forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
scheduler_binder.go
667 lines (568 loc) · 23.5 KB
/
scheduler_binder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package persistentvolume
import (
"fmt"
"sort"
"time"
"k8s.io/klog"
"k8s.io/api/core/v1"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/util/wait"
coreinformers "k8s.io/client-go/informers/core/v1"
storageinformers "k8s.io/client-go/informers/storage/v1"
clientset "k8s.io/client-go/kubernetes"
v1helper "k8s.io/kubernetes/pkg/apis/core/v1/helper"
volumeutil "k8s.io/kubernetes/pkg/volume/util"
)
// SchedulerVolumeBinder is used by the scheduler to handle PVC/PV binding
// and dynamic provisioning. The binding decisions are integrated into the pod scheduling
// workflow so that the PV NodeAffinity is also considered along with the pod's other
// scheduling requirements.
//
// This integrates into the existing default scheduler workflow as follows:
// 1. The scheduler takes a Pod off the scheduler queue and processes it serially:
// a. Invokes all predicate functions, parallelized across nodes. FindPodVolumes() is invoked here.
// b. Invokes all priority functions. Future/TBD
// c. Selects the best node for the Pod.
// d. Cache the node selection for the Pod. AssumePodVolumes() is invoked here.
// i. If PVC binding is required, cache in-memory only:
// * For manual binding: update PV objects for prebinding to the corresponding PVCs.
// * For dynamic provisioning: update PVC object with a selected node from c)
// * For the pod, which PVCs and PVs need API updates.
// ii. Afterwards, the main scheduler caches the Pod->Node binding in the scheduler's pod cache,
// This is handled in the scheduler and not here.
// e. Asynchronously bind volumes and pod in a separate goroutine
// i. BindPodVolumes() is called first. It makes all the necessary API updates and waits for
// PV controller to fully bind and provision the PVCs. If binding fails, the Pod is sent
// back through the scheduler.
// ii. After BindPodVolumes() is complete, then the scheduler does the final Pod->Node binding.
// 2. Once all the assume operations are done in d), the scheduler processes the next Pod in the scheduler queue
// while the actual binding operation occurs in the background.
type SchedulerVolumeBinder interface {
// FindPodVolumes checks if all of a Pod's PVCs can be satisfied by the node.
//
// If a PVC is bound, it checks if the PV's NodeAffinity matches the Node.
// Otherwise, it tries to find an available PV to bind to the PVC.
//
// It returns true if all of the Pod's PVCs have matching PVs or can be dynamic provisioned,
// and returns true if bound volumes satisfy the PV NodeAffinity.
//
// This function is called by the volume binding scheduler predicate and can be called in parallel
FindPodVolumes(pod *v1.Pod, node *v1.Node) (unboundVolumesSatisified, boundVolumesSatisfied bool, err error)
// AssumePodVolumes will:
// 1. Take the PV matches for unbound PVCs and update the PV cache assuming
// that the PV is prebound to the PVC.
// 2. Take the PVCs that need provisioning and update the PVC cache with related
// annotations set.
//
// It returns true if all volumes are fully bound
//
// This function will modify assumedPod with the node name.
// This function is called serially.
AssumePodVolumes(assumedPod *v1.Pod, nodeName string) (allFullyBound bool, err error)
// BindPodVolumes will:
// 1. Initiate the volume binding by making the API call to prebind the PV
// to its matching PVC.
// 2. Trigger the volume provisioning by making the API call to set related
// annotations on the PVC
// 3. Wait for PVCs to be completely bound by the PV controller
//
// This function can be called in parallel.
BindPodVolumes(assumedPod *v1.Pod) error
// GetBindingsCache returns the cache used (if any) to store volume binding decisions.
GetBindingsCache() PodBindingCache
}
type volumeBinder struct {
ctrl *PersistentVolumeController
pvcCache PVCAssumeCache
pvCache PVAssumeCache
// Stores binding decisions that were made in FindPodVolumes for use in AssumePodVolumes.
// AssumePodVolumes modifies the bindings again for use in BindPodVolumes.
podBindingCache PodBindingCache
// Amount of time to wait for the bind operation to succeed
bindTimeout time.Duration
}
// NewVolumeBinder sets up all the caches needed for the scheduler to make volume binding decisions.
func NewVolumeBinder(
kubeClient clientset.Interface,
pvcInformer coreinformers.PersistentVolumeClaimInformer,
pvInformer coreinformers.PersistentVolumeInformer,
storageClassInformer storageinformers.StorageClassInformer,
bindTimeout time.Duration) SchedulerVolumeBinder {
// TODO: find better way...
ctrl := &PersistentVolumeController{
kubeClient: kubeClient,
classLister: storageClassInformer.Lister(),
}
b := &volumeBinder{
ctrl: ctrl,
pvcCache: NewPVCAssumeCache(pvcInformer.Informer()),
pvCache: NewPVAssumeCache(pvInformer.Informer()),
podBindingCache: NewPodBindingCache(),
bindTimeout: bindTimeout,
}
return b
}
func (b *volumeBinder) GetBindingsCache() PodBindingCache {
return b.podBindingCache
}
// FindPodVolumes caches the matching PVs and PVCs to provision per node in podBindingCache
func (b *volumeBinder) FindPodVolumes(pod *v1.Pod, node *v1.Node) (unboundVolumesSatisfied, boundVolumesSatisfied bool, err error) {
podName := getPodName(pod)
// Warning: Below log needs high verbosity as it can be printed several times (#60933).
klog.V(5).Infof("FindPodVolumes for pod %q, node %q", podName, node.Name)
// Initialize to true for pods that don't have volumes
unboundVolumesSatisfied = true
boundVolumesSatisfied = true
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("predicate").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("predicate").Inc()
}
}()
// The pod's volumes need to be processed in one call to avoid the race condition where
// volumes can get bound/provisioned in between calls.
boundClaims, claimsToBind, unboundClaimsImmediate, err := b.getPodVolumes(pod)
if err != nil {
return false, false, err
}
// Immediate claims should be bound
if len(unboundClaimsImmediate) > 0 {
return false, false, fmt.Errorf("pod has unbound immediate PersistentVolumeClaims")
}
// Check PV node affinity on bound volumes
if len(boundClaims) > 0 {
boundVolumesSatisfied, err = b.checkBoundClaims(boundClaims, node, podName)
if err != nil {
return false, false, err
}
}
if len(claimsToBind) > 0 {
var claimsToProvision []*v1.PersistentVolumeClaim
unboundVolumesSatisfied, claimsToProvision, err = b.findMatchingVolumes(pod, claimsToBind, node)
if err != nil {
return false, false, err
}
// Try to provision for unbound volumes
if !unboundVolumesSatisfied {
unboundVolumesSatisfied, err = b.checkVolumeProvisions(pod, claimsToProvision, node)
if err != nil {
return false, false, err
}
}
}
return unboundVolumesSatisfied, boundVolumesSatisfied, nil
}
// AssumePodVolumes will take the cached matching PVs and PVCs to provision
// in podBindingCache for the chosen node, and:
// 1. Update the pvCache with the new prebound PV.
// 2. Update the pvcCache with the new PVCs with annotations set
// 3. Update podBindingCache again with cached API updates for PVs and PVCs.
func (b *volumeBinder) AssumePodVolumes(assumedPod *v1.Pod, nodeName string) (allFullyBound bool, err error) {
podName := getPodName(assumedPod)
klog.V(4).Infof("AssumePodVolumes for pod %q, node %q", podName, nodeName)
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("assume").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("assume").Inc()
}
}()
if allBound := b.arePodVolumesBound(assumedPod); allBound {
klog.V(4).Infof("AssumePodVolumes for pod %q, node %q: all PVCs bound and nothing to do", podName, nodeName)
return true, nil
}
assumedPod.Spec.NodeName = nodeName
claimsToBind := b.podBindingCache.GetBindings(assumedPod, nodeName)
claimsToProvision := b.podBindingCache.GetProvisionedPVCs(assumedPod, nodeName)
// Assume PV
newBindings := []*bindingInfo{}
for _, binding := range claimsToBind {
newPV, dirty, err := b.ctrl.getBindVolumeToClaim(binding.pv, binding.pvc)
klog.V(5).Infof("AssumePodVolumes: getBindVolumeToClaim for pod %q, PV %q, PVC %q. newPV %p, dirty %v, err: %v",
podName,
binding.pv.Name,
binding.pvc.Name,
newPV,
dirty,
err)
if err != nil {
b.revertAssumedPVs(newBindings)
return false, err
}
// TODO: can we assume everytime?
if dirty {
err = b.pvCache.Assume(newPV)
if err != nil {
b.revertAssumedPVs(newBindings)
return false, err
}
}
newBindings = append(newBindings, &bindingInfo{pv: newPV, pvc: binding.pvc})
}
// Assume PVCs
newProvisionedPVCs := []*v1.PersistentVolumeClaim{}
for _, claim := range claimsToProvision {
// The claims from method args can be pointing to watcher cache. We must not
// modify these, therefore create a copy.
claimClone := claim.DeepCopy()
metav1.SetMetaDataAnnotation(&claimClone.ObjectMeta, annSelectedNode, nodeName)
err = b.pvcCache.Assume(claimClone)
if err != nil {
b.revertAssumedPVs(newBindings)
b.revertAssumedPVCs(newProvisionedPVCs)
return
}
newProvisionedPVCs = append(newProvisionedPVCs, claimClone)
}
// Update cache with the assumed pvcs and pvs
// Even if length is zero, update the cache with an empty slice to indicate that no
// operations are needed
b.podBindingCache.UpdateBindings(assumedPod, nodeName, newBindings)
b.podBindingCache.UpdateProvisionedPVCs(assumedPod, nodeName, newProvisionedPVCs)
return
}
// BindPodVolumes gets the cached bindings and PVCs to provision in podBindingCache,
// makes the API update for those PVs/PVCs, and waits for the PVCs to be completely bound
// by the PV controller.
func (b *volumeBinder) BindPodVolumes(assumedPod *v1.Pod) (err error) {
podName := getPodName(assumedPod)
klog.V(4).Infof("BindPodVolumes for pod %q, node %q", podName, assumedPod.Spec.NodeName)
start := time.Now()
defer func() {
VolumeSchedulingStageLatency.WithLabelValues("bind").Observe(time.Since(start).Seconds())
if err != nil {
VolumeSchedulingStageFailed.WithLabelValues("bind").Inc()
}
}()
bindings := b.podBindingCache.GetBindings(assumedPod, assumedPod.Spec.NodeName)
claimsToProvision := b.podBindingCache.GetProvisionedPVCs(assumedPod, assumedPod.Spec.NodeName)
// Start API operations
err = b.bindAPIUpdate(podName, bindings, claimsToProvision)
if err != nil {
return err
}
return wait.Poll(time.Second, b.bindTimeout, func() (bool, error) {
// Get cached values every time in case the pod gets deleted
bindings = b.podBindingCache.GetBindings(assumedPod, assumedPod.Spec.NodeName)
claimsToProvision = b.podBindingCache.GetProvisionedPVCs(assumedPod, assumedPod.Spec.NodeName)
return b.checkBindings(assumedPod, bindings, claimsToProvision)
})
}
func getPodName(pod *v1.Pod) string {
return pod.Namespace + "/" + pod.Name
}
func getPVCName(pvc *v1.PersistentVolumeClaim) string {
return pvc.Namespace + "/" + pvc.Name
}
// bindAPIUpdate gets the cached bindings and PVCs to provision in podBindingCache
// and makes the API update for those PVs/PVCs.
func (b *volumeBinder) bindAPIUpdate(podName string, bindings []*bindingInfo, claimsToProvision []*v1.PersistentVolumeClaim) error {
if bindings == nil {
return fmt.Errorf("failed to get cached bindings for pod %q", podName)
}
if claimsToProvision == nil {
return fmt.Errorf("failed to get cached claims to provision for pod %q", podName)
}
lastProcessedBinding := 0
lastProcessedProvisioning := 0
defer func() {
// only revert assumed cached updates for volumes we haven't successfully bound
if lastProcessedBinding < len(bindings) {
b.revertAssumedPVs(bindings[lastProcessedBinding:])
}
// only revert assumed cached updates for claims we haven't updated,
if lastProcessedProvisioning < len(claimsToProvision) {
b.revertAssumedPVCs(claimsToProvision[lastProcessedProvisioning:])
}
}()
var (
binding *bindingInfo
claim *v1.PersistentVolumeClaim
)
// Do the actual prebinding. Let the PV controller take care of the rest
// There is no API rollback if the actual binding fails
for _, binding = range bindings {
klog.V(5).Infof("bindAPIUpdate: Pod %q, binding PV %q to PVC %q", podName, binding.pv.Name, binding.pvc.Name)
// TODO: does it hurt if we make an api call and nothing needs to be updated?
if _, err := b.ctrl.updateBindVolumeToClaim(binding.pv, binding.pvc, false); err != nil {
return err
}
lastProcessedBinding++
}
// Update claims objects to trigger volume provisioning. Let the PV controller take care of the rest
// PV controller is expect to signal back by removing related annotations if actual provisioning fails
for _, claim = range claimsToProvision {
klog.V(5).Infof("bindAPIUpdate: Pod %q, PVC %q", podName, getPVCName(claim))
if _, err := b.ctrl.kubeClient.CoreV1().PersistentVolumeClaims(claim.Namespace).Update(claim); err != nil {
return err
}
lastProcessedProvisioning++
}
return nil
}
// checkBindings runs through all the PVCs in the Pod and checks:
// * if the PVC is fully bound
// * if there are any conditions that require binding to fail and be retried
//
// It returns true when all of the Pod's PVCs are fully bound, and error if
// binding (and scheduling) needs to be retried
func (b *volumeBinder) checkBindings(pod *v1.Pod, bindings []*bindingInfo, claimsToProvision []*v1.PersistentVolumeClaim) (bool, error) {
podName := getPodName(pod)
if bindings == nil {
return false, fmt.Errorf("failed to get cached bindings for pod %q", podName)
}
if claimsToProvision == nil {
return false, fmt.Errorf("failed to get cached claims to provision for pod %q", podName)
}
for _, binding := range bindings {
// Check for any conditions that might require scheduling retry
// Check if pv still exists
pv, err := b.pvCache.GetPV(binding.pv.Name)
if err != nil || pv == nil {
return false, fmt.Errorf("failed to check pv binding: %v", err)
}
// Check if pv.ClaimRef got dropped by unbindVolume()
if pv.Spec.ClaimRef == nil || pv.Spec.ClaimRef.UID == "" {
return false, fmt.Errorf("ClaimRef got reset for pv %q", pv.Name)
}
// Check if pvc is fully bound
if isBound, _, err := b.isPVCBound(binding.pvc.Namespace, binding.pvc.Name); !isBound || err != nil {
return false, err
}
// TODO; what if pvc is bound to the wrong pv? It means our assume cache should be reverted.
// Or will pv controller cleanup the pv.ClaimRef?
}
for _, claim := range claimsToProvision {
bound, pvc, err := b.isPVCBound(claim.Namespace, claim.Name)
if err != nil || pvc == nil {
return false, fmt.Errorf("failed to check pvc binding: %v", err)
}
// Check if selectedNode annotation is still set
if pvc.Annotations == nil {
return false, fmt.Errorf("selectedNode annotation reset for PVC %q", pvc.Name)
}
selectedNode := pvc.Annotations[annSelectedNode]
if selectedNode != pod.Spec.NodeName {
return false, fmt.Errorf("selectedNode annotation value %q not set to scheduled node %q", selectedNode, pod.Spec.NodeName)
}
if !bound {
return false, nil
}
}
// All pvs and pvcs that we operated on are bound
klog.V(4).Infof("All PVCs for pod %q are bound", podName)
return true, nil
}
func (b *volumeBinder) isVolumeBound(namespace string, vol *v1.Volume) (bool, *v1.PersistentVolumeClaim, error) {
if vol.PersistentVolumeClaim == nil {
return true, nil, nil
}
pvcName := vol.PersistentVolumeClaim.ClaimName
return b.isPVCBound(namespace, pvcName)
}
func (b *volumeBinder) isPVCBound(namespace, pvcName string) (bool, *v1.PersistentVolumeClaim, error) {
claim := &v1.PersistentVolumeClaim{
ObjectMeta: metav1.ObjectMeta{
Name: pvcName,
Namespace: namespace,
},
}
pvcKey := getPVCName(claim)
pvc, err := b.pvcCache.GetPVC(pvcKey)
if err != nil || pvc == nil {
return false, nil, fmt.Errorf("error getting PVC %q: %v", pvcKey, err)
}
pvName := pvc.Spec.VolumeName
if pvName != "" {
if metav1.HasAnnotation(pvc.ObjectMeta, annBindCompleted) {
klog.V(5).Infof("PVC %q is fully bound to PV %q", pvcKey, pvName)
return true, pvc, nil
} else {
klog.V(5).Infof("PVC %q is not fully bound to PV %q", pvcKey, pvName)
return false, pvc, nil
}
}
klog.V(5).Infof("PVC %q is not bound", pvcKey)
return false, pvc, nil
}
// arePodVolumesBound returns true if all volumes are fully bound
func (b *volumeBinder) arePodVolumesBound(pod *v1.Pod) bool {
for _, vol := range pod.Spec.Volumes {
if isBound, _, _ := b.isVolumeBound(pod.Namespace, &vol); !isBound {
// Pod has at least one PVC that needs binding
return false
}
}
return true
}
// getPodVolumes returns a pod's PVCs separated into bound (including prebound), unbound with delayed binding,
// and unbound with immediate binding
func (b *volumeBinder) getPodVolumes(pod *v1.Pod) (boundClaims []*v1.PersistentVolumeClaim, unboundClaims []*bindingInfo, unboundClaimsImmediate []*v1.PersistentVolumeClaim, err error) {
boundClaims = []*v1.PersistentVolumeClaim{}
unboundClaimsImmediate = []*v1.PersistentVolumeClaim{}
unboundClaims = []*bindingInfo{}
for _, vol := range pod.Spec.Volumes {
volumeBound, pvc, err := b.isVolumeBound(pod.Namespace, &vol)
if err != nil {
return nil, nil, nil, err
}
if pvc == nil {
continue
}
if volumeBound {
boundClaims = append(boundClaims, pvc)
} else {
delayBinding, err := b.ctrl.shouldDelayBinding(pvc)
if err != nil {
return nil, nil, nil, err
}
// Prebound PVCs are treated as unbound immediate binding
if delayBinding && pvc.Spec.VolumeName == "" {
// Scheduler path
unboundClaims = append(unboundClaims, &bindingInfo{pvc: pvc})
} else {
// Immediate binding should have already been bound
unboundClaimsImmediate = append(unboundClaimsImmediate, pvc)
}
}
}
return boundClaims, unboundClaims, unboundClaimsImmediate, nil
}
func (b *volumeBinder) checkBoundClaims(claims []*v1.PersistentVolumeClaim, node *v1.Node, podName string) (bool, error) {
for _, pvc := range claims {
pvName := pvc.Spec.VolumeName
pv, err := b.pvCache.GetPV(pvName)
if err != nil {
return false, err
}
err = volumeutil.CheckNodeAffinity(pv, node.Labels)
if err != nil {
klog.V(4).Infof("PersistentVolume %q, Node %q mismatch for Pod %q: %v", pvName, node.Name, podName, err)
return false, nil
}
klog.V(5).Infof("PersistentVolume %q, Node %q matches for Pod %q", pvName, node.Name, podName)
}
klog.V(4).Infof("All bound volumes for Pod %q match with Node %q", podName, node.Name)
return true, nil
}
// findMatchingVolumes tries to find matching volumes for given claims,
// and return unbound claims for further provision.
func (b *volumeBinder) findMatchingVolumes(pod *v1.Pod, claimsToBind []*bindingInfo, node *v1.Node) (foundMatches bool, unboundClaims []*v1.PersistentVolumeClaim, err error) {
podName := getPodName(pod)
// Sort all the claims by increasing size request to get the smallest fits
sort.Sort(byPVCSize(claimsToBind))
chosenPVs := map[string]*v1.PersistentVolume{}
foundMatches = true
matchedClaims := []*bindingInfo{}
for _, bindingInfo := range claimsToBind {
// Get storage class name from each PVC
storageClassName := ""
storageClass := bindingInfo.pvc.Spec.StorageClassName
if storageClass != nil {
storageClassName = *storageClass
}
allPVs := b.pvCache.ListPVs(storageClassName)
pvcName := getPVCName(bindingInfo.pvc)
// Find a matching PV
bindingInfo.pv, err = findMatchingVolume(bindingInfo.pvc, allPVs, node, chosenPVs, true)
if err != nil {
return false, nil, err
}
if bindingInfo.pv == nil {
klog.V(4).Infof("No matching volumes for Pod %q, PVC %q on node %q", podName, pvcName, node.Name)
unboundClaims = append(unboundClaims, bindingInfo.pvc)
foundMatches = false
continue
}
// matching PV needs to be excluded so we don't select it again
chosenPVs[bindingInfo.pv.Name] = bindingInfo.pv
matchedClaims = append(matchedClaims, bindingInfo)
klog.V(5).Infof("Found matching PV %q for PVC %q on node %q for pod %q", bindingInfo.pv.Name, pvcName, node.Name, podName)
}
// Mark cache with all the matches for each PVC for this node
if len(matchedClaims) > 0 {
b.podBindingCache.UpdateBindings(pod, node.Name, matchedClaims)
}
if foundMatches {
klog.V(4).Infof("Found matching volumes for pod %q on node %q", podName, node.Name)
}
return
}
// checkVolumeProvisions checks given unbound claims (the claims have gone through func
// findMatchingVolumes, and do not have matching volumes for binding), and return true
// if all of the claims are eligible for dynamic provision.
func (b *volumeBinder) checkVolumeProvisions(pod *v1.Pod, claimsToProvision []*v1.PersistentVolumeClaim, node *v1.Node) (provisionSatisfied bool, err error) {
podName := getPodName(pod)
provisionedClaims := []*v1.PersistentVolumeClaim{}
for _, claim := range claimsToProvision {
pvcName := getPVCName(claim)
className := v1helper.GetPersistentVolumeClaimClass(claim)
if className == "" {
return false, fmt.Errorf("no class for claim %q", pvcName)
}
class, err := b.ctrl.classLister.Get(className)
if err != nil {
return false, fmt.Errorf("failed to find storage class %q", className)
}
provisioner := class.Provisioner
if provisioner == "" || provisioner == notSupportedProvisioner {
klog.V(4).Infof("storage class %q of claim %q does not support dynamic provisioning", className, pvcName)
return false, nil
}
// Check if the node can satisfy the topology requirement in the class
if !v1helper.MatchTopologySelectorTerms(class.AllowedTopologies, labels.Set(node.Labels)) {
klog.V(4).Infof("Node %q cannot satisfy provisioning topology requirements of claim %q", node.Name, pvcName)
return false, nil
}
// TODO: Check if capacity of the node domain in the storage class
// can satisfy resource requirement of given claim
provisionedClaims = append(provisionedClaims, claim)
}
klog.V(4).Infof("Provisioning for claims of pod %q that has no matching volumes on node %q ...", podName, node.Name)
// Mark cache with all the PVCs that need provisioning for this node
b.podBindingCache.UpdateProvisionedPVCs(pod, node.Name, provisionedClaims)
return true, nil
}
func (b *volumeBinder) revertAssumedPVs(bindings []*bindingInfo) {
for _, bindingInfo := range bindings {
b.pvCache.Restore(bindingInfo.pv.Name)
}
}
func (b *volumeBinder) revertAssumedPVCs(claims []*v1.PersistentVolumeClaim) {
for _, claim := range claims {
b.pvcCache.Restore(getPVCName(claim))
}
}
type bindingInfo struct {
// Claim that needs to be bound
pvc *v1.PersistentVolumeClaim
// Proposed PV to bind to this claim
pv *v1.PersistentVolume
}
type byPVCSize []*bindingInfo
func (a byPVCSize) Len() int {
return len(a)
}
func (a byPVCSize) Swap(i, j int) {
a[i], a[j] = a[j], a[i]
}
func (a byPVCSize) Less(i, j int) bool {
iSize := a[i].pvc.Spec.Resources.Requests[v1.ResourceStorage]
jSize := a[j].pvc.Spec.Resources.Requests[v1.ResourceStorage]
// return true if iSize is less than jSize
return iSize.Cmp(jSize) == -1
}