-
Notifications
You must be signed in to change notification settings - Fork 4
/
Reactome_Analysis.Rmd
708 lines (552 loc) · 23.6 KB
/
Reactome_Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
---
title: "Reactome Failed Search Analysis"
author: "Augustin Luna"
date: '`r Sys.Date()`'
output:
html_notebook:
depth: 3
number_sections: yes
toc: yes
html_document:
depth: 3
number_sections: yes
toc: yes
---
```{r setup, echo=FALSE, warning=FALSE, message=FALSE}
library("knitr")
opts_chunk$set(fig.align="center", fig.width=6, fig.height=6, dpi=96)
library(reticulate)
knitr::knit_engines$set(python3 = reticulate::eng_python)
```
# PURPOSE
Analysis of failed Reactome searches
# LOAD LIBRARIES
```{r}
library(readr)
library(magrittr)
# Interactive tables in notebook
library(DT)
# TF-IDF calculation
library(tidytext)
# Reactome hierarchy
library(igraph)
# Cosine similarity
library(lsa)
# Access Python for Text-Mining
library(reticulate)
# Analyze MESH recurrence of failed search terms
library(listutils) # From: https://github.com/cannin/listutils
```
# PARAMETERS
```{r}
# NOTEBOOK ----
max_dt_table_display <- 100
# PYTHON ----
python_virtualenv <- "~/.local/share/virtualenvs/indra_test-0O3lqQDV"
# GENERAL ----
# Only consider terms with at least this many failed search terms
# NOTE: Only for basic analyses
min_failed_search_hits <- 10
# RANK TERMS ----
# Rank failed searches
top_n_reactome_journals <- 10
min_indra_query_term_count <- 0
min_indra_statement_count <- 0
min_pmc_citation_count <- 0
min_oc_citation_count <- 0
# REACTOME ----
# Reactome parameters
reactome_organism <- "Homo sapiens"
system("wget -O failed_searches_queries_2019.csv https://gist.githubusercontent.com/PritiShaw/03ce10747835390ec8a755fed9ea813d/raw/cc72cb5479f09b574e03ed22c8d4e3147e09aa0c/Reactome.csv ")
failed_searches_file <- "failed_searches_queries_2019.csv"
# Data directly from https://reactome.org/download/current/
system("wget -O ReactomePathways.txt https://reactome.org/download/current/ReactomePathways.txt ")
system("wget -O ReactomePathwaysRelation.txt https://reactome.org/download/current/ReactomePathwaysRelation.txt ")
system("wget -O reactome_reaction_exporter_v73.txt https://reactome.org/download/current/reactome_reaction_exporter_v73.txt ")
system("wget -O ReactionPMIDS.txt https://reactome.org/download/current/ReactionPMIDS.txt ")
reactome_pathway_info_file <- "ReactomePathways.txt"
reactome_pathway_hierarchy_file <- "ReactomePathwaysRelation.txt"
reactome_pathway_reaction_mapping_file <- "reactome_reaction_exporter_v73.txt"
reactome_reaction_pmid_mapping_file <- "ReactionPMIDS.txt"
# MESH METADATA ----
# From: https://gist.github.com/PritiShaw/9ad43241c99f727afd04efbe0bdb77e8
reactome_pmid_metadata_file <- "reactome_pmid_metadata.tsv"
# From: https://gist.github.com/PritiShaw/6732c69bfbd4a169f7cdae448351d06e
failed_searches_metadata_file <- "failed_query_analysis_output.tsv"
# USER QUERY ----
# Failed query to be mapped to Reactome pathways
query <- "MATN2"
# OUTPUT ----
all_mesh_by_top_level_pathways_file <- "all_mesh_by_top_level_pathways_full.txt"
top_level_pathways_file <- "top_level_pathways.txt"
indra_stmt_html_file <- "indra_output.html"
indra_stmt_json_file <- "indra_output.json"
```
# LOAD DATA
## Failed Searches
```{r}
t1 <- read.csv(failed_searches_file, ",", header=TRUE, quote="",
comment.char="", stringsAsFactors = FALSE)
t2 <- t1[grepl("^[0-9]+$", t1$Hits),]
t2$Hits <- as.numeric(t2$Hits)
failed_searches <- t2[t2$Hits >= min_failed_search_hits,]
DT::datatable(head(failed_searches, max_dt_table_display), rownames=FALSE)
```
## Reactome Hierachy Mapping
### Calculate Map Reactome Pathways to Hierachy
```{r, eval=FALSE}
# Read Reactome data
reactomePathwayInfo <- read_tsv(reactome_pathway_info_file, col_names=c("pathway_id", "pathway_name", "organism"), col_types = cols(
pathway_id = col_character(),
pathway_name = col_character(),
organism = col_character()
))
reactomePathwayHierarchy <- read_tsv(reactome_pathway_hierarchy_file, col_names=c("parent_id", "child_id"), col_types = cols(
parent_id = col_character(),
child_id = col_character()
))
# Limit to humans
reactomePathwayInfo <- reactomePathwayInfo[which(reactomePathwayInfo$organism == reactome_organism),]
# Double-check the pathway info and relation info data matches up
reactomePathwayHierarchy <- reactomePathwayHierarchy[which(reactomePathwayHierarchy$parent_id %in% reactomePathwayInfo$pathway_id | reactomePathwayHierarchy$child_id %in% reactomePathwayInfo$pathway_id),]
# If entry in parent_id is not a child then it is a top-level pathway. Similar for child (bottom)-most
topLevelPathways <- setdiff(reactomePathwayHierarchy$parent_id, reactomePathwayHierarchy$child_id)
bottomLevelPathways <- setdiff(reactomePathwayHierarchy$child_id, reactomePathwayHierarchy$parent_id)
# Total Pathways
length(unique(c(reactomePathwayHierarchy$parent_id, reactomePathwayHierarchy$child_id)))
# Construct Graph
tmpDf <- data.frame(parent_id="reactome", child_id=topLevelPathways, stringsAsFactors=FALSE)
t1 <- reactomePathwayHierarchy
dat <- rbind(tmpDf, t1)
g <- graph_from_data_frame(dat, directed = TRUE)
# Find paths between parents and children
pathstrings <- NULL
for(i in 1:length(bottomLevelPathways)) {
tmp <- all_simple_paths(g, from="reactome", to=bottomLevelPathways[i], mode="out")
path <- paste(V(g)$name[as.vector(tmp[[1]])], collapse="|")
pathstrings <- c(pathstrings, path)
}
# Label the top-level pathway for all pathways and put into a data.frame
pathwaysDf <- data.frame(topLevelName=character(0), topLevelUri=character(0), pathwayName=character(0), pathwayUri=character(0), stringsAsFactors=FALSE)
for(i in 1:length(pathstrings)) {
curSplit <- strsplit(pathstrings[i], "\\|")[[1]]
for(j in 2:length(curSplit)) {
#i <- 3
topLevelName <- reactomePathwayInfo$pathway_name[which(reactomePathwayInfo$pathway_id == curSplit[2])]
topLevelUri <- curSplit[2]
pathwayName <- reactomePathwayInfo$pathway_name[which(reactomePathwayInfo$pathway_id == curSplit[j])]
pathwayUri <- curSplit[j]
tmpPathwaysDf <- data.frame(topLevelName, topLevelUri, pathwayName, pathwayUri, stringsAsFactors=FALSE)
pathwaysDf <- rbind(pathwaysDf, tmpPathwaysDf)
}
}
# Remove duplicates and save output
pathwaysDf <- unique(pathwaysDf)
write.table(pathwaysDf, "reactomeHierarchyMapping.txt", sep="\t", row.names=FALSE, col.names=TRUE, quote=FALSE)
DT::datatable(head(pathwaysDf, max_dt_table_display), rownames = FALSE)
```
### Load Pre-Computed Reactome Hierachy Mapping
Load pre-computed results
```{r}
reactomeHierarchyMapping <- read_tsv("reactomeHierarchyMapping.txt", col_types=cols(
topLevelName = col_character(),
topLevelUri = col_character(),
pathwayName = col_character(),
pathwayUri = col_character()
))
```
## Pre-Computed Reactome MESH Data
```{r}
dat <- read_tsv(reactome_pmid_metadata_file, col_types = cols(
PMID = col_double(),
JOURNAL_TITLE = col_character(),
YEAR = col_double(),
PMCID = col_character(),
MESH_TERMS = col_character()
))
DT::datatable(head(dat, max_dt_table_display), rownames = FALSE)
```
## Reactome Reaction Level Information
### Pathway Reaction Mapping
```{r}
pathway_reaction_mapping <- read.table(reactome_pathway_reaction_mapping_file, header=TRUE, sep="\t", quote="", comment.char="", stringsAsFactors=FALSE)
pathway_reaction_mapping <- pathway_reaction_mapping[, c("pathway_id", "reaction_id")]
DT::datatable(head(pathway_reaction_mapping, max_dt_table_display), rownames = FALSE)
```
### Reaction PMID Mapping
```{r}
reaction_pmid_mapping <- read.table(reactome_reaction_pmid_mapping_file, header=FALSE, sep="\t", stringsAsFactors=FALSE)
colnames(reaction_pmid_mapping) <- c("reaction_id", "pmid")
DT::datatable(head(reaction_pmid_mapping, max_dt_table_display), rownames = FALSE)
```
# BASIC ANALYSIS OF REACTOME PMIDs
## Journals
```{r}
d1 <- table(dat$JOURNAL_TITLE) %>% sort(., decreasing = TRUE)
allJournalFreq <- data.frame(journal_title=names(d1), freq=as.vector(d1), stringsAsFactors = FALSE)
# List of PMC journals
# pmc_journals <- read_tsv("https://gist.githubusercontent.com/cannin/206561bc05c419b268d80f278de8b0b3/raw/9e4e25f936d4e874f302cb7671e7f62c388d1cc2/pmc_journal_list_20200113.txt", col_types = cols(
# journal = col_character()
# ))
DT::datatable(head(allJournalFreq, max_dt_table_display), rownames = FALSE)
```
## MESH Terms
```{r}
d3 <- strsplit(dat$MESH_TERMS, "\\|")
d4 <- d3 %>% unlist %>% gsub('^\\*', "", .)
d5 <- table(d4) %>% sort(., decreasing = TRUE)
allMeshFreq <- data.frame(mesh_term=names(d5), freq=as.vector(d5), stringsAsFactors = FALSE)
DT::datatable(head(allMeshFreq, max_dt_table_display), rownames = FALSE)
```
## Year
```{r}
d7 <- table(dat$YEAR) %>% sort(., decreasing = TRUE)
allYearFreq <- data.frame(year=names(d7), freq=as.vector(d7), stringsAsFactors = FALSE)
plot(density(dat$YEAR))
```
# IDENTIFY PATHWAY SPECIFIC TERMS
## Merge Reactome Reaction Level Information and with Hierarchy Information
```{r}
rp9 <- merge(pathway_reaction_mapping, reaction_pmid_mapping, by="reaction_id", all=TRUE)
rp9 <- rp9[complete.cases(rp9),]
pathway_pmid_mapping <- merge(rp9, reactomeHierarchyMapping, by.x="pathway_id", by.y="pathwayUri", all.x=FALSE, all.y=TRUE)
pathway_pmid_mapping <- pathway_pmid_mapping[, c("pathway_id", "pmid", "topLevelName", "topLevelUri", "pathwayName")]
pathway_pmid_mapping <- unique(pathway_pmid_mapping)
pathway_pmid_mapping <- pathway_pmid_mapping[complete.cases(pathway_pmid_mapping),]
DT::datatable(head(pathway_pmid_mapping, max_dt_table_display), rownames = FALSE)
```
## Get Top Level Pathways for Iterations
```{r}
topLevelPathways <- pathway_pmid_mapping$topLevelName %>% unique
topLevelPathways
```
## Get MESH Term Frequency by Top Level Pathways Table
```{r}
allMeshByTopLevelPathways <- data.frame(pathway_name=character(0), mesh_term=character(0), freq=numeric(0), stringsAsFactors=FALSE)
tmpAllMeshByTopLevelPathwaysFull <- allMeshByTopLevelPathways
allMeshTerms <- strsplit(dat$MESH_TERMS, "\\|") %>% unlist %>% gsub('^\\*', "", .) %>% unique
for(i in 1:length(topLevelPathways)) {
#i <- 10
rp4 <- pathway_pmid_mapping[pathway_pmid_mapping$topLevelName == topLevelPathways[i], ]
head(rp4)
rp5 <- merge(rp4, dat, by.x="pmid", by.y="PMID", all.x=TRUE)
rp5 <- rp5[, c("pathway_id", "pmid", "topLevelName", "topLevelUri", "pathwayName", "JOURNAL_TITLE", "YEAR", "MESH_TERMS")]
tmpMeshTerms <- data.frame(mesh_term=allMeshTerms, freq=0, stringsAsFactors=FALSE)
tmpMeshTerms <- tmpMeshTerms[order(tmpMeshTerms$mesh_term),]
## MESH TERMS
d3 <- strsplit(rp5$MESH_TERMS, "\\|")
d4 <- d3 %>% unlist %>% gsub('^\\*', "", .)
d5 <- table(d4) %>% sort(., decreasing = TRUE)
partialMeshFreq <- data.frame(mesh_term=names(d5), freq=as.vector(d5), stringsAsFactors=FALSE)
partialMeshFreq <- partialMeshFreq[order(partialMeshFreq$mesh_term),]
tmpDf <- partialMeshFreq
#tmpDf$prcnt <- round(tmpDf$freq / sum(tmpDf$freq), 4)*100
#tmpDf$cumsum <- cumsum(tmpDf$prcnt)
tmpDf$pathway_name <- topLevelPathways[i]
allMeshByTopLevelPathways <- rbind(allMeshByTopLevelPathways, tmpDf)
tmpMeshTerms$freq[which(tmpMeshTerms$mesh_term %in% partialMeshFreq$mesh_term)] <- partialMeshFreq$freq
tmpDf <- tmpMeshTerms
#tmpDf$prcnt <- round(tmpDf$freq / sum(tmpDf$freq), 4)*100
#tmpDf$cumsum <- cumsum(tmpDf$prcnt)
tmpDf$pathway_name <- topLevelPathways[i]
tmpAllMeshByTopLevelPathwaysFull <- rbind(tmpAllMeshByTopLevelPathwaysFull, tmpDf)
}
```
## View Output
```{r}
orgAllMeshByTopLevelPathways <- allMeshByTopLevelPathways
allMeshByTopLevelPathways <- orgAllMeshByTopLevelPathways
DT::datatable(head(allMeshByTopLevelPathways, max_dt_table_display), rownames = FALSE)
```
## Calculate TF-IDF and Merge with MESH Term Frequency Table
```{r}
# NOTE: The tbl parameter can only contain rows where the n column is > 0; if every term is enumerated for every document then IDF will be 0 everywhere
allMeshByTopLevelPathways <- allMeshByTopLevelPathways %>%
bind_tf_idf(mesh_term, pathway_name, freq)
allMeshByTopLevelPathways$tf_idf <- round(allMeshByTopLevelPathways$tf_idf, 6)
allMeshByTopLevelPathways <- allMeshByTopLevelPathways[order(-allMeshByTopLevelPathways$tf_idf),]
allMeshByTopLevelPathwaysFull <- merge(tmpAllMeshByTopLevelPathwaysFull, allMeshByTopLevelPathways, by=c("mesh_term", "freq", "pathway_name"), all.x = TRUE)
# NOTE: Default sorting needed later
#allMeshByTopLevelPathwaysFull <- allMeshByTopLevelPathwaysFull[order(-allMeshByTopLevelPathwaysFull$tf_idf),]
```
## Save Output
```{r}
write_tsv(allMeshByTopLevelPathwaysFull, all_mesh_by_top_level_pathways_file)
write_lines(topLevelPathways, top_level_pathways_file)
```
## Calculate Percentile Rank and Append
Percentile rank is easier to understand than TF-IDF
```{r, eval=FALSE}
ecdf_func_lst <- sapply(topLevelPathways, function(x) {
ecdf(allMeshByTopLevelPathways$tf_idf[allMeshByTopLevelPathways$pathway_name == x])
})
prcnts <- sapply(1:nrow(allMeshByTopLevelPathways), function(i) {
pathway <- allMeshByTopLevelPathways$pathway_name[i]
tmp_func <- ecdf_func_lst[[pathway]]
round(tmp_func(allMeshByTopLevelPathways$tf_idf[i]), 3)
}, USE.NAMES = FALSE)
allMeshByTopLevelPathways$tf_idf_prcnt <- prcnts
DT::datatable(head(allMeshByTopLevelPathways, max_dt_table_display), rownames = FALSE)
```
## Quick Analyses (IGNORE)
```{r, eval=FALSE}
a1 <- table(rp5$JOURNAL_TITLE) %>% sort(., decreasing = TRUE)
a2 <- data.frame(journal_title=names(a1), freq=as.vector(a1))
head(a2, 10)
a3 <- table(rp5$YEAR) %>% sort(., decreasing = TRUE)
a4 <- data.frame(year=names(a3), freq=as.vector(a3))
plot(density(rp5$YEAR[!is.na(rp5$YEAR)]))
a3 <- table(rp5$pathwayName) %>% sort(., decreasing = TRUE)
a4 <- data.frame(pathway=names(a3), freq=as.vector(a3))
# Sample
n1 <- allMeshByTopLevelPathways$pathway_name[grepl("calcium", allMeshByTopLevelPathways$mesh_term, ignore.case=TRUE)]
head(n1, 30) %>% unique
```
# ANALYZE FAILED MESH TERMS
## Load Pre-Processed Failed Search Data (with Citations, MESH, INDRA Information)
NOTE: 20 PubMed papers retrieved for each term
```{r}
failed_search_dat <- read_tsv(failed_searches_metadata_file, col_types = cols(
QUERY_TERM = col_character(),
PMID = col_character(),
JOURNAL_TITLE = col_character(),
YEAR = col_double(),
PMCID = col_character(),
DOI = col_character(),
PMC_CITATION_COUNT = col_double(),
INDRA_STATEMENT_COUNT = col_double(),
MESH_TERMS = col_character()
))
allMeshByTopLevelPathwaysFull <- read_tsv(all_mesh_by_top_level_pathways_file, col_types = cols(
mesh_term = col_character(),
freq = col_double(),
pathway_name = col_character(),
tf = col_double(),
idf = col_double(),
tf_idf = col_double()
))
topLevelPathways <- read_lines(top_level_pathways_file)
```
## Rank Failed Searches
### All Failed Search Terms
```{r}
#query_term_indra_cnt_df <- unique(failed_search_dat[, c("QUERY_TERM", "INDRA_QUERY_TERM_STATEMENT_COUNT")])
i1 <- which(failed_search_dat$JOURNAL_TITLE %in% allJournalFreq$journal_title[1:top_n_reactome_journals])
t1 <- failed_search_dat[i1,]
DT::datatable(head(t1, max_dt_table_display), rownames = FALSE)
```
### Filtered Failed Search Terms
Displayed are terms with the most papers passing filters
```{r}
t2 <- t1[t1$INDRA_QUERY_TERM_STATEMENT_COUNT > min_indra_query_term_count &
t1$INDRA_STATEMENT_COUNT > min_indra_statement_count &
(t1$PMC_CITATION_COUNT > min_pmc_citation_count | t1$OC_CITATION_COUNT > min_oc_citation_count),]
t3 <- table(t2$QUERY_TERM) %>% sort(., decreasing = TRUE) # %>% head(., 20)
filtered_dat <- data.frame(query=names(t3), indra_cnt=as.vector(t3), stringsAsFactors = FALSE)
DT::datatable(head(filtered_dat, max_dt_table_display), rownames = FALSE)
```
## Select Failed Search Term to Map
```{r}
# Rank by available text-mining results
tmp_cnt <- table(failed_search_dat$QUERY_TERM) %>% sort(., decreasing = TRUE) %>% head
query_tmp <- tapply(failed_search_dat$INDRA_STATEMENT_COUNT, failed_search_dat$QUERY_TERM, sum) %>% sort(., decreasing = TRUE)
# IGNORE?
# indra_cnts_df <- data.frame(query=names(query_tmp), indra_cnt=as.vector(query_tmp), stringsAsFactors = FALSE)
# head(query_tmp, 25)
# query_2 <- tapply(failed_search_dat$PMC_CITATION_COUNT, failed_search_dat$QUERY_TERM, sum) %>% sort(., decreasing = TRUE)
# pmc_cnts_df <- data.frame(query=names(query_2), pmc_cnt=as.vector(query_2))
# head(query_2, 25)
# query_3 <- merge(pmc_cnts_df, indra_cnts_df, by="query")
# Manually select
if(is.null(query)) {
query <- names(query_tmp)[1]
}
# Selected failed search term
query
```
## Generate TF-IDF for Failed Search Term
```{r}
i1 <- which(failed_search_dat$QUERY_TERM == query)
t1 <- failed_search_dat$MESH_TERMS[i1]
i2 <- which(!is.na(t1))
t2 <- t1[i2]
t3 <- paste(t2, collapse = "|") %>% strsplit(., "\\|")
mesh_terms <- t3[[1]]
# Term weights
termWeights <- tapply(allMeshByTopLevelPathwaysFull$idf, allMeshByTopLevelPathwaysFull$mesh_term, mean, na.rm=TRUE)
termWeights[is.na(termWeights)] <- 0
# Get vector
t0 <- table(mesh_terms) %>% sort
tmp <- data.frame(mesh_term=names(t0), cnt=as.vector(t0), stringsAsFactors = FALSE)
tmp <- tmp[order(tmp$mesh_term),]
tmpMeshTerms <- data.frame(mesh_term=allMeshTerms, cnt=0, stringsAsFactors=FALSE)
tmpMeshTerms <- tmpMeshTerms[order(tmpMeshTerms$mesh_term),]
i1 <- which(tmpMeshTerms$mesh_term %in% tmp$mesh_term)
i2 <- which(tmp$mesh_term %in% tmpMeshTerms$mesh_term)
tmpMeshTerms$cnt[which(tmpMeshTerms$mesh_term %in% tmp$mesh_term)] <- tmp$cnt[i2]
# NOTE: MUST BE SORTED!!!
#tmpMeshTerms$freq_org <- tmpMeshTerms$freq
tmpMeshTerms$tf <- tmpMeshTerms$cnt / sum(tmpMeshTerms$cnt) #round(tmpMeshTerms$cnt / sum(tmpMeshTerms$cnt), 4)*100
tmpMeshTerms$idf <- termWeights
tmpMeshTerms$tf_idf <- tmpMeshTerms$tf*tmpMeshTerms$idf
#tmpMeshTerms$mesh_term[i1]
#tmp$mesh_term[i2]
#tmpMeshTerms[which(tmpMeshTerms$tf_idf > 0),]
non_zero_terms <- tmpMeshTerms[which(tmpMeshTerms$tf_idf > 0),]
non_zero_terms <- non_zero_terms[order(-non_zero_terms$tf_idf),]
non_zero_terms$query <- query
DT::datatable(head(non_zero_terms, max_dt_table_display), rownames = FALSE)
```
# CALCULATE SIMILARITY TO REACTOME PATHWAYS
```{r}
t0 <- allMeshByTopLevelPathwaysFull
t0$tf_idf[is.na(t0$tf_idf)] <- 0
t1 <- matrix(NA, nrow=(length(topLevelPathways)+1), ncol=length(allMeshTerms))
for(i in 1:length(topLevelPathways)) {
t1[(i+1),] <- t0$tf_idf[t0$pathway_name == topLevelPathways[i]]
}
t1[1,] <- tmpMeshTerms$tf_idf
# Cosine of 2 vectors
# a <- t1[1,]
# b <- t1[2,]
# result <- lsa::cosine(a, b)
#result
result <- lsa::cosine(t(t1))
#result
r1 <- result[1,2:ncol(result)]
names(r1) <- topLevelPathways
tmp <- r1 %>% sort(., decreasing = TRUE)
pathway_scores <- data.frame(pathway=names(tmp), score=as.vector(tmp), stringsAsFactors = FALSE)
DT::datatable(head(pathway_scores, max_dt_table_display), rownames = FALSE)
```
# RETRIEVE INDRA TEXT-MINING (PYTHON)
## Set up Python Environment
```{r}
use_virtualenv(python_virtualenv)
```
## Retrieve INDRA Results
NOTES:
* Using reticulate to communicate between R and Python (r.query is the failed search term, see https://rstudio.github.io/reticulate/articles/r_markdown.html)
* Running everything together because Python variables are not saved between chunks
* Python code set to not run or otherwise the code is not in the final RMarkdown HTML (bug with rmarkdown?)
```{python3, message=TRUE, warning=TRUE, eval=FALSE}
import os
from indra.sources import indra_db_rest
from indra.assemblers.html.assembler import HtmlAssembler
from indra.statements.statements import stmts_to_json, stmts_from_json, stmts_from_json_file
import requests
from urllib.parse import urljoin
import json
from jsonpath_ng import jsonpath
from jsonpath_ng.ext import parse
def get_jsonpath(json_file, json_str, jsonpath_expr_str):
"""Filter JSON with JSONPath
Args:
json_file (str): File name
json_str (str): String representation of a JSON file
jsonpath_expr_str (str): JSONPath expression
Returns:
list: filtered list of Python objects
"""
if json_file is None:
dat = json.loads(json_str)
else:
with open(json_file) as f:
dat = json.load(f)
jsonpath_expr = parse(jsonpath_expr_str)
results = jsonpath_expr.find(dat)
results_list = []
for match in results:
results_list.append(match.value)
return(results_list)
# PARAMETERS ----
# NOTE: r.PARAMETERS come from r
## Setup API URLs
os.environ["INDRA_DB_REST_URL"] = "https://db.indra.bio"
grounding_service_url = 'http://grounding.indra.bio/'
## Failed Term
failed_search_term = 'BRAF' # manual
failed_search_term = 'GXYLT1'
# Check if running in R
if r is None:
failed_search_term = 'MATN2'
indra_stmt_json_file = 'indra_output.json'
indra_stmt_html_file = 'indra_output.html'
else:
failed_search_term = r.query
indra_stmt_json_file = r.indra_stmt_json_file
indra_stmt_html_file = indra_stmt_html_file
# GROUND TERM ----
resp = requests.post(urljoin(grounding_service_url, 'ground'),
json={'text': failed_search_term})
grounding_results = resp.json()
grounding_results
# TODO: Test if grounding_results has entries
term_id = grounding_results[0]['term']['id']
term_db = grounding_results[0]['term']['db']
term = '27482@HGNC' # manual
term = term_id + '@' + term_db
term
# GET STATEMENTS ----
out = indra_db_rest.get_statements(agents=[term])
#out.statements
len(out.statements)
stmts = out.statements
stmts_json = stmts_to_json(stmts)
# Save to file to make use of JSONPath for search the returned statements
with open('tmp.json', 'w', encoding='utf-8') as f:
json.dump(stmts_json, f, ensure_ascii=False, indent=4)
# Filter terms to only keep REACH in order to ignore results that are NOT from text-mining
json_file = 'tmp.json'
jsonpath_expr_str = "$[?(@.evidence[*].source_api == 'reach')]"
stmts_json = get_jsonpath(json_file, None, jsonpath_expr_str)
# Output filtered statements to JSON
with open(indra_stmt_json_file, 'w', encoding='utf-8') as f:
json.dump(stmts_json, f, ensure_ascii=False, indent=4)
stmts = stmts_from_json_file(indra_stmt_json_file)
# Collect extracted mechanisms in Assembler, assemble the model, and export to HTML
ha = HtmlAssembler(stmts)
# Output to HTML
html = ha.make_model(template=None, with_grouping=True, add_full_text_search_link=True)
ha.save_model(indra_stmt_html_file)
```
# ANALYZE RECURRENCE OF FAILED SEARCH TERMS
```{r}
tmp_dat <- failed_search_dat
x0 <- tmp_dat[, c("MESH_TERMS", "QUERY_TERM")]
x1 <- x0[complete.cases(x0),]
x2 <- tapply(x1$MESH_TERMS, x1$QUERY_TERM, paste, collapse="|")
x3 <- data.frame(query_term=names(x2), mesh_terms=as.vector(x2), stringsAsFactors = FALSE)
# Make unique entries only
x4 <- sapply(x3$mesh_terms, function(x) {
t1 <- strsplit(x, "\\|")[[1]] %>% gsub('^\\*', "", .) %>% sort %>% paste(., collapse = "|")
}, USE.NAMES = FALSE)
x3$mesh_terms <- x4
#x3x <- x3$mesh_terms[1]
x5 <- strsplit(x3$mesh_terms, "\\|")
names(x5) <- x3$query_term
x6 <- x5 %>% unlist
x6 <- table(x6) %>% sort(., decreasing = TRUE)
x7 <- data.frame(mesh_term=names(x6), freq=as.vector(x6), stringsAsFactors = FALSE)
# Term weights
termWeights <- tapply(allMeshByTopLevelPathwaysFull$idf, allMeshByTopLevelPathwaysFull$mesh_term, mean, na.rm=TRUE)
termWeights[is.nan(termWeights)] <- 0
termWeightsDf <- data.frame(mesh_term=names(termWeights), idf=as.vector(termWeights), stringsAsFactors = FALSE)
allFailedMeshTfIdf <- merge(x7, termWeightsDf, by="mesh_term", all.y=TRUE)
allFailedMeshTfIdf$freq[is.na(allFailedMeshTfIdf$freq)] <- 0
allFailedMeshTfIdf$tf <- allFailedMeshTfIdf$freq / sum(allFailedMeshTfIdf$freq)
allFailedMeshTfIdf$tf_idf <- allFailedMeshTfIdf$tf*allFailedMeshTfIdf$idf
allFailedMeshTfIdf <- allFailedMeshTfIdf[order(-allFailedMeshTfIdf$tf_idf),]
DT::datatable(head(allFailedMeshTfIdf, max_dt_table_display), rownames = FALSE)
```
## Find Failed Terms with Given MESH
```{r, eval=TRUE}
query_mesh <- "RNA, Long Noncoding"
x8 <- listutils::searchListOfVectors(query_mesh, x5, useNames = FALSE)
x9 <- x8[[1]] %>% unique
names(x5)[x9] %>% head(., max_dt_table_display)
```
# SESSION INFO
```{r}
sessionInfo()
```