Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cannot Compile from source nor Run binary on WSL2 #211

Closed
randymojica opened this issue Oct 20, 2022 · 8 comments
Closed

Cannot Compile from source nor Run binary on WSL2 #211

randymojica opened this issue Oct 20, 2022 · 8 comments
Assignees

Comments

@randymojica
Copy link

Good Afternoon!
I have been working with AutoDock4 since a few years ago and now that there is a recent and updated version I really wanted to give it a try. I tried to compile AutoDock-GPU from source and failed, and downloaded de binary adgpu-v1.5.3_linux_ocl_128wi released on Dec. 17, 2021, but it didn't work either.

To Reproduce
When I tried to execute the binary downloaded from github, there is an error constantly popping up:
./adgpu-v1.5.3_linux_ocl_128wi --lfile ../acarbose_pubchem_minimized.pdbqt --ffile ../aGluc_3top_md_first_frame.maps.fld --nrun 50

Running 1 docking calculation
Kernel source used for development: ./device/calcenergy.cl
Kernel string used for building: ./host/inc/stringify.h
Kernel compilation flags: -I ./device -I ./common -DN128WI -cl-mad-enable
Error: clGetPlatformIDs(): -1001

Expected behavior
I expected for the compiled program to excecute like normal or the downloaded binary to run without problems as in the previous AutoDock 4.2.6, but that was not the case.

Information to help narrow down the bug

  • Version of AutoDock-GPU: v1.5.3 and v.1.5.release

  • Which operating system are you on?: WSL2 (tried on both Ubuntu 22.04 LTS and Ubuntu 20.04 LTS) running on Windows 11 Home version 22H2 build 22623.746

  • Which compiler, compiler version, and make compile options did you use?
    To compile, I tried multiple combination of options in both operative systems, e.g.:
    make DEVICE=CUDA NUMWI=256
    make DEVICE=CUDA NUMWI=128
    make DEVICE=CUDA NUMWI=64
    Resulting in:

rm -f ./host/inc/performdocking.h ./host/src/performdocking.cpp
Building adgpu_analysis ...
g++
./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/processgrid.cpp ./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp \ -std=c++11 -I./common -I./host/inc -DVERSION="v1.5-release"
-o./bin/adgpu_analysis
-O3 -DTOOLMODE
DEVICE is set to GPU
CPU_INCLUDE_PATH is set to /usr/local/cuda-11.7/include/CL
CPU_LIBRARY_PATH is set to /usr/local/cuda-11.7/lib64
GPU_INCLUDE_PATH is set to /usr/local/cuda-11.7/include
GPU_LIBRARY_PATH is set to /usr/local/cuda-11.7/lib64
nvcc -DN256WI -use_fast_math --ptxas-options="-v" -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -std=c++11 -I./common -I./host/inc -I/usr/local/cuda-11.7/include -I./cuda -c ./cuda/kernels.cu /bin/sh: 1: nvcc: not found
make: *** [Makefile.Cuda:187: kernels] Error 127

While using the next option:
make DEVICE=GPU NUMWI=256
make DEVICE=GPU NUMWI=128

Returned the outputs:

rm -f ./host/inc/performdocking.h ./host/src/performdocking.cpp
Building adgpu_analysis ...
g++
./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/processgrid.cpp ./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp \ -std=c++11 -I./common -I./host/inc -DVERSION="v1.5-release"
-o./bin/adgpu_analysis
-O3 -DTOOLMODE
DEVICE is set to GPU
CPU_INCLUDE_PATH is set to /usr/local/cuda-11.7/include/CL CPU_LIBRARY_PATH is set to /usr/local/cuda-11.7/lib64
GPU_INCLUDE_PATH is set to /usr/local/cuda-11.7/include
GPU_LIBRARY_PATH is set to /usr/local/cuda-11.7/lib64
./stringify_ocl_krnls.sh
Stringified input header files:
./common/defines.h
./common/calcenergy_basic.h
Stringified input non-kernel files:
./device/auxiliary_genetic.cl
./device/calcenergy.cl
./device/calcgradient.cl
./device/calcMergedEneGra.cl
Stringified input kernel-files:
./device/kernel1.cl
./device/kernel2.cl
./device/kernel4.cl
./device/kernel3.cl
./device/kernel_sd.cl
./device/kernel_fire.cl
./device/kernel_ad.cl
Stringified output file:
host/inc/stringify.h
ln -sf performdocking.h.OpenCL ./host/inc/performdocking.h
ln -sf performdocking.cpp.OpenCL ./host/src/performdocking.cpp
Building autodock_gpu_256wi ...
g++
./wrapcl/src/BufferObjects.cpp ./wrapcl/src/CommandQueues.cpp ./wrapcl/src/Programs.cpp ./wrapcl/src/Kernels.cpp ./wrapcl/src/Devices.cpp ./wrapcl/src/ImportSource.cpp ./wrapcl/src/Platforms.cpp ./wrapcl/src/Contexts.cpp ./wrapcl/src/ImportBinary.cpp ./wrapcl/src/listAttributes.cpp ./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/performdocking.cpp ./host/src/processgrid.cpp ./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp \ -std=c++11 -I./common -I./wrapcl/inc -I./host/inc -I./device -I/usr/local/cuda-11.7/include -L/usr/local/cuda-11.7/lib64 -DVERSION="v1.5-release"
-lOpenCL
-o./bin/autodock_gpu_256wi
-DGPU_DEVICE -DN256WI -O3 -DKRNL_SOURCE=./device/calcenergy.cl -DKRNL_DIRECTORY=./device -DKCMN_DIRECTORY=./common -DK1="gpu_calc_initpop" -DK2="gpu_sum_evals" -DK3="perform_LS" -DK4="gpu_gen_and_eval_newpops" -DK5="gradient_minSD" -DK6="gradient_minFire" -DK7="gradient_minAD"

But if I try to run the compiled program, it does not work:
./autodock_gpu_256wi -L ../acarbose_pubchem_minimized.pdbqt -M ../aGluc_3top_md_first_frame.maps.fld --nrun 50
AutoDock-GPU version: v1.5-release
Running 1 docking calculation
Kernel source used for development: ./device/calcenergy.cl
Kernel string used for building: ./host/inc/stringify.h
Kernel compilation flags:
-I ./device -I ./common -DN256WI -cl-mad-enable
Error: clGetPlatformIDs(): -1001

  • Which GPU(s) are you running on and is Cuda or OpenCL used?
    NVIDIA GeForce RTX3050Ti (Laptop Lenovo LEGION5) targeting for Cuda and the CPU is an Ryzen 7 5800H.

  • Which driver version and if applicable, which Cuda version are you using?: NVIDIA driver 516.94 and CUDA 11.7 following the instructions for installing CUDA in WSL2 from https://docs.nvidia.com/cuda/wsl-user-guide/index.html

  • When compiling AutoDock-GPU, are GPU_INCLUDE_PATH and GPU_LIBRARY_PATH set? Are both environment variables set to the correct directories, i.e. corresponding to the correct Cuda version or OpenCL library?

On Ubuntu 20.04 LTS I set the environment variables of the file .bashrc in home as:

#Setting CUDA for AutoDock-GPU
export CUDAROOT=/usr/local/cuda-11.7
export GPU_INCLUDE_PATH=$CUDAROOT/include
export GPU_LIBRARY_PATH=$CUDAROOT/lib64
export CPU_INCLUDE_PATH=$CUDAROOT/include/CL
export CPU_LIBRARY_PATH=$CUDAROOT/lib64
The files compiled with DIVICE=GPU but the executable did not work.

Then I tried something slightly different on Ubuntu 22.04 LTS:

#Setting environment variables for ADGPU
export CUDAROOT=/usr/local/cuda
export PATH=$CUDAROOT/bin/:$PATH
export GPU_INCLUDE_PATH=$CUDAROOT/include
export GPU_LIBRARY_PATH=$CUDAROOT/lib64
The files did not compile, but again the program did not work.

  • Did this bug only show up recently? Which version of AutoDock-GPU, compiler, settings, etc. were you using that worked?: I have been trying to run AutoDock-GPU v1.5.3 since April 2022, but it has been imposible for me to make it run.

Files:

aGluc_3top_md_first_frame.maps.zip

@atillack
Copy link
Member

@randymojica Thank you for your very detailed issue post. Both nvcc: not found and Error: clGetPlatformIDs(): -1001 in the output indicate that something is still not quite working yet with the Cuda and/or Nvidia driver installation. What is the output of nvidia-smi?

Also, it looks like your second .bashrc should use export CUDAROOT=/usr/local/cuda-11.7 and with a bit of luck all that's needed additionally is export LD_LIBRARY_PATH="$CUDAROOT/lib64:$LD_LIBRARY_PATH" ;-)

@randymojica
Copy link
Author

randymojica commented Oct 21, 2022

@atillack Thank you for your promp reply. The output from nvidia-smi, Ubuntu 22.04 LTS and Ubuntu 20.04 LTS, is adjunted in the images respectively:
Ubuntu22 04LTSnvidia-smi
Ubuntu20 04LTSnvidia-smi
Also, after adding export PATH="$CUDAROOT/bin:$PATH" and export LD_LIBRARY_PATH="$CUDAROOT/lib64:$LD_LIBRARY_PATH" to the .bashrc file, now nvcc could be found and there is progress in the compilation, but it gets stuck in another error:

rm -f ./host/inc/performdocking.h ./host/src/performdocking.cpp
Building adgpu_analysis ...
g++
./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/processgrid.cpp
./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp \ -std=c++11 -I./common -I./host/inc -DVERSION="v1.5-release"
-o./bin/adgpu_analysis
-O3 -DTOOLMODE
DEVICE is set to GPU
CPU_INCLUDE_PATH is undefined
CPU_LIBRARY_PATH is undefined
GPU_INCLUDE_PATH is set to /usr/local/cuda-11.7/include
GPU_LIBRARY_PATH is set to /usr/local/cuda-11.7/lib64
nvcc -DN256WI -use_fast_math --ptxas-options="-v" -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -std=c++11 -I./common -I./host/inc -I/usr/local/cuda-11.7/include -I./cuda -c ./cuda/kernels.cu
ptxas info : 0 bytes gmem, 288 bytes cmem[3]
ptxas info : Compiling entry function 'Z27gpu_gradient_minAdam_kernelPfS' for 'sm_52'
ptxas info : Function properties for Z27gpu_gradient_minAdam_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7416 bytes smem, 336 bytes cmem[0], 112 bytes cmem[2]
ptxas info : Compiling entry function 'Z25gpu_gradient_minAD_kernelPfS' for 'sm_52'
ptxas info : Function properties for Z25gpu_gradient_minAD_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7428 bytes smem, 336 bytes cmem[0], 120 bytes cmem[2]
ptxas info : Compiling entry function 'Z31gpu_gen_and_eval_newpops_kernelPfS_S_S' for 'sm_52'
ptxas info : Function properties for Z31gpu_gen_and_eval_newpops_kernelPfS_S_S
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3672 bytes smem, 352 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function 'Z21gpu_perform_LS_kernelPfS' for 'sm_52'
ptxas info : Function properties for Z21gpu_perform_LS_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 4112 bytes smem, 336 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function '_Z20gpu_sum_evals_kernelv' for 'sm_52'
ptxas info : Function properties for _Z20gpu_sum_evals_kernelv
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 13 registers, 4 bytes smem, 320 bytes cmem[0]
ptxas info : Compiling entry function 'Z23gpu_calc_initpop_kernelPfS' for 'sm_52'
ptxas info : Function properties for Z23gpu_calc_initpop_kernelPfS 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3076 bytes smem, 336 bytes cmem[0], 36 bytes cmem[2]
ptxas info : 0 bytes gmem, 288 bytes cmem[3]
ptxas info : Compiling entry function 'Z27gpu_gradient_minAdam_kernelPfS' for 'sm_60'
ptxas info : Function properties for Z27gpu_gradient_minAdam_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7416 bytes smem, 336 bytes cmem[0], 112 bytes cmem[2]
ptxas info : Compiling entry function 'Z25gpu_gradient_minAD_kernelPfS' for 'sm_60'
ptxas info : Function properties for Z25gpu_gradient_minAD_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7428 bytes smem, 336 bytes cmem[0], 120 bytes cmem[2]
ptxas info : Compiling entry function 'Z31gpu_gen_and_eval_newpops_kernelPfS_S_S' for 'sm_60'
ptxas info : Function properties for Z31gpu_gen_and_eval_newpops_kernelPfS_S_S
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3672 bytes smem, 352 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function 'Z21gpu_perform_LS_kernelPfS' for 'sm_60'
ptxas info : Function properties for Z21gpu_perform_LS_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 4112 bytes smem, 336 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function '_Z20gpu_sum_evals_kernelv' for 'sm_60'
ptxas info : Function properties for _Z20gpu_sum_evals_kernelv
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 13 registers, 4 bytes smem, 320 bytes cmem[0]
ptxas info : Compiling entry function 'Z23gpu_calc_initpop_kernelPfS' for 'sm_60'
ptxas info : Function properties for Z23gpu_calc_initpop_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3076 bytes smem, 336 bytes cmem[0], 36 bytes cmem[2]
ptxas info : 0 bytes gmem, 288 bytes cmem[3]
ptxas info : Compiling entry function 'Z27gpu_gradient_minAdam_kernelPfS' for 'sm_61'
ptxas info : Function properties for Z27gpu_gradient_minAdam_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7416 bytes smem, 336 bytes cmem[0], 112 bytes cmem[2]
ptxas info : Compiling entry function 'Z25gpu_gradient_minAD_kernelPfS' for 'sm_61'
ptxas info : Function properties for Z25gpu_gradient_minAD_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7428 bytes smem, 336 bytes cmem[0], 120 bytes cmem[2]
ptxas info : Compiling entry function 'Z31gpu_gen_and_eval_newpops_kernelPfS_S_S' for 'sm_61'
ptxas info : Function properties for Z31gpu_gen_and_eval_newpops_kernelPfS_S_S
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3672 bytes smem, 352 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function 'Z21gpu_perform_LS_kernelPfS' for 'sm_61'
ptxas info : Function properties for Z21gpu_perform_LS_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 4112 bytes smem, 336 bytes cmem[0], 44 bytes cmem[2]
ptxas info : Compiling entry function '_Z20gpu_sum_evals_kernelv' for 'sm_61'
ptxas info : Function properties for _Z20gpu_sum_evals_kernelv
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 13 registers, 4 bytes smem, 320 bytes cmem[0]
ptxas info : Compiling entry function 'Z23gpu_calc_initpop_kernelPfS' for 'sm_61'
ptxas info : Function properties for Z23gpu_calc_initpop_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3076 bytes smem, 336 bytes cmem[0], 36 bytes cmem[2] ptxas info : 0 bytes gmem, 288 bytes cmem[3]
ptxas info : Compiling entry function 'Z27gpu_gradient_minAdam_kernelPfS' for 'sm_70'
ptxas info : Function properties for Z27gpu_gradient_minAdam_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7416 bytes smem, 368 bytes cmem[0]
ptxas info : Compiling entry function 'Z25gpu_gradient_minAD_kernelPfS' for 'sm_70'
ptxas info : Function properties for Z25gpu_gradient_minAD_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 64 registers, 7428 bytes smem, 368 bytes cmem[0]
ptxas info : Compiling entry function 'Z31gpu_gen_and_eval_newpops_kernelPfS_S_S' for 'sm_70'
ptxas info : Function properties for Z31gpu_gen_and_eval_newpops_kernelPfS_S_S
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3672 bytes smem, 384 bytes cmem[0] ptxas info : Compiling entry function 'Z21gpu_perform_LS_kernelPfS' for 'sm_70'
ptxas info : Function properties for Z21gpu_perform_LS_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 4112 bytes smem, 368 bytes cmem[0]
ptxas info : Compiling entry function '_Z20gpu_sum_evals_kernelv' for 'sm_70'
ptxas info : Function properties for _Z20gpu_sum_evals_kernelv
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 15 registers, 4 bytes smem, 352 bytes cmem[0]
ptxas info : Compiling entry function 'Z23gpu_calc_initpop_kernelPfS' for 'sm_70'
ptxas info : Function properties for Z23gpu_calc_initpop_kernelPfS
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 48 registers, 3076 bytes smem, 368 bytes cmem[0]
ln -sf performdocking.h.Cuda ./host/inc/performdocking.h
ln -sf performdocking.cpp.Cuda ./host/src/performdocking.cpp
Building autodock_gpu_256wi ...
g++
./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/performdocking.cpp ./host/src/processgrid.cpp ./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp
-std=c++11 -I./common -I./host/inc -I/usr/local/cuda-11.7/include -I./cuda -L/usr/local/cuda-11.7/lib64 -Wl,-rpath=/usr/local/cuda-11.7/lib64: -DVERSION="v1.5-release"
kernels.o -lcurand -lcudart
-o./bin/autodock_gpu_256wi
-DGPU_DEVICE -DN256WI -O3
/home/randy/anaconda3/envs/AmberTools21/bin/../lib/gcc/x86_64-conda-linux-gnu/10.3.0/../../../../x86_64-conda-linux-gnu/bin/ld: /usr/local/cuda-11.7/lib64/libcurand.so: undefined reference to memcpy@GLIBC_2.14' /home/randy/anaconda3/envs/AmberTools21/bin/../lib/gcc/x86_64-conda-linux-gnu/10.3.0/../../../../x86_64-conda-linux-gnu/bin/ld: /usr/local/cuda-11.7/lib64/libcudart.so: undefined reference to clock_gettime@GLIBC_2.17'
collect2: error: ld returned 1 exit status
make: *** [Makefile.Cuda:199: odock] Error 1

@atillack
Copy link
Member

@randymojica This looks like you might be using your conda environment's compiler tool chain which seems to clash with WSL's Ubuntu - can you try to deactivate it and compile with Ubuntu's toolchain?

@atillack
Copy link
Member

One more note, it seems that OpenCL is still not working in WSL, so compiling the Cuda version is the way to go:
microsoft/WSL#6951

@atillack
Copy link
Member

@randymojica And one more thing as I am sure you will get things to compile soon - as your GPU is Ampere-based you need to use TARGETS="86" in your make command.

@randymojica
Copy link
Author

@atillack Thank you again for your kind advices. It was just as you said. The compiler GCC from one of my conda environment was interfering with the one from the OS.

To fix the clashing I activated that conda environment and removed its GCC package with conda remove gcc_linux-64. Confirmed that gcc was loading from the OS with which gcc and got the output /usr/bin/gcc.

Compilation

With this, the command make DEVICE=CUDA NUMWI=256 TARGETS="86" compiled AutoDock-GPU succesfully, generating this:

rm -f ./host/inc/performdocking.h ./host/src/performdocking.cpp
Building adgpu_analysis ...
.
.
.
Building autodock_gpu_256wi ...
g++
./host/src/calcenergy.cpp ./host/src/getparameters.cpp ./host/src/main.cpp ./host/src/miscellaneous.cpp ./host/src/performdocking.cpp ./host/src/processgrid.cpp ./host/src/processligand.cpp ./host/src/processresult.cpp ./host/src/setup.cpp
-std=c++11 -I./common -I./host/inc -I/usr/local/cuda-11.7/include -I./cuda -L/usr/local/cuda-11.7/lib64 -Wl,-rpath=/usr/local/cuda-11.7/lib64: -DVERSION="v1.5-release"
kernels.o -lcurand -lcudart
-o./bin/autodock_gpu_256wi
-DGPU_DEVICE -DN256WI -O3

Test

To test if AutoDock-GPU was working I tried again the command ./autodock_gpu_256wi -L ../acarbose_pubchem_minimized.pdbqt -M ../aGluc_3top_md_first_frame.maps.fld --nrun 50, and got:

AutoDock-GPU version: v1.5-release

Running 1 docking calculation

Cuda device: NVIDIA GeForce RTX 3050 Ti Laptop GPU
Available memory on device: 3313 MB (total: 4095 MB)

CUDA Setup time 0.359770s

Running Job #1
Using heuristics: (capped) number of evaluations set to 8262476
Warning: The set number of evals is 31.15% of the uncapped heuristics estimate of 26528180 evals.
This means this docking may not be able to converge. Increasing --heurmax may improve
convergence but will also increase runtime.
AutoStop will not stop before 25.64% (2118269) of the set number of evaluations.
Local-search chosen method is: ADADELTA (ad)

Rest of Setup time 0.015047s

Executing docking runs, stopping automatically after either reaching 0.15 kcal/mol standard deviation of
the best molecules of the last 4 * 5 generations, 42000 generations, or 8262476 evaluations:

Generations | Evaluations | Threshold | Average energy of best 10% | Samples | Best energy
------------+--------------+------------------+------------------------------+---------+-------------------
0 | 150 | 6158.81 kcal/mol | 1982.85 +/- 1113.59 kcal/mol | 4 | 721.73 kcal/mol
5 | 39418 | 6158.81 kcal/mol | 448.71 +/- 800.45 kcal/mol | 1245 | -22.20 kcal/mol
10 | 79702 | 458.35 kcal/mol | -17.41 +/- 1.82 kcal/mol | 281 | -22.43 kcal/mol
15 | 121739 | -17.32 kcal/mol | -21.58 +/- 0.65 kcal/mol | 24 | -22.99 kcal/mol
20 | 163911 | -21.17 kcal/mol | -23.11 +/- 0.40 kcal/mol | 9 | -23.64 kcal/mol
25 | 206285 | -22.43 kcal/mol | -23.55 +/- 0.16 kcal/mol | 6 | -23.75 kcal/mol
30 | 247407 | -23.15 kcal/mol | -23.64 +/- 0.09 kcal/mol | 7 | -23.75 kcal/mol
35 | 288172 | -23.43 kcal/mol | -23.66 +/- 0.13 kcal/mol | 8 | -23.91 kcal/mol
40 | 328553 | -23.41 kcal/mol | -23.91 +/- 0.14 kcal/mol | 6 | -24.04 kcal/mol
45 | 367927 | -23.56 kcal/mol | -23.84 +/- 0.13 kcal/mol | 6 | -24.04 kcal/mol
50 | 407733 | -23.52 kcal/mol | -23.85 +/- 0.21 kcal/mol | 7 | -24.23 kcal/mol
55 | 447110 | -23.40 kcal/mol | -23.78 +/- 0.23 kcal/mol | 12 | -24.38 kcal/mol
60 | 487076 | -23.49 kcal/mol | -24.21 +/- 0.17 kcal/mol | 5 | -24.38 kcal/mol
65 | 527704 | -23.70 kcal/mol | -24.19 +/- 0.19 kcal/mol | 4 | -24.38 kcal/mol
70 | 568736 | -23.48 kcal/mol | -24.19 +/- 0.20 kcal/mol | 6 | -24.38 kcal/mol
75 | 610329 | -23.69 kcal/mol | -24.46 +/- 0.18 kcal/mol | 4 | -24.77 kcal/mol
80 | 652337 | -23.77 kcal/mol | -24.38 +/- 0.20 kcal/mol | 10 | -24.77 kcal/mol
85 | 694824 | -24.07 kcal/mol | -24.41 +/- 0.19 kcal/mol | 14 | -24.77 kcal/mol
90 | 736820 | -24.21 kcal/mol | -24.40 +/- 0.14 kcal/mol | 10 | -24.77 kcal/mol
95 | 778616 | -24.20 kcal/mol | -24.37 +/- 0.14 kcal/mol | 13 | -24.77 kcal/mol
100 | 820724 | -24.20 kcal/mol | -24.50 +/- 0.18 kcal/mol | 16 | -24.86 kcal/mol
105 | 864439 | -24.33 kcal/mol | -24.46 +/- 0.14 kcal/mol | 17 | -24.86 kcal/mol
110 | 907893 | -24.33 kcal/mol | -24.52 +/- 0.15 kcal/mol | 14 | -24.86 kcal/mol
115 | 951478 | -24.36 kcal/mol | -24.52 +/- 0.14 kcal/mol | 16 | -24.86 kcal/mol
120 | 995719 | -24.40 kcal/mol | -24.57 +/- 0.15 kcal/mol | 8 | -24.86 kcal/mol
125 | 1039459 | -24.29 kcal/mol | -24.51 +/- 0.17 kcal/mol | 19 | -24.86 kcal/mol
130 | 1083188 | -24.37 kcal/mol | -24.85 +/- 0.20 kcal/mol | 6 | -25.27 kcal/mol
135 | 1127607 | -24.35 kcal/mol | -24.61 +/- 0.21 kcal/mol | 18 | -25.27 kcal/mol
140 | 1172441 | -24.44 kcal/mol | -24.80 +/- 0.18 kcal/mol | 10 | -25.27 kcal/mol
145 | 1217037 | -24.53 kcal/mol | -24.85 +/- 0.22 kcal/mol | 10 | -25.27 kcal/mol
150 | 1261988 | -24.52 kcal/mol | -24.77 +/- 0.19 kcal/mol | 14 | -25.27 kcal/mol
155 | 1308080 | -24.57 kcal/mol | -24.80 +/- 0.17 kcal/mol | 13 | -25.27 kcal/mol
160 | 1354499 | -24.60 kcal/mol | -24.83 +/- 0.19 kcal/mol | 8 | -25.27 kcal/mol
165 | 1400461 | -24.48 kcal/mol | -24.73 +/- 0.17 kcal/mol | 18 | -25.27 kcal/mol
170 | 1446976 | -24.59 kcal/mol | -24.83 +/- 0.22 kcal/mol | 19 | -25.27 kcal/mol
175 | 1493868 | -24.66 kcal/mol | -24.82 +/- 0.17 kcal/mol | 11 | -25.27 kcal/mol
180 | 1540283 | -24.59 kcal/mol | -24.80 +/- 0.14 kcal/mol | 17 | -25.27 kcal/mol
185 | 1586311 | -24.68 kcal/mol | -24.85 +/- 0.16 kcal/mol | 9 | -25.27 kcal/mol
190 | 1632297 | -24.58 kcal/mol | -24.85 +/- 0.11 kcal/mol | 17 | -25.27 kcal/mol
195 | 1678416 | -24.75 kcal/mol | -24.95 +/- 0.17 kcal/mol | 12 | -25.32 kcal/mol
200 | 1725408 | -24.73 kcal/mol | -24.94 +/- 0.19 kcal/mol | 10 | -25.32 kcal/mol
205 | 1772942 | -24.65 kcal/mol | -24.90 +/- 0.15 kcal/mol | 19 | -25.32 kcal/mol
210 | 1820835 | -24.78 kcal/mol | -24.91 +/- 0.15 kcal/mol | 17 | -25.32 kcal/mol
215 | 1868420 | -24.78 kcal/mol | -24.93 +/- 0.15 kcal/mol | 14 | -25.32 kcal/mol
220 | 1915477 | -24.77 kcal/mol | -24.91 +/- 0.15 kcal/mol | 19 | -25.32 kcal/mol
225 | 1963736 | -24.79 kcal/mol | -24.95 +/- 0.18 kcal/mol | 14 | -25.32 kcal/mol
230 | 2012237 | -24.76 kcal/mol | -24.91 +/- 0.16 kcal/mol | 19 | -25.32 kcal/mol
235 | 2060564 | -24.78 kcal/mol | -24.96 +/- 0.17 kcal/mol | 20 | -25.32 kcal/mol
240 | 2108431 | -24.83 kcal/mol | -25.04 +/- 0.16 kcal/mol | 11 | -25.32 kcal/mol
245 | 2156071 | -24.82 kcal/mol | -24.99 +/- 0.14 kcal/mol | 13 | -25.32 kcal/mol
------------+--------------+------------------+------------------------------+---------+-------------------

                               Finished evaluation after reaching
                              -24.96 +/-    0.17 kcal/mol combined.
                            63 samples, best energy   -25.32 kcal/mol.

Docking time 32.071513s

Shutdown time 0.000865s

Job #1 took 32.087 sec after waiting 0.522 sec for setup

Run time of entire job set (1 file): 32.881 sec
Processing time: 0.272 sec

All jobs ran without errors.

@atillack
Copy link
Member

@randymojica Thank you and I am happy it's working for you now.

@tobigithub
Copy link

tobigithub commented Nov 23, 2022

Compilation of Auto-Dock GPU under WSL2 (Ubuntu)

1) sudo apt install nvidia-cuda-toolkit
2) set envs:

# set GPU paths
export GPU_INCLUDE_PATH=/usr/local/cuda/include
export GPU_LIBRARY_PATH=/usr/local/cuda/lib64

# set cudaroot
export CUDAROOT=/usr/local/cuda-11.7
export LD_LIBRARY_PATH="$CUDAROOT/lib64:$LD_LIBRARY_PATH"

# set path for nvcc (Cuda compiler tools need to match cuda version)
export LD_LIBRARY_PATH="/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH"
export PATH="/usr/local/cuda-11.7/bin:$PATH"

3) compile
make DEVICE=CUDA NUMWI=64 TARGETS="86" 

and example run

user@here:~/AutoDock-GPU$ ./autodock_gpu_64wi --lfile input/3ce3/derived/3ce3_ligand.pdbqt --ffile input/3ce3/derived/3ce3_protein.maps.fld
AutoDock-GPU version: v1.5-release

Running 1 docking calculation

Cuda device:                              NVIDIA RTX A3000 Laptop GPU
Available memory on device:               5142 MB (total: 6143 MB)

CUDA Setup time 0.441417s

Running Job #1
    Using heuristics: (capped) number of evaluations set to 1132076
    Local-search chosen method is: ADADELTA (ad)

Rest of Setup time 0.006261s

Executing docking runs, stopping automatically after either reaching 0.15 kcal/mol standard deviation of
the best molecules of the last 4 * 5 generations, 42000 generations, or 1132076 evaluations:

Generations |  Evaluations |     Threshold    |  Average energy of best 10%  | Samples |    Best energy
------------+--------------+------------------+------------------------------+---------+-------------------
          0 |          150 |362024.62 kcal/mol |143805.03 +/-72739.86 kcal/mol |       5 | 1520.92 kcal/mol
          5 |        28840 |362024.62 kcal/mol |38017.91 +/-62099.14 kcal/mol |     263 |  -14.05 kcal/mol
         10 |        56155 |41559.69 kcal/mol |   50.64 +/-  133.04 kcal/mol |     163 |  -14.15 kcal/mol
         15 |        83869 |   62.88 kcal/mol |  -14.05 +/-    0.09 kcal/mol |       6 |  -14.22 kcal/mol
         20 |       112680 |  -13.83 kcal/mol |  -14.13 +/-    0.18 kcal/mol |      19 |  -14.52 kcal/mol
         25 |       142453 |  -13.99 kcal/mol |  -14.25 +/-    0.17 kcal/mol |      26 |  -14.56 kcal/mol
         30 |       173809 |  -14.15 kcal/mol |  -14.40 +/-    0.11 kcal/mol |      22 |  -14.56 kcal/mol
         35 |       207259 |  -14.33 kcal/mol |  -14.43 +/-    0.08 kcal/mol |      13 |  -14.56 kcal/mol
         40 |       243277 |  -14.35 kcal/mol |  -14.46 +/-    0.07 kcal/mol |      31 |  -14.56 kcal/mol
------------+--------------+------------------+------------------------------+---------+-------------------

                                   Finished evaluation after reaching
                                  -14.38 +/-    0.15 kcal/mol combined.
                                92 samples, best energy   -14.56 kcal/mol.

Docking time 0.530084s

Shutdown time 0.000633s

Job #1 took 0.537 sec after waiting 0.504 sec for setup

Run time of entire job set (1 file): 1.075 sec
Processing time: 0.034 sec

All jobs ran without errors.
user@here:~/AutoDock-GPU$

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants