At this moment, we are working with Qdrant as vector database.
Official doc: https://qdrant.tech/documentation/quick-start/
docker pull qdrant/qdrant
docker run -p 6333:6333 -p 6334:6334 -v $(pwd)/config/example_qdrant_local.yaml:/qdrant/config/production.yaml -v $(pwd)/qdrant_storage:/qdrant/storage:z qdrant/qdrant
- REST API: localhost:6333
- Web UI: localhost:6333/dashboard
git clone git@github.com:bukosabino/justicio.git
sudo apt install python3-virtualenv
virtualenv -p python3 venv3.10
source venv3.10/bin/activate
pip install -r requirements.txt
Note: You need to get an API key for OpenAI and another for Sendgrid.
export APP_PATH="."
export SENDGRID_API_KEY=<your_sendgrid_api_key>
export OPENAI_API_KEY=<your_open_api_key>
export TOKENIZERS_PARALLELISM=false
export TAVILY_API_KEY=""
export QDRANT_API_KEY="823e071f67c198cc05c73f8bd4580865e6a8819a1f3fe57d2cd49b5c892a5233"
export QDRANT_API_URL="http://localhost:6333"
Load BOE documents into your vector database (depending on the selected data, may take a few minutes).
python -m src.etls.boe.load dates 2024/01/01 2024/01/07
uvicorn src.service.main:APP --host=0.0.0.0 --port=5001 --workers=1 --timeout-keep-alive=125 --log-level=info
In the browser
http://<your.ip>:5001/docs