-
Notifications
You must be signed in to change notification settings - Fork 79
/
conversion.py
147 lines (121 loc) · 4.64 KB
/
conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Converts the companies Google sheet to the markdown formatting of the repository readme.
Due to the manual process of the information gathering on the companies & complex markdown formatting in the github
readme, the company data is managed in a Google sheet. This script automatically converts and formats it.
Add "--check-urls" to check for broken company website URLs.
"""
from typing import List
from urllib.request import Request, urlopen
from urllib.error import URLError
import argparse
import pandas as pd
from tqdm import tqdm
parser = argparse.ArgumentParser(
description="Convert the csv to markdown, optionally check the website urls via --check-urls"
)
parser.add_argument(
"--check-urls",
default=False,
action="store_true",
help="Check the company website urls.",
)
args = parser.parse_args()
def check_urls(urls: List[str]):
# Include basic header info to avoid scraping blocks
headers = {"User-Agent": "Mozilla/5.0"}
for url in tqdm(urls):
req = Request(url, headers=headers)
try:
urlopen(req)
except (URLError, ValueError) as e:
print("Broken URL - ", url, e)
def format_table(df):
categories = {
"Earth Observation": "🛰️",
"GIS / Spatial": "🌎",
"Climate": "☁️",
"UAV / Aerial": "✈️",
"Digital Farming": "🌿",
"Webmap / Cartography": "🗺️",
"Satellite Operator": "📡",
}
df = df.replace({"Category": categories})
df["Company"] = df.apply(
lambda x: f"[{x['Company']}]({x['Website']}){' ❗' if pd.notna(x['New']) else ''}",
axis=1,
)
df["Focus"] = df["Category"] + " " + df["Focus"]
gmaps_url = "https://www.google.com/maps/search/"
df["Address"] = df.apply(
lambda x: "".join(y + "+" for y in x["Address"].split(" ")), axis=1
)
df["Address"] = df.apply(
lambda x: f"[📍 {x['City']}]({gmaps_url}{x['Address']})", axis=1
)
df["Size & City"] = df.apply(
lambda x: f"**{x['Office Size'][0]}**{x['Office Size'][1:]} {x['Address']}",
axis=1,
)
return df
def table_to_markdown(df):
"""
Formatted pandas dataframe to markdown table string as in github Readme.
"""
chapter_links = ""
markdown_string = ""
for country in sorted(df.Country.unique()):
df_country = df[df["Country"] == country]
df_country = df_country.drop(["Country"], axis=1)
country_emoji = {
"china": "cn",
"france": "fr",
"germany": "de",
"italy": "it",
"south_korea": "kr",
"spain": "es",
"turkey": "tr",
"uae": "united_arab_emirates",
"usa": "us",
"russia": "ru",
"japan": "jp",
"bosnia and herzegovina": "bosnia_herzegovina",
}
flag_emoji = country.lower()
flag_emoji = flag_emoji.replace(" ", "_")
if flag_emoji in list(country_emoji.keys()):
flag_emoji = country_emoji[flag_emoji]
repo_link = "https://github.com/chrieke/awesome-geospatial-companies#"
chapter_link = f"[:{flag_emoji}: {country}]({repo_link}{flag_emoji}-{country.lower().replace(' ', '-')})"
chapter_links += f"{chapter_link} - "
df_country = (
df_country.groupby(["Company", "Focus"])["Size & City"]
.apply(" <br /> ".join)
.reset_index()
)
df_country = df_country[["Company", "Size & City", "Focus"]]
df_country = df_country.rename(
{"Company": f"Company ({df_country.shape[0]})"}, axis=1
)
markdown_string = (
markdown_string
+ f"## :{flag_emoji}: {country} \n"
+ f"{df_country.to_markdown(index=False)} \n\n "
)
return chapter_links, markdown_string
df = pd.read_csv("awesome-geospatial-companies - Companies A-Z.csv")
print(f"Unique companies: {df['Focus'].nunique()}")
df = df.drop(["Notes (ex-name)"], axis=1)
# Print column name & row index of nan values
if df.loc[:, df.columns != "New"].isnull().values.any():
for column in df.columns[df.columns != "New"]:
if df[column].isnull().any():
na_rows = df[column][df[column].isnull()].index.tolist()
print(f"Column '{column}' has NaN at rows: {na_rows}")
raise ValueError("Table contains NA values!!!")
if args.check_urls:
check_urls(urls=df["Website"].values)
df = format_table(df=df)
df = df[["Company", "Size & City", "Focus", "Country"]]
chapter_links, markdown_string = table_to_markdown(df)
with open("Output.md", "w") as text_file:
text_file.write(chapter_links + "\n\n" + markdown_string)