.items(): # 否则,出现次数最大的数字,就是众数
if v == max(arr_appear.values()):
mode.append(k)
return mode
def remove_diff(deg):
"""
:funtion :
:param b:
:param c:
:return:
"""
if (True):
# new_nums = list(set(deg)) #剔除重复元素
mean = np.mean(deg)
var = np.var(deg)
# print("原始数据共", len(deg), "个\n", deg)
'''
for i in range(len(deg)):
print(deg[i],'→',(deg[i] - mean)/var)
#另一个思路,先归一化,即标准正态化,再利用3σ原则剔除异常数据,反归一化即可还原数据
'''
# print("中位数:",np.median(deg))
percentile = np.percentile(deg, (25, 50, 75), interpolation='midpoint')
# print("分位数:", percentile)
# 以下为箱线图的五个特征值
Q1 = percentile[0] # 上四分位数
Q3 = percentile[2] # 下四分位数
IQR = Q3 - Q1 # 四分位距
ulim = Q3 + 2.5 * IQR # 上限 非异常范围内的最大值
llim = Q1 - 1.5 * IQR # 下限 非异常范围内的最小值
new_deg = []
uplim = []
for i in range(len(deg)):
if (llim < deg[i] and deg[i] < ulim):
new_deg.append(deg[i])
# print("清洗后数据共", len(new_deg), "个\n", new_deg)
new_deg = np.mean(new_deg)
return new_deg
# 图表表达
flag = 0
p0 = 0
def markzero(img):
# img = cv2.imread(path)
def on_EVENT_LBUTTONDOWN(event, x, y, flags, param):
global flag, p0
if event == cv2.EVENT_LBUTTONDOWN:
xy = "%d,%d" % (x, y)
p0 = [x, y]
# print(x, y)
cv2.circle(img, (x, y), 2, (0, 0, 255), thickness=-1)
# cv2.putText(img, '*0*', (x - 30, y), 1,
# 2.0, (0, 0, 0), thickness=2)
# cv2.imshow("image", img)
elif event == cv2.EVENT_LBUTTONUP: # 鼠标左键fang
cv2.destroyWindow("image")
# print(p0)
cv2.namedWindow("image")
cv2.setMouseCallback("image", on_EVENT_LBUTTONDOWN)
cv2.imshow('image', img)
cv2.waitKey(5000)
return p0
# while (1):
# cv2.imshow("image", img)
# if cv2.waitKey(0)&0xFF>0:
# # if cv2.waitKey(500)|0xFF>0:
# print(flag)
# break
def cut_pic(path):
"""
:param pyrMeanShiftFiltering(input, 10, 100) 均值滤波
:param 霍夫概率圆检测
:param mask操作提取圆
:return: 半径,圆心位置
"""
input = cv2.imread(path)
dst = cv2.pyrMeanShiftFiltering(input, 10, 100)
cimage = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
circles = cv2.HoughCircles(cimage, cv2.HOUGH_GRADIENT, 1, 80, param1=100, param2=20, minRadius=80, maxRadius=0)
circles = np.uint16(np.around(circles)) # 把类型换成整数
r_1 = circles[0, 0, 2]
c_x = circles[0, 0, 0]
c_y = circles[0, 0, 1]
# print(input.shape[:2])
circle = np.ones(input.shape, dtype="uint8")
circle = circle * 255
cv2.circle(circle, (c_x, c_y), int(r_1), 0, -1)
# cv2.circle(circle, (c_x, c_y), int(r_1*0.65), (255,255,255), -1)
# cv2.imshow("circle", circle)
bitwiseOr = cv2.bitwise_or(input, circle)
# cv2.circle(bitwiseOr, (c_x, c_y), 2, 0, -1)
# cv2.imshow(pname+'_resize'+ptype, bitwiseOr)
cv2.imwrite(pname + '_resize' + ptype, bitwiseOr)
ninfo = [r_1, c_x, c_y]
return ninfo
def linecontours(cp_info):
"""
:funtion : 提取刻度线,指针
:param a: 高斯滤波 GaussianBlur,自适应二值化adaptiveThreshold,闭运算
:param b: 轮廓寻找 findContours,
:return:kb,new_needleset
"""
r_1, c_x, c_y = cp_info
img = cv2.imread(pname + '_resize' + ptype)
cv2.circle(img, (c_x, c_y), 20, (23, 28, 28), -1)
img = cv2.GaussianBlur(img, (3, 3), 0)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# cv2.imshow('dds', img)
# ret, binary = cv2.threshold(~gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
binary = cv2.adaptiveThreshold(~gray, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, -10)
# cv2.circle(binary, (c_x, c_y), int(r_1*0.5), (0, 0, 0),5)
# 闭运算
# kernel = np.ones((3, 3), np.uint8)
# dilation = cv2.dilate(binary, kernel, iterations=1)
# kernel2 = np.ones((3, 3), np.uint8)
# erosion = cv2.erode(dilation, kernel2, iterations=1)
# ************************
# cv2.imshow('dds', binary)
contours, hier = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cntset = [] # 刻度线轮廓集合
cntareas = [] # 刻度线面积集合
needlecnt = [] # 指针轮廓集合
needleareas = [] # 指针面积集合
ca = (c_x, c_y)
incircle = [r_1 * 0.7, r_1 * 0.9]
# incircle = [r_1 * 0.1, r_1 * 1]
cv2.drawContours(img, contours, -1, (255, 90, 60), 2)
cv2.imshow("c ", img)
cv2.waitKey(0)
localtion = []
for xx in contours:
rect = cv2.minAreaRect(xx)
rect_box = cv2.boundingRect(xx)
# print(rect)
a, b, c = rect
w, h = b
w = int(w)
h = int(h)
''' 满足条件:“长宽比例”,“面积”'''
if h == 0 or w == 0:
pass
else:
dis = mential.ds_ofpoint(self=0, a=ca, b=a)
if (incircle[0] < dis and incircle[1] > dis):
localtion.append(dis)
if h / w > 2 or w / h > 2: # 4
cntset.append(xx)
cntareas.append(w * h)
cv2.rectangle(img, (rect_box[0], rect_box[1]),
(rect_box[0] + rect_box[2], rect_box[1] + rect_box[3]),(0, 255, 0), 1)
else:
if w > r_1 / 2 or h > r_1 / 2:
needlecnt.append(xx)
needleareas.append(w * h)
cv2.rectangle(img, (rect_box[0], rect_box[1]),
(rect_box[0] + rect_box[2], rect_box[1] + rect_box[3]), (0, 0, 255), 2)
cv2.imshow('kedu', img)
cv2.waitKey(0)
cntareas = np.array(cntareas)
nss = remove_diff(cntareas) # 中位数,上限区
new_cntset = []
# 面积
for i, xx in enumerate(cntset):
if (cntareas[i] <= nss * 1.5 and cntareas[i] >= nss * 0.8):
new_cntset.append(xx)
kb = [] # 拟合线集合
for xx in new_cntset:
rect = cv2.minAreaRect(xx)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.polylines(img, [box], True, (0, 255, 0), 1) # pic
output = cv2.fitLine(xx, 2, 0, 0.001, 0.001)
k = output[1] / output[0]
k = round(k[0], 2)
b = output[3] - k * output[2]
b = round(b[0], 2)
x1 = 1
x2 = gray.shape[0]
y1 = int(k * x1 + b)
y2 = int(k * x2 + b)
cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 1)
kb.append([k, b]) # 求中心点的点集[k,b]
############################################################
r = np.mean(localtion)
mask = np.zeros(img.shape[0:2], np.uint8)
# for cnt in needlecnt:
# cv2.fillConvexPoly(mask,cnt , 255)
mask = cv2.drawContours(mask, needlecnt, -1, (255, 255, 255), -1) # 生成掩膜
cv2.imshow('da', mask)
# cv2.waitKey(0)
cv2.imwrite(pname + '_scale' + ptype, img)
cv2.imwrite(pname + '_needle' + ptype, mask)
return kb, r, mask
def needle(img, r, cx, cy,x0,y0):
oimg = cv2.imread(pname + ptype)
# circle = np.ones(img.shape, dtype="uint8")
# circle = circle * 255
circle = np.zeros(img.shape, dtype="uint8")
cv2.circle(circle, (cx, cy), int(r), 255, -1)
mask = cv2.bitwise_and(img, circle)
cv2.imshow('m', mask)
kernel = np.ones((3, 3), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
# erosion = cv2.erode(mask, kernel, iterations=1)
cv2.imshow('1big', mask)
cv2.waitKey(0)
lines = cv2.HoughLinesP(mask, 1, np.pi / 180, 30, minLineLength=int(r / 2), maxLineGap=2)
nmask = np.zeros(img.shape, np.uint8)
# lines = mential.findline(self=0, cp=[x, y], lines=lines)
# print('lens', len(lines))
for line in lines:
x1, y1, x2, y2 = line[0]
cv2.line(nmask, (x1, y1), (x2, y2), 100, 1, cv2.LINE_AA)
x1, y1, x2, y2 = lines[0][0]
d1 = (x1 - cx) ** 2 + (y1 - cy) ** 2
d2 = (x2 - cx) ** 2 + (y2 - cy) ** 2
if d1 > d2:
axit = [x1, y1]
else:
axit = [x2, y2]
nmask = cv2.erode(nmask, kernel, iterations=1)
# cv2.imshow('2new', nmask)
cnts, hier = cv2.findContours(nmask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
areass = [cv2.contourArea(x) for x in cnts]
# print(len(areass))
i = areass.index(max(areass))
# print('contours[i]',contours[i])
# cv2.drawContours(img, contours[i], -1, (10,20,250), 1)
# cv2.imshow('need_next', img)
cnt = cnts[i]
output = cv2.fitLine(cnt, 2, 0, 0.001, 0.001)
k = output[1] / output[0]
k = round(k[0], 2)
b = output[3] - k * output[2]
b = round(b[0], 2)
x1 = cx
x2 = axit[0]
y1 = int(k * x1 + b)
y2 = int(k * x2 + b)
cv2.line(oimg, (x1, y1), (x2, y2), (0, 23, 255), 1, cv2.LINE_AA)
cv2.line(oimg, (x1, y1), (x0,y0), (0, 23, 255), 1, cv2.LINE_AA)
cv2.circle(oimg, (x1,y1), 2, (0, 123, 255), -1)
# cv2.imshow('msss', oimg)
cv2.imwrite(pname +'_result'+ ptype,oimg)
cv2.imwrite(pname + '_needleline' + ptype, nmask)
return x1, y1, x2, y2, oimg
def findpoint(kb,path):
img = cv2.imread(path)
w, h, c = img.shape
point_list = []
print('kb length: ', len(kb))
if len(kb) > 2:
# print(len(kb))
random.shuffle(kb)
lkb = int(len(kb) / 2)
kb1 = kb[0:lkb]
kb2 = kb[lkb:(2 * lkb)]
# print('len', len(kb1), len(kb2))
kb1sample = sample(kb1, int(len(kb1) / 2))
kb2sample = sample(kb2, int(len(kb2) / 2))
else:
kb1sample = kb[0]
kb2sample = kb[1]
for i, wx in enumerate(kb1sample):
# for wy in kb2:
for wy in kb2sample:
k1, b1 = wx
k2, b2 = wy
# print('kkkbbbb',k1[0],b1[0],k2[0],b2[0])
# k1-->[123]
try:
if (b2 - b1) == 0:
b2 = b2 - 0.1
if (k1 - k2) == 0:
k1 = k1 - 0.1
x = (b2 - b1) / (k1 - k2)
y = k1 * x + b1
x = int(round(x))
y = int(round(y))
except:
x = (b2 - b1 - 0.01) / (k1 - k2 + 0.01)
y = k1 * x + b1
x = int(round(x))
y = int(round(y))
# x,y=solve_point(k1, b1, k2, b2)
if x < 0 or y < 0 or x > w or y > h:
break
point_list.append([x, y])
cv2.circle(img, (x, y), 2, (122, 22, 0), 2)
# print('point_list',point_list)
if len(kb) > 2:
# cv2.imshow(pname+'_pointset',img)
cv2.imwrite(pname + '_pointset' + ptype, img)
return point_list
def countpoint(pointlist,path):
# pointlist=[[1,2],[36,78],[36,77],[300,300],[300,300]]
img = cv2.imread(path, 0)
h, w = img.shape
pic_list = np.zeros((h, w))
for point in pointlist:
# print('point',point)
x, y = point
if x < w and y < h:
pic_list[y][x] += 1
# print(pic_list)
cc = np.where(pic_list == np.max(pic_list))
# print(cc,len(cc))
y, x = cc
cc = (x[0], y[0])
cv2.circle(img, cc, 2, (32, 3, 240), 3)
# cv2.imshow(pname + '_center_point', img)
cv2.imwrite(pname + '_center_point' + ptype, img)
return cc
import datetime
pname, ptype=0,0
def decter(path,opoint):
x0=opoint[0]
y0=opoint[1]
global pname, ptype
pname, ptype = path.split('.')
ptype = '.' + ptype
start = datetime.datetime.now()
ninfo = cut_pic(path) # 2.截取表盘
kb, r, mask = linecontours(ninfo)
point_list = findpoint(kb, path)
cx, cy = countpoint(point_list, path)
# print('半径,圆心', r, cx, cy)
da, db, dc, de,oimg = needle(mask, r, cx, cy, x0, y0)
# da,db,dc,de=needle_line(lines,new_needleset,cx,cy)
# print(da,db,dc,de)
distinguish = 100 / 360
OZ = [da, db, x0, y0]
OP = [da, db, dc, de]
ang1 = angle(OZ, OP)
output=ang1 * distinguish
print("AB和CD的夹角", output)
# print()
# output=str(output)
end = datetime.datetime.now()
print(end - start)
cv2.waitKey(0)
cv2.destroyAllWindows()
return output, oimg
if __name__ == '__main__':
file = 'test_images/pic009.jpg'
opint = [172, 146]
file = '5.jpg'
opint = [300, 90]
file = 'test_images/pic002.jpg'
opint = [88, 265]
# file = 'test_images/pic001.jpg'
# opint = [326, 477]
#
# file = 'test_images/pic003.jpg'
# opint = [62, 306]
#
# file = 'test_images/pic004.jpg'
# opint = [164, 299]
#
# file = 'test_images/pic005.jpg'
# opint = [50, 85]
#
# file = 'test_images/pic010.jpg'
# opint = [180, 350]
#
# file = 'test_images/pic011.jpg'
# opint = [139, 360]
#
# file = 'test_images/pic012.jpg'
# opint = [248, 257]
file = '5.jpg'
opint=markzero(file)
ang1 = decter(file, opint)