forked from mattloper/opendr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
occlusion_test.py
140 lines (102 loc) · 3.97 KB
/
occlusion_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from opendr.camera import ProjectPoints
import unittest
visualize = False
class TestOcclusion(unittest.TestCase):
def test_occlusion(self):
if visualize:
import matplotlib.pyplot as plt
plt.ion()
# Create renderer
import chumpy as ch
import numpy as np
from opendr.renderer import TexturedRenderer, ColoredRenderer
#rn = TexturedRenderer()
rn = ColoredRenderer()
# Assign attributes to renderer
from util_tests import get_earthmesh
m = get_earthmesh(trans=ch.array([0,0,4]), rotation=ch.zeros(3))
rn.texture_image = m.texture_image
rn.ft = m.ft
rn.vt = m.vt
m.v[:,2] = np.mean(m.v[:,2])
# red is front and zero
# green is back and 1
t0 = ch.array([1,0,.1])
t1 = ch.array([-1,0,.1])
v0 = ch.array(m.v) + t0
if False:
v1 = ch.array(m.v*.4 + np.array([0,0,3.8])) + t1
else:
v1 = ch.array(m.v) + t1
vc0 = v0*0 + np.array([[.4,0,0]])
vc1 = v1*0 + np.array([[0,.4,0]])
vc = ch.vstack((vc0, vc1))
v = ch.vstack((v0, v1))
f = np.vstack((m.f, m.f+len(v0)))
w, h = (320, 240)
rn.camera = ProjectPoints(v=v, rt=ch.zeros(3), t=ch.zeros(3), f=ch.array([w,w])/2., c=ch.array([w,h])/2., k=ch.zeros(5))
rn.camera.t = ch.array([0,0,-2.5])
rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h}
m.vc = v.r*0 + np.array([[1,0,0]])
rn.set(v=v, f=f, vc=vc)
t0[:] = np.array([1.4, 0, .1-.02])
t1[:] = np.array([-0.6, 0, .1+.02])
target = rn.r
if visualize:
plt.figure()
plt.imshow(target)
plt.title('target')
plt.figure()
plt.show()
im_orig = rn.r.copy()
from cvwrap import cv2
tr = t0
eps_emp = .02
eps_pred = .02
#blur = lambda x : cv2.blur(x, ksize=(5,5))
blur = lambda x : x
for tr in [t0, t1]:
if tr is t0:
sum_limits = np.array([2.1e+2, 6.9e+1, 1.6e+2])
else:
sum_limits = [1., 5., 4.]
if visualize:
plt.figure()
for i in range(3):
dr_pred = np.array(rn.dr_wrt(tr[i]).todense()).reshape(rn.shape) * eps_pred
dr_pred = blur(dr_pred)
# central differences
tr[i] = tr[i].r + eps_emp/2.
rn_greater = rn.r.copy()
tr[i] = tr[i].r - eps_emp/1.
rn_lesser = rn.r.copy()
tr[i] = tr[i].r + eps_emp/2.
dr_emp = blur((rn_greater - rn_lesser) * eps_pred / eps_emp)
dr_pred_shown = np.clip(dr_pred, -.5, .5) + .5
dr_emp_shown = np.clip(dr_emp, -.5, .5) + .5
if visualize:
plt.subplot(3,3,i+1)
plt.imshow(dr_pred_shown)
plt.title('pred')
plt.axis('off')
plt.subplot(3,3,3+i+1)
plt.imshow(dr_emp_shown)
plt.title('empirical')
plt.axis('off')
plt.subplot(3,3,6+i+1)
diff = np.abs(dr_emp - dr_pred)
if visualize:
plt.imshow(diff)
diff = diff.ravel()
if visualize:
plt.title('diff (sum: %.2e)' % (np.sum(diff)))
plt.axis('off')
# print 'dr pred sum: %.2e' % (np.sum(np.abs(dr_pred.ravel())),)
# print 'dr emp sum: %.2e' % (np.sum(np.abs(dr_emp.ravel())),)
#import pdb; pdb.set_trace()
self.assertTrue(np.sum(diff) < sum_limits[i])
if __name__ == '__main__':
visualize = True
suite = unittest.TestLoader().loadTestsFromTestCase(TestOcclusion)
unittest.TextTestRunner(verbosity=2).run(suite)
import pdb; pdb.set_trace()