-
Notifications
You must be signed in to change notification settings - Fork 0
/
rsa.go
667 lines (628 loc) · 17.2 KB
/
rsa.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
// Copyright (c) 2020, The CCNLab Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"strings"
"github.com/emer/etable/etable"
"github.com/emer/etable/etensor"
"github.com/emer/etable/metric"
"github.com/emer/etable/simat"
)
var Debug = false
// Object categories
var Objs = []string{
"b", // ba, bi, bo, bu
"d", // ...
"g",
"h",
"k",
"l",
"m",
"n",
"p",
"r",
"s",
"t",
}
var ObjIdxs map[string]int
// MannerCat is a categorization by manner of articulation
var MannerCats = map[string]string{
"b": "stop",
"d": "stop",
"g": "stop",
"p": "stop",
"t": "stop",
"k": "stop",
"dx": "stop",
"q": "stop",
"bcl": "closure", // stop closures
"dcl": "closure",
"gcl": "closure",
"pcl": "closure",
"tck": "closure",
"kcl": "closure",
"jh": "affricative",
"ch": "affricative",
//"dcl": "closure", // same closure as 'd'
"tcl": "closure",
"s": "fricative",
"sh": "fricative",
"z": "fricative",
"zh": "fricative",
"f": "fricative",
"th": "fricative",
"v": "fricative",
"dh": "fricative",
"m": "nasal",
"n": "nasal",
"ng": "nasal",
"em": "nasal",
"en": "nasal",
"eng": "nasal",
"nx": "nasal",
//"h": "glottal-fricative",
"l": "glide",
"r": "glide",
"w": "glide",
"y": "glide",
"hh": "glide",
"hv": "glide",
"el": "glide",
"iy": "vowel",
"ih": "vowel",
"eh": "vowel",
"ey": "vowel",
"ae": "vowel",
"aa": "vowel",
"aw": "vowel",
"ay": "vowel",
"ah": "vowel",
"ao": "vowel",
"oy": "vowel",
"ow": "vowel",
"uh": "vowel",
"uw": "vowel",
"ux": "vowel",
"er": "vowel",
"ax": "vowel",
"ix": "vowel",
"axr": "vowel",
"ax-h": "vowel",
}
// PlaceCat is a categorization by place of articulation
var PlaceCats = map[string]string{
"b": "bilabial",
"d": "alveolar",
"g": "velar",
"k": "velar",
"p": "bilabial",
"t": "alveolar",
"m": "bilabial",
"n": "alveolar",
"s": "alveolar",
"h": "glottal",
"l": "alveolar",
"r": "alveolar",
}
var CatsBlanks []string // cats with repeats all blank -- for labels
// RSA handles representational similarity analysis
type RSA struct {
Interval int `desc:"how often to run RSA analyses over epochs"`
Cats []string `desc:"category names for each row of simmat / activation table -- call SetCats"`
Sims map[string]*simat.SimMat `desc:"similarity matricies for each layer"`
V1Sims []float64 `desc:"similarity for each layer relative to V1"`
//CatDists []float64 `desc:"AvgContrastDist for each layer under MannerCats centroid meta categories"`
//BasicDists []float64 `desc:"AvgBasicDist for each layer -- basic-level distances"`
//ExptDists []float64 `desc:"AvgExptDist for each layer -- distances from expt data"`
//MannerSims map[string]*simat.SimMat `desc:"similarity matricies for each layer, organized into MannerCats and sorted"`
//MannerObjs map[string]*[]string `desc:"corresponding ordering of objects in sorted Cat5Sims lists"`
//PermNCats map[string]int `desc:"number of categories remaining after permutation from LbaCat"`
//PermDists map[string]float64 `desc:"avg contrast dist for permutation"`
}
// Init initializes maps etc if not done yet
func (rs *RSA) Init(lays []string) { // are we doing RSA on consonant vowel sequences or phones (timit data)
if rs.Sims != nil {
return
}
nc := len(lays)
rs.Sims = make(map[string]*simat.SimMat, nc)
//rs.MannerSims = make(map[string]*simat.SimMat, nc)
//rs.MannerObjs = make(map[string]*[]string, nc)
rs.V1Sims = make([]float64, nc)
//rs.CatDists = make([]float64, nc)
//rs.BasicDists = make([]float64, nc)
//rs.ExptDists = make([]float64, nc)
//rs.PermNCats = make(map[string]int)
//rs.PermDists = make(map[string]float64)
if ObjIdxs == nil {
no := len(Objs)
ObjIdxs = make(map[string]int, no)
CatsBlanks = make([]string, no)
lstcat := ""
for i, o := range Objs {
ObjIdxs[o] = i
cat := MannerCats[o]
if cat != lstcat {
CatsBlanks[i] = cat
lstcat = cat
}
}
//rs.OpenExptMat()
}
}
// SetCats sets the categories from given list of category/object_file names
func (rs *RSA) SetCats(objs []string) {
l := len(objs)
rs.Cats = make([]string, 0, l*l)
for _, ob := range objs {
cat := strings.Split(ob, "/")[0]
rs.Cats = append(rs.Cats, cat)
}
}
func (rs *RSA) SimByName(cn string) *simat.SimMat {
sm, ok := rs.Sims[cn]
if !ok || sm == nil {
sm = &simat.SimMat{}
rs.Sims[cn] = sm
}
return sm
}
//func (rs *RSA) Cat5SimByName(cn string) *simat.SimMat {
// sm, ok := rs.Cat5Sims[cn]
// if !ok || sm == nil {
// sm = &simat.SimMat{}
// rs.Cat5Sims[cn] = sm
// }
// return sm
//}
//func (rs *RSA) Cat5ObjByName(cn string) *[]string {
// sm, ok := rs.Cat5Objs[cn]
// if !ok || sm == nil {
// nsm := sliceclone.String(rs.Cats)
// sm = &nsm
// rs.Cat5Objs[cn] = sm
// }
// return sm
//}
// StatsFmActs computes RSA stats from given acts table, for given columns (layer names)
func (rs *RSA) StatsFmActs(acts *etable.Table, layNms []string) {
//segment := 0 // use the first segment of phoneme
tix := etable.NewIdxView(acts)
//tix.Filter(func(et *etable.Table, row int) bool { // if we want to filter by segment
// tck := int(et.CellFloat("Segment", row))
// return tck == segment
//})
//tix.SortCol(acts.ColIdx("Cons"), true)
//for _, cn := range layNms {
// sm := rs.SimByName(cn + "_Cons")
// rs.SimMatFmActs(sm, tix, cn, "Cons")
//}
tix.SortCol(acts.ColIdx("MannerCat"), true)
for _, cn := range layNms {
sm := rs.SimByName(cn + "_Manner")
rs.SimMatFmActs(sm, tix, cn, "MannerCat")
}
tix.SortCol(acts.ColIdx("PlaceCat"), true)
for _, cn := range layNms {
sm := rs.SimByName(cn + "_Place")
rs.SimMatFmActs(sm, tix, cn, "PlaceCat")
}
//osm := rs.SimByName(cn + "_Obj")
//rs.ObjSimMat(osm, sm, rs.Cats)
//
//dist := metric.CrossEntropy64(osm.Mat.(*etensor.Float64).Values, expt.Mat.(*etensor.Float64).Values)
//rs.ExptDists[i] = dist
//v1sm := rs.Sims["V1m"]
//v1sm64 := v1sm.Mat.(*etensor.Float64)
//for i, cn := range layNms {
// osm := rs.SimByName(cn)
//
// rs.CatDists[i] = -rs.AvgContrastDist(osm, rs.Cats, MannerCats)
// rs.BasicDists[i] = rs.AvgBasicDist(osm, rs.Cats)
//
// if v1sm == osm {
// rs.V1Sims[i] = 1
// continue
// }
// osm64 := osm.Mat.(*etensor.Float64)
// rs.V1Sims[i] = metric.Correlation64(osm64.Values, v1sm64.Values)
//}
//cat5s := []string{"TE"}
//for _, cn := range cat5s {
// rs.StatsSortPermuteCat5(cn)
//}
}
//func (rs *RSA) StatsSortPermuteCat5(laynm string) {
// sm := rs.SimByName(laynm)
// if len(sm.Rows) == 0 {
// return
// }
// sm5 := rs.Cat5SimByName(laynm)
// obj := rs.CatSortSimMat(sm, sm5, rs.Cats, MannerCats, true, laynm+"_LbaCat")
// obj5 := rs.Cat5ObjByName(laynm)
// copy(*obj5, obj)
// pnm := laynm + "perm"
// pcats, ncat, pdist := rs.PermuteCatTest(sm, rs.Cats, MannerCats, pnm)
// sm5p := rs.Cat5SimByName(pnm)
// objp := rs.CatSortSimMat(sm, sm5p, rs.Cats, pcats, true, pnm)
// obj5p := rs.Cat5ObjByName(pnm)
// copy(*obj5p, objp)
// rs.PermNCats[laynm] = ncat
// rs.PermDists[laynm] = pdist
//}
// ConfigSimMat sets meta data
func (rs *RSA) ConfigSimMat(sm *simat.SimMat) {
smat := sm.Mat.(*etensor.Float64)
smat.SetMetaData("max", "2")
smat.SetMetaData("min", "0")
smat.SetMetaData("colormap", "Viridis")
smat.SetMetaData("grid-fill", "1")
smat.SetMetaData("dim-extra", "0.5")
smat.SetMetaData("grid-min", "1")
}
// SimMatFmActs computes the given SimMat from given acts table (IdxView),
// for given column name.
func (rs *RSA) SimMatFmActs(sm *simat.SimMat, acts *etable.IdxView, colnm string, varNm string) {
sm.Init()
rs.ConfigSimMat(sm)
n := acts.Table.Rows
smat := sm.Mat.(*etensor.Float64)
smat.SetShape([]int{n, n}, nil, nil)
sm.Rows = make([]string, n)
for r := 0; r < n; r++ {
sm.Rows[r] = acts.Table.CellString(varNm, r)
}
sm.Cols = sm.Rows
smat.SetMetaData("max", "1")
smat.SetMetaData("min", "0")
smat.SetMetaData("colormap", "Viridis")
smat.SetMetaData("grid-fill", "1")
smat.SetMetaData("dim-extra", "0.15")
smat.SetMetaData("grid-min", "1")
sm.TableCol(acts, colnm, varNm, true, metric.Correlation64)
}
// OpenSimMat opens a saved sim mat for given layer name,
// using given cat strings per row of sim mat
//func (rs *RSA) OpenSimMat(laynm string, fname gi.FileName) {
// sm := rs.SimByName(laynm)
// no := len(rs.Cats)
// sm.Init()
// rs.ConfigSimMat(sm)
// smat := sm.Mat.(*etensor.Float64)
// smat.SetShape([]int{no, no}, nil, nil)
// err := etensor.OpenCSV(smat, fname, etable.Tab.Rune())
// if err != nil {
// log.Println(err)
// return
// }
// sm.Rows = simat.BlankRepeat(rs.Cats)
// sm.Cols = sm.Rows
// rs.StatsSortPermuteCat5(laynm)
// rs.PermDists[laynm+"_BasicDist"] = rs.AvgBasicDist(sm, rs.Cats)
//
// expt := rs.SimByName("Expt1")
//
// osm := rs.SimByName(laynm + "_Obj")
// rs.ObjSimMat(osm, sm, rs.Cats)
// dist := metric.CrossEntropy64(osm.Mat.(*etensor.Float64).Values, expt.Mat.(*etensor.Float64).Values)
// rs.PermDists[laynm+"_ExptDist"] = dist
//
//}
// CatSortSimMat takes an input sim matrix and categorizes the items according to given cats
// and then sorts items within that according to their average within - between cat similarity.
// contrast = use within - between metric, otherwise just within
// returns the new ordering of objects (like nms but sorted according to new sort)
//func (rs *RSA) CatSortSimMat(insm *simat.SimMat, osm *simat.SimMat, nms []string, catmap map[string]string, contrast bool, name string) []string {
// no := len(insm.Rows)
// sch := etable.Schema{
// {"Cat", etensor.STRING, nil, nil},
// {"Dist", etensor.FLOAT64, nil, nil},
// {"Obj", etensor.STRING, nil, nil},
// }
// dt := &etable.Table{}
// dt.SetFromSchema(sch, no)
// cats := dt.Cols[0].(*etensor.String).Values
// dists := dt.Cols[1].(*etensor.Float64).Values
// objs := dt.Cols[2].(*etensor.String).Values
// for i, nm := range nms {
// cats[i] = catmap[nm]
// objs[i] = nm
// }
// smatv := insm.Mat.(*etensor.Float64).Values
// avgCtrstDist := 0.0
// for ri := 0; ri < no; ri++ {
// roff := ri * no
// aid := 0.0
// ain := 0
// abd := 0.0
// abn := 0
// rc := cats[ri]
// for ci := 0; ci < no; ci++ {
// if ri == ci {
// continue
// }
// cc := cats[ci]
// d := smatv[roff+ci]
// if cc == rc {
// aid += d
// ain++
// } else {
// abd += d
// abn++
// }
// }
// if ain > 0 {
// aid /= float64(ain)
// }
// if abn > 0 {
// abd /= float64(abn)
// }
// dval := aid
// if contrast {
// dval -= abd
// }
// dists[ri] = dval
// avgCtrstDist += (1 - aid) - (1 - abd)
// }
// avgCtrstDist /= float64(no)
// ix := etable.NewIdxView(dt)
// ix.SortColNames([]string{"Cat", "Dist"}, true) // ascending
// osm.Init()
// osm.Mat.CopyShapeFrom(insm.Mat)
// osm.Mat.CopyMetaData(insm.Mat)
// rs.ConfigSimMat(osm)
// omatv := osm.Mat.(*etensor.Float64).Values
// bcols := make([]string, no)
// last := ""
// for sri := 0; sri < no; sri++ {
// sroff := sri * no
// ri := ix.Idxs[sri]
// roff := ri * no
// cat := cats[ri]
// if cat != last {
// bcols[sri] = cat
// last = cat
// }
// // bcols[sri] = nms[ri] // uncomment this to see all the names
// for sci := 0; sci < no; sci++ {
// ci := ix.Idxs[sci]
// d := smatv[roff+ci]
// omatv[sroff+sci] = d
// }
// }
// osm.Rows = bcols
// osm.Cols = bcols
// if Debug {
// fmt.Printf("%v avg contrast dist: %.4f\n", name, avgCtrstDist)
// }
// sobjs := make([]string, no)
// for i := 0; i < no; i++ {
// nm := nms[ix.Idxs[i]]
// sobjs[i] = catmap[nm] + ": " + nm
// }
// return sobjs
//}
// AvgContrastDist computes average contrast dist over given cat map
// nms gives the base category names for each row in the simat, which is
// then used to lookup the meta category in the catmap, which is used
// for determining the within vs. between category status.
//func (rs *RSA) AvgContrastDist(insm *simat.SimMat, nms []string, catmap map[string]string) float64 {
// no := len(insm.Rows)
// smatv := insm.Mat.(*etensor.Float64).Values
// avgd := 0.0
// for ri := 0; ri < no; ri++ {
// roff := ri * no
// aid := 0.0
// ain := 0
// abd := 0.0
// abn := 0
// rnm := nms[ri]
// rc := catmap[rnm]
// for ci := 0; ci < no; ci++ {
// if ri == ci {
// continue
// }
// cnm := nms[ci]
// cc := catmap[cnm]
// d := smatv[roff+ci]
// if cc == rc {
// aid += d
// ain++
// } else {
// abd += d
// abn++
// }
// }
// if ain > 0 {
// aid /= float64(ain)
// }
// if abn > 0 {
// abd /= float64(abn)
// }
// avgd += aid - abd
// }
// avgd /= float64(no)
// return avgd
//}
// AvgBasicDist computes average distance within basic-level categories given by nms
//func (rs *RSA) AvgBasicDist(insm *simat.SimMat, nms []string) float64 {
// no := len(insm.Rows)
// smatv := insm.Mat.(*etensor.Float64).Values
// avgd := 0.0
// ain := 0
// for ri := 0; ri < no; ri++ {
// roff := ri * no
// rnm := nms[ri]
// for ci := 0; ci < ri; ci++ {
// cnm := nms[ci]
// d := smatv[roff+ci]
// if rnm == cnm {
// avgd += d
// ain++
// }
// }
// }
// if ain > 0 {
// avgd /= float64(ain)
// }
// return avgd
//}
// PermuteCatTest takes an input sim matrix and tries all one-off permutations relative to given
// initial set of categories, and computes overall average constrast distance for each
// selects categs with lowest dist and iterates until no better permutation can be found.
// returns new map, number of categories used in new map, and the avg contrast distance for it
//func (rs *RSA) PermuteCatTest(insm *simat.SimMat, nms []string, catmap map[string]string, desc string) (map[string]string, int, float64) {
// if Debug {
// fmt.Printf("\n#########\n%v\n", desc)
// }
// catm := map[string]int{} // list of categories and index into catnms
// catnms := []string{}
// for _, nm := range nms {
// cat := catmap[nm]
// if _, has := catm[cat]; !has {
// catm[cat] = len(catnms)
// catnms = append(catnms, cat)
// }
// }
// ncats := len(catnms)
//
// itrmap := make(map[string]string)
// for k, v := range catmap {
// itrmap[k] = v
// }
//
// std := rs.AvgContrastDist(insm, nms, catmap)
// if Debug {
// fmt.Printf("std: %.4f starting\n", std)
// }
//
// for itr := 0; itr < 100; itr++ {
// std = rs.AvgContrastDist(insm, nms, itrmap)
//
// effmap := make(map[string]string)
// mind := 100.0
// mindnm := ""
// mindcat := ""
// for _, nm := range nms { // go over each item
// cat := itrmap[nm]
// for oc := 0; oc < ncats; oc++ { // go over alternative categories
// ocat := catnms[oc]
// if ocat == cat {
// continue
// }
// for k, v := range itrmap {
// if k == nm {
// effmap[k] = ocat // switch
// } else {
// effmap[k] = v
// }
// }
// avgd := rs.AvgContrastDist(insm, nms, effmap)
// if avgd < mind {
// mind = avgd
// mindnm = nm
// mindcat = ocat
// }
// // if avgd < std {
// // fmt.Printf("Permute test better than std dist: %v min dist: %v for name: %v in cat: %v\n", std, avgd, nm, ocat)
// // }
// }
// }
// if mind >= std {
// break
// }
// if Debug {
// fmt.Printf("itr %v std: %.4f min: %.4f name: %v cat: %v\n", itr, std, mind, mindnm, mindcat)
// }
// itrmap[mindnm] = mindcat // make the switch
// }
// if Debug {
// fmt.Printf("std: %.4f final\n", std)
// }
//
// nCatUsed := 0
// for oc := 0; oc < ncats; oc++ {
// cat := catnms[oc]
// if Debug {
// fmt.Printf("%v\n", cat)
// }
// nin := 0
// for _, nm := range Objs {
// ct := itrmap[nm]
// if ct == cat {
// nin++
// if Debug {
// fmt.Printf("\t%v\n", nm)
// }
// }
// }
// if nin > 0 {
// nCatUsed++
// }
// }
// return itrmap, nCatUsed, -std
//}
// ObjSimMat compresses full simat into a much smaller per-object sim mat
//func (rs *RSA) ObjSimMat(osm *simat.SimMat, fsm *simat.SimMat, nms []string) {
// fsmat := fsm.Mat.(*etensor.Float64)
//
// ono := len(Objs)
// osm.Init()
// osmat := osm.Mat.(*etensor.Float64)
// osmat.SetShape([]int{ono, ono}, nil, nil)
// osm.Rows = CatsBlanks
// osm.Cols = CatsBlanks
// osmat.SetMetaData("max", "1")
// osmat.SetMetaData("min", "0")
// osmat.SetMetaData("colormap", "Viridis")
// osmat.SetMetaData("grid-fill", "1")
// osmat.SetMetaData("dim-extra", "0.15")
//
// nmat := &etensor.Float64{}
// nmat.SetShape([]int{ono, ono}, nil, nil)
//
// nf := len(nms)
// for ri := 0; ri < nf; ri++ {
// roi := ObjIdxs[nms[ri]]
// for ci := 0; ci < nf; ci++ {
// sidx := ri*nf + ci
// sval := fsmat.Values[sidx]
// coi := ObjIdxs[nms[ci]]
// oidx := roi*ono + coi
// if ri == ci {
// osmat.Values[oidx] = 0
// } else {
// osmat.Values[oidx] += sval
// }
// nmat.Values[oidx] += 1
// }
// }
// for ri := 0; ri < ono; ri++ {
// for ci := 0; ci < ono; ci++ {
// oidx := ri*ono + ci
// osmat.Values[oidx] /= nmat.Values[oidx]
// }
// }
// norm.DivNorm64(osmat.Values, norm.Max64)
//}
//func (rs *RSA) OpenExptMat() {
// no := len(Objs)
// sm := rs.SimByName("Expt1")
// sm.Init()
// smat := sm.Mat.(*etensor.Float64)
// smat.SetShape([]int{no, no}, nil, nil)
// err := etensor.OpenCSV(smat, gi.FileName("expt1_simat.csv"), etable.Comma.Rune())
// if err != nil {
// log.Println(err)
// return
// }
// norm.DivNorm64(smat.Values, norm.Max64)
// sm.Rows = CatsBlanks
// sm.Cols = CatsBlanks
// smat.SetMetaData("max", "1")
// smat.SetMetaData("min", "0")
// smat.SetMetaData("colormap", "Viridis")
// smat.SetMetaData("grid-fill", "1")
// smat.SetMetaData("dim-extra", "0.15")
//}