forked from pingcap/tidb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stats.go
323 lines (299 loc) · 10.3 KB
/
stats.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright 2017 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package plan
import (
"fmt"
"math"
"github.com/pingcap/tidb/expression"
log "github.com/sirupsen/logrus"
)
// statsInfo stores the basic information of statistics for the plan's output. It is used for cost estimation.
type statsInfo struct {
count float64
cardinality []float64
}
func (s *statsInfo) String() string {
return fmt.Sprintf("count %v, cardinality %v", s.count, s.cardinality)
}
func (s *statsInfo) Count() int64 {
return int64(s.count)
}
// scale receives a selectivity and multiplies it with count and cardinality.
func (s *statsInfo) scale(factor float64) *statsInfo {
profile := &statsInfo{
count: s.count * factor,
cardinality: make([]float64, len(s.cardinality)),
}
for i := range profile.cardinality {
profile.cardinality[i] = s.cardinality[i] * factor
}
return profile
}
// We try to scale statsInfo to an expectCnt which must be smaller than the derived cnt.
func (s *statsInfo) scaleByExpectCnt(expectCnt float64) *statsInfo {
if expectCnt > s.count {
return s
}
if s.count > 1.0 { // if s.count is too small, it will cause overflow
return s.scale(expectCnt / s.count)
}
return s
}
func (p *basePhysicalPlan) StatsInfo() *statsInfo {
return p.stats
}
func (p *baseLogicalPlan) deriveStats() *statsInfo {
if len(p.children) == 0 {
profile := &statsInfo{
count: float64(1),
cardinality: make([]float64, p.self.Schema().Len()),
}
for i := range profile.cardinality {
profile.cardinality[i] = float64(1)
}
p.stats = profile
return profile
}
p.stats = p.children[0].deriveStats()
return p.stats
}
func (ds *DataSource) getStatsByFilter(conds expression.CNFExprs) *statsInfo {
profile := &statsInfo{
count: float64(ds.statisticTable.Count),
cardinality: make([]float64, len(ds.Columns)),
}
for i, col := range ds.Columns {
hist, ok := ds.statisticTable.Columns[col.ID]
if ok && hist.Count > 0 {
factor := float64(ds.statisticTable.Count) / float64(hist.Count)
profile.cardinality[i] = float64(hist.NDV) * factor
} else {
profile.cardinality[i] = profile.count * distinctFactor
}
}
ds.stats = profile
selectivity, err := ds.statisticTable.Selectivity(ds.ctx, conds)
if err != nil {
log.Warnf("An error happened: %v, we have to use the default selectivity", err.Error())
selectivity = selectionFactor
}
return profile.scale(selectivity)
}
func (ds *DataSource) deriveStats() *statsInfo {
// PushDownNot here can convert query 'not (a != 1)' to 'a = 1'.
for i, expr := range ds.pushedDownConds {
ds.pushedDownConds[i] = expression.PushDownNot(nil, expr, false)
}
ds.statsAfterSelect = ds.getStatsByFilter(ds.pushedDownConds)
return ds.statsAfterSelect
}
func (p *LogicalSelection) deriveStats() *statsInfo {
childProfile := p.children[0].deriveStats()
p.stats = childProfile.scale(selectionFactor)
return p.stats
}
func (p *LogicalUnionAll) deriveStats() *statsInfo {
p.stats = &statsInfo{
cardinality: make([]float64, p.Schema().Len()),
}
for _, child := range p.children {
childProfile := child.deriveStats()
p.stats.count += childProfile.count
for i := range p.stats.cardinality {
p.stats.cardinality[i] += childProfile.cardinality[i]
}
}
return p.stats
}
func (p *LogicalLimit) deriveStats() *statsInfo {
childProfile := p.children[0].deriveStats()
p.stats = &statsInfo{
count: float64(p.Count),
cardinality: make([]float64, len(childProfile.cardinality)),
}
if p.stats.count > childProfile.count {
p.stats.count = childProfile.count
}
for i := range p.stats.cardinality {
p.stats.cardinality[i] = childProfile.cardinality[i]
if p.stats.cardinality[i] > p.stats.count {
p.stats.cardinality[i] = p.stats.count
}
}
return p.stats
}
func (lt *LogicalTopN) deriveStats() *statsInfo {
childProfile := lt.children[0].deriveStats()
lt.stats = &statsInfo{
count: float64(lt.Count),
cardinality: make([]float64, len(childProfile.cardinality)),
}
if lt.stats.count > childProfile.count {
lt.stats.count = childProfile.count
}
for i := range lt.stats.cardinality {
lt.stats.cardinality[i] = childProfile.cardinality[i]
if lt.stats.cardinality[i] > lt.stats.count {
lt.stats.cardinality[i] = lt.stats.count
}
}
return lt.stats
}
// getCardinality will return the cardinality of a couple of columns. We simply return the max one, because we cannot know
// the cardinality for multi-dimension attributes properly. This is a simple and naive scheme of cardinality estimation.
func getCardinality(cols []*expression.Column, schema *expression.Schema, profile *statsInfo) float64 {
indices := schema.ColumnsIndices(cols)
if indices == nil {
log.Errorf("Cannot find column %s indices from schema %s", cols, schema)
return 0
}
var cardinality = 1.0
for _, idx := range indices {
if cardinality < profile.cardinality[idx] {
// It is a very elementary estimation.
cardinality = profile.cardinality[idx]
}
}
return cardinality
}
func (p *LogicalProjection) deriveStats() *statsInfo {
childProfile := p.children[0].deriveStats()
p.stats = &statsInfo{
count: childProfile.count,
cardinality: make([]float64, len(p.Exprs)),
}
for i, expr := range p.Exprs {
cols := expression.ExtractColumns(expr)
p.stats.cardinality[i] = getCardinality(cols, p.children[0].Schema(), childProfile)
}
return p.stats
}
func (la *LogicalAggregation) deriveStats() *statsInfo {
childProfile := la.children[0].deriveStats()
gbyCols := make([]*expression.Column, 0, len(la.GroupByItems))
for _, gbyExpr := range la.GroupByItems {
cols := expression.ExtractColumns(gbyExpr)
gbyCols = append(gbyCols, cols...)
}
cardinality := getCardinality(gbyCols, la.children[0].Schema(), childProfile)
la.stats = &statsInfo{
count: cardinality,
cardinality: make([]float64, la.schema.Len()),
}
// We cannot estimate the cardinality for every output, so we use a conservative strategy.
for i := range la.stats.cardinality {
la.stats.cardinality[i] = cardinality
}
la.inputCount = childProfile.count
return la.stats
}
// deriveStats prepares statsInfo.
// If the type of join is SemiJoin, the selectivity of it will be same as selection's.
// If the type of join is LeftOuterSemiJoin, it will not add or remove any row. The last column is a boolean value, whose cardinality should be two.
// If the type of join is inner/outer join, the output of join(s, t) should be N(s) * N(t) / (V(s.key) * V(t.key)) * Min(s.key, t.key).
// N(s) stands for the number of rows in relation s. V(s.key) means the cardinality of join key in s.
// This is a quite simple strategy: We assume every bucket of relation which will participate join has the same number of rows, and apply cross join for
// every matched bucket.
func (p *LogicalJoin) deriveStats() *statsInfo {
leftProfile := p.children[0].deriveStats()
rightProfile := p.children[1].deriveStats()
if p.JoinType == SemiJoin || p.JoinType == AntiSemiJoin {
p.stats = &statsInfo{
count: leftProfile.count * selectionFactor,
cardinality: make([]float64, len(leftProfile.cardinality)),
}
for i := range p.stats.cardinality {
p.stats.cardinality[i] = leftProfile.cardinality[i] * selectionFactor
}
return p.stats
}
if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
p.stats = &statsInfo{
count: leftProfile.count,
cardinality: make([]float64, p.schema.Len()),
}
copy(p.stats.cardinality, leftProfile.cardinality)
p.stats.cardinality[len(p.stats.cardinality)-1] = 2.0
return p.stats
}
if 0 == len(p.EqualConditions) {
p.stats = &statsInfo{
count: leftProfile.count * rightProfile.count,
cardinality: append(leftProfile.cardinality, rightProfile.cardinality...),
}
return p.stats
}
leftKeys := make([]*expression.Column, 0, len(p.EqualConditions))
rightKeys := make([]*expression.Column, 0, len(p.EqualConditions))
for _, eqCond := range p.EqualConditions {
leftKeys = append(leftKeys, eqCond.GetArgs()[0].(*expression.Column))
rightKeys = append(rightKeys, eqCond.GetArgs()[1].(*expression.Column))
}
leftKeyCardinality := getCardinality(leftKeys, p.children[0].Schema(), leftProfile)
rightKeyCardinality := getCardinality(rightKeys, p.children[1].Schema(), rightProfile)
count := leftProfile.count * rightProfile.count / math.Max(leftKeyCardinality, rightKeyCardinality)
if p.JoinType == LeftOuterJoin {
count = math.Max(count, leftProfile.count)
} else if p.JoinType == RightOuterJoin {
count = math.Max(count, rightProfile.count)
}
cardinality := make([]float64, 0, p.schema.Len())
cardinality = append(cardinality, leftProfile.cardinality...)
cardinality = append(cardinality, rightProfile.cardinality...)
for i := range cardinality {
cardinality[i] = math.Min(cardinality[i], count)
}
p.stats = &statsInfo{
count: count,
cardinality: cardinality,
}
return p.stats
}
func (la *LogicalApply) deriveStats() *statsInfo {
leftProfile := la.children[0].deriveStats()
_ = la.children[1].deriveStats()
la.stats = &statsInfo{
count: leftProfile.count,
cardinality: make([]float64, la.schema.Len()),
}
copy(la.stats.cardinality, leftProfile.cardinality)
if la.JoinType == LeftOuterSemiJoin || la.JoinType == AntiLeftOuterSemiJoin {
la.stats.cardinality[len(la.stats.cardinality)-1] = 2.0
} else {
for i := la.children[0].Schema().Len(); i < la.schema.Len(); i++ {
la.stats.cardinality[i] = leftProfile.count
}
}
return la.stats
}
// Exists and MaxOneRow produce at most one row, so we set the count of stats one.
func getSingletonStats(len int) *statsInfo {
ret := &statsInfo{
count: 1.0,
cardinality: make([]float64, len),
}
for i := 0; i < len; i++ {
ret.cardinality[i] = 1
}
return ret
}
func (p *LogicalExists) deriveStats() *statsInfo {
p.children[0].deriveStats()
p.stats = getSingletonStats(1)
return p.stats
}
func (p *LogicalMaxOneRow) deriveStats() *statsInfo {
p.children[0].deriveStats()
p.stats = getSingletonStats(p.Schema().Len())
return p.stats
}