-
Notifications
You must be signed in to change notification settings - Fork 54
/
JSObject.h
1154 lines (972 loc) · 41 KB
/
JSObject.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_JSObject_h
#define vm_JSObject_h
#include "mozilla/MemoryReporting.h"
#include "gc/Barrier.h"
#include "js/Conversions.h"
#include "js/GCVector.h"
#include "js/HeapAPI.h"
#include "js/Wrapper.h"
#include "vm/BytecodeUtil.h"
#include "vm/Printer.h"
#include "vm/Shape.h"
#include "vm/StringType.h"
#include "vm/Xdr.h"
namespace JS {
struct ClassInfo;
} // namespace JS
namespace js {
using PropertyDescriptorVector = JS::GCVector<JS::PropertyDescriptor>;
class GCMarker;
class Nursery;
namespace gc {
class RelocationOverlay;
} // namespace gc
namespace jit {
class CacheIRCompiler;
}
/****************************************************************************/
class GlobalObject;
class NewObjectCache;
enum class IntegrityLevel { Sealed, Frozen };
// Forward declarations, required for later friend declarations.
bool PreventExtensions(JSContext* cx, JS::HandleObject obj,
JS::ObjectOpResult& result);
bool SetImmutablePrototype(JSContext* cx, JS::HandleObject obj,
bool* succeeded);
} /* namespace js */
/*
* [SMDOC] JSObject layout
*
* A JavaScript object.
*
* This is the base class for all objects exposed to JS script (as well as some
* objects that are only accessed indirectly). Subclasses add additional fields
* and execution semantics. The runtime class of an arbitrary JSObject is
* identified by JSObject::getClass().
*
* The members common to all objects are as follows:
*
* - The |group_| member stores the group of the object, which contains its
* prototype object, its class and the possible types of its properties.
*
* - The |shape_| member stores the current 'shape' of the object, which
* describes the current layout and set of property keys of the object. The
* |shape_| field must be non-null.
*
* NOTE: shape()->getObjectClass() must equal getClass().
*
* NOTE: The JIT may check |shape_| pointer value without ever inspecting
* |group_| or the class.
*
* NOTE: Some operations can change the contents of an object (including class)
* in-place so avoid assuming an object with same pointer has same class
* as before.
* - JSObject::swap()
*/
class JSObject : public js::gc::Cell {
protected:
js::GCPtrObjectGroup group_;
js::GCPtrShape shape_;
private:
friend class js::DictionaryShapeLink;
friend class js::GCMarker;
friend class js::NewObjectCache;
friend class js::Nursery;
friend class js::gc::RelocationOverlay;
friend bool js::PreventExtensions(JSContext* cx, JS::HandleObject obj,
JS::ObjectOpResult& result);
friend bool js::SetImmutablePrototype(JSContext* cx, JS::HandleObject obj,
bool* succeeded);
// Make a new group to use for a singleton object.
static js::ObjectGroup* makeLazyGroup(JSContext* cx, js::HandleObject obj);
public:
bool isNative() const { return getClass()->isNative(); }
const JSClass* getClass() const { return group_->clasp(); }
bool hasClass(const JSClass* c) const { return getClass() == c; }
js::LookupPropertyOp getOpsLookupProperty() const {
return getClass()->getOpsLookupProperty();
}
js::DefinePropertyOp getOpsDefineProperty() const {
return getClass()->getOpsDefineProperty();
}
js::HasPropertyOp getOpsHasProperty() const {
return getClass()->getOpsHasProperty();
}
js::GetPropertyOp getOpsGetProperty() const {
return getClass()->getOpsGetProperty();
}
js::SetPropertyOp getOpsSetProperty() const {
return getClass()->getOpsSetProperty();
}
js::GetOwnPropertyOp getOpsGetOwnPropertyDescriptor() const {
return getClass()->getOpsGetOwnPropertyDescriptor();
}
js::DeletePropertyOp getOpsDeleteProperty() const {
return getClass()->getOpsDeleteProperty();
}
js::GetElementsOp getOpsGetElements() const {
return getClass()->getOpsGetElements();
}
JSFunToStringOp getOpsFunToString() const {
return getClass()->getOpsFunToString();
}
js::ObjectGroup* group() const {
MOZ_ASSERT(!hasLazyGroup());
return groupRaw();
}
js::ObjectGroup* groupRaw() const { return group_; }
void initGroup(js::ObjectGroup* group) { group_.init(group); }
/*
* Whether this is the only object which has its specified group. This
* object will have its group constructed lazily as needed by analysis.
*/
bool isSingleton() const { return group_->singleton(); }
/*
* Whether the object's group has not been constructed yet. If an object
* might have a lazy group, use getGroup() below, otherwise group().
*/
bool hasLazyGroup() const { return group_->lazy(); }
JS::Compartment* compartment() const { return group_->compartment(); }
JS::Compartment* maybeCompartment() const { return compartment(); }
void initShape(js::Shape* shape) {
// Note: JSObject::zone() uses the group and we require it to be
// initialized before the shape.
MOZ_ASSERT(zone() == shape->zone());
shape_.init(shape);
}
void setShape(js::Shape* shape) {
MOZ_ASSERT(zone() == shape->zone());
shape_ = shape;
}
js::Shape* shape() const { return shape_; }
void traceShape(JSTracer* trc) { TraceEdge(trc, shapePtr(), "shape"); }
static JSObject* fromShapeFieldPointer(uintptr_t p) {
return reinterpret_cast<JSObject*>(p - JSObject::offsetOfShape());
}
enum GenerateShape { GENERATE_NONE, GENERATE_SHAPE };
static bool setFlags(JSContext* cx, JS::HandleObject obj,
js::BaseShape::Flag flags,
GenerateShape generateShape = GENERATE_NONE);
inline bool hasAllFlags(js::BaseShape::Flag flags) const;
// An object is a delegate if it is on another object's prototype or
// environment chain. Optimization heuristics will make use of this flag.
// See: ReshapeForProtoMutation, ReshapeForShadowedProp
inline bool isDelegate() const;
static bool setDelegate(JSContext* cx, JS::HandleObject obj) {
return setFlags(cx, obj, js::BaseShape::DELEGATE, GENERATE_SHAPE);
}
inline bool isBoundFunction() const;
// A "qualified" varobj is the object on which "qualified" variable
// declarations (i.e., those defined with "var") are kept.
//
// Conceptually, when a var binding is defined, it is defined on the
// innermost qualified varobj on the scope chain.
//
// Function scopes (CallObjects) are qualified varobjs, and there can be
// no other qualified varobj that is more inner for var bindings in that
// function. As such, all references to local var bindings in a function
// may be statically bound to the function scope. This is subject to
// further optimization. Unaliased bindings inside functions reside
// entirely on the frame, not in CallObjects.
//
// Global scopes are also qualified varobjs. It is possible to statically
// know, for a given script, that are no more inner qualified varobjs, so
// free variable references can be statically bound to the global.
//
// Finally, there are non-syntactic qualified varobjs used by embedders
// (e.g., Gecko and XPConnect), as they often wish to run scripts under a
// scope that captures var bindings.
inline bool isQualifiedVarObj() const;
static bool setQualifiedVarObj(JSContext* cx, JS::HandleObject obj) {
return setFlags(cx, obj, js::BaseShape::QUALIFIED_VAROBJ);
}
// An "unqualified" varobj is the object on which "unqualified"
// assignments (i.e., bareword assignments for which the LHS does not
// exist on the scope chain) are kept.
inline bool isUnqualifiedVarObj() const;
// Objects with an uncacheable proto can have their prototype mutated
// without inducing a shape change on the object. JIT inline caches should
// do an explicit group guard to guard against this. Singletons always
// generate a new shape when their prototype changes, regardless of this
// hasUncacheableProto flag.
inline bool hasUncacheableProto() const;
static bool setUncacheableProto(JSContext* cx, JS::HandleObject obj) {
MOZ_ASSERT(obj->hasStaticPrototype(),
"uncacheability as a concept is only applicable to static "
"(not dynamically-computed) prototypes");
return setFlags(cx, obj, js::BaseShape::UNCACHEABLE_PROTO, GENERATE_SHAPE);
}
/*
* Whether there may be "interesting symbol" properties on this object. An
* interesting symbol is a symbol for which symbol->isInterestingSymbol()
* returns true.
*/
MOZ_ALWAYS_INLINE bool maybeHasInterestingSymbolProperty() const;
/*
* If this object was instantiated with `new Ctor`, return the constructor's
* display atom. Otherwise, return nullptr.
*/
static bool constructorDisplayAtom(JSContext* cx, js::HandleObject obj,
js::MutableHandleAtom name);
/*
* The same as constructorDisplayAtom above, however if this object has a
* lazy group, nullptr is returned. This allows for use in situations that
* cannot GC and where having some information, even if it is inconsistently
* available, is better than no information.
*/
JSAtom* maybeConstructorDisplayAtom() const;
/* GC support. */
void traceChildren(JSTracer* trc);
void fixupAfterMovingGC();
static const JS::TraceKind TraceKind = JS::TraceKind::Object;
static const size_t MaxTagBits = 3;
MOZ_ALWAYS_INLINE JS::Zone* zone() const { return group_->zone(); }
MOZ_ALWAYS_INLINE JS::shadow::Zone* shadowZone() const {
return JS::shadow::Zone::from(zone());
}
MOZ_ALWAYS_INLINE JS::Zone* zoneFromAnyThread() const {
return group_->zoneFromAnyThread();
}
MOZ_ALWAYS_INLINE JS::shadow::Zone* shadowZoneFromAnyThread() const {
return JS::shadow::Zone::from(zoneFromAnyThread());
}
static MOZ_ALWAYS_INLINE void readBarrier(JSObject* obj);
static MOZ_ALWAYS_INLINE void writeBarrierPre(JSObject* obj);
static MOZ_ALWAYS_INLINE void writeBarrierPost(void* cellp, JSObject* prev,
JSObject* next);
/* Return the allocKind we would use if we were to tenure this object. */
js::gc::AllocKind allocKindForTenure(const js::Nursery& nursery) const;
size_t tenuredSizeOfThis() const {
MOZ_ASSERT(isTenured());
return js::gc::Arena::thingSize(asTenured().getAllocKind());
}
void addSizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf,
JS::ClassInfo* info);
// We can only use addSizeOfExcludingThis on tenured objects: it assumes it
// can apply mallocSizeOf to bits and pieces of the object, whereas objects
// in the nursery may have those bits and pieces allocated in the nursery
// along with them, and are not each their own malloc blocks.
size_t sizeOfIncludingThisInNursery() const;
// Marks this object as having a singleton group, and leave the group lazy.
// Constructs a new, unique shape for the object. This should only be
// called for an object that was just created.
static inline bool setSingleton(JSContext* cx, js::HandleObject obj);
// Change an existing object to have a singleton group.
static bool changeToSingleton(JSContext* cx, js::HandleObject obj);
static inline js::ObjectGroup* getGroup(JSContext* cx, js::HandleObject obj);
const js::GCPtrObjectGroup& groupFromGC() const {
/* Direct field access for use by GC. */
return group_;
}
#ifdef DEBUG
static void debugCheckNewObject(js::ObjectGroup* group, js::Shape* shape,
js::gc::AllocKind allocKind,
js::gc::InitialHeap heap);
#else
static void debugCheckNewObject(js::ObjectGroup* group, js::Shape* shape,
js::gc::AllocKind allocKind,
js::gc::InitialHeap heap) {}
#endif
/*
* We permit proxies to dynamically compute their prototype if desired.
* (Not all proxies will so desire: in particular, most DOM proxies can
* track their prototype with a single, nullable JSObject*.) If a proxy
* so desires, we store (JSObject*)0x1 in the proto field of the object's
* group.
*
* We offer three ways to get an object's prototype:
*
* 1. obj->staticPrototype() returns the prototype, but it asserts if obj
* is a proxy, and the proxy has opted to dynamically compute its
* prototype using a getPrototype() handler.
* 2. obj->taggedProto() returns a TaggedProto, which can be tested to
* check if the proto is an object, nullptr, or lazily computed.
* 3. js::GetPrototype(cx, obj, &proto) computes the proto of an object.
* If obj is a proxy with dynamically-computed prototype, this code may
* perform arbitrary behavior (allocation, GC, run JS) while computing
* the proto.
*/
js::TaggedProto taggedProto() const { return group_->proto(); }
bool uninlinedIsProxy() const;
JSObject* staticPrototype() const {
MOZ_ASSERT(hasStaticPrototype());
return taggedProto().toObjectOrNull();
}
// Normal objects and a subset of proxies have an uninteresting, static
// (albeit perhaps mutable) [[Prototype]]. For such objects the
// [[Prototype]] is just a value returned when needed for accesses, or
// modified in response to requests. These objects store the
// [[Prototype]] directly within |obj->group_|.
bool hasStaticPrototype() const { return !hasDynamicPrototype(); }
// The remaining proxies have a [[Prototype]] requiring dynamic computation
// for every access, going through the proxy handler {get,set}Prototype and
// setImmutablePrototype methods. (Wrappers particularly use this to keep
// the wrapper/wrappee [[Prototype]]s consistent.)
bool hasDynamicPrototype() const {
bool dynamic = taggedProto().isDynamic();
MOZ_ASSERT_IF(dynamic, uninlinedIsProxy());
MOZ_ASSERT_IF(dynamic, !isNative());
return dynamic;
}
// True iff this object's [[Prototype]] is immutable. Must be called only
// on objects with a static [[Prototype]]!
inline bool staticPrototypeIsImmutable() const;
inline void setGroup(js::ObjectGroup* group);
/*
* Mark an object that has been iterated over and is a singleton. We need
* to recover this information in the object's type information after it
* is purged on GC.
*/
inline bool isIteratedSingleton() const;
static bool setIteratedSingleton(JSContext* cx, JS::HandleObject obj) {
return setFlags(cx, obj, js::BaseShape::ITERATED_SINGLETON);
}
/*
* Mark an object as requiring its default 'new' type to have unknown
* properties.
*/
inline bool isNewGroupUnknown() const;
static bool setNewGroupUnknown(JSContext* cx, js::ObjectGroupRealm& realm,
const JSClass* clasp, JS::HandleObject obj);
/* Set a new prototype for an object with a singleton type. */
static bool splicePrototype(JSContext* cx, js::HandleObject obj,
js::Handle<js::TaggedProto> proto);
/*
* Environment chains.
*
* The environment chain of an object is the link in the search path when
* a script does a name lookup on an environment object. For JS internal
* environment objects --- Call, LexicalEnvironment, and WithEnvironment
* --- the chain is stored in the first fixed slot of the object. For
* other environment objects, the chain goes directly to the global.
*
* In code which is not marked hasNonSyntacticScope, environment chains
* can contain only syntactic environment objects (see
* IsSyntacticEnvironment) with a global object at the root as the
* environment of the outermost non-function script. In
* hasNonSyntacticScope code, the environment of the outermost
* non-function script might not be a global object, and can have a mix of
* other objects above it before the global object is reached.
*/
/*
* Get the enclosing environment of an object. When called on a
* non-EnvironmentObject, this will just be the global (the name
* "enclosing environment" still applies in this situation because
* non-EnvironmentObjects can be on the environment chain).
*/
inline JSObject* enclosingEnvironment() const;
// Cross-compartment wrappers are not associated with a single realm/global,
// so these methods assert the object is not a CCW.
inline js::GlobalObject& nonCCWGlobal() const;
JS::Realm* nonCCWRealm() const {
MOZ_ASSERT(!js::UninlinedIsCrossCompartmentWrapper(this));
return group_->realm();
}
bool hasSameRealmAs(JSContext* cx) const;
// Returns the object's realm even if the object is a CCW (be careful, in
// this case the realm is not very meaningful because wrappers are shared by
// all realms in the compartment).
JS::Realm* maybeCCWRealm() const { return group_->realm(); }
/*
* ES5 meta-object properties and operations.
*/
public:
// Indicates whether a non-proxy is extensible. Don't call on proxies!
// This method really shouldn't exist -- but there are a few internal
// places that want it (JITs and the like), and it'd be a pain to mark them
// all as friends.
inline bool nonProxyIsExtensible() const;
bool uninlinedNonProxyIsExtensible() const;
public:
/*
* Back to generic stuff.
*/
MOZ_ALWAYS_INLINE bool isCallable() const;
MOZ_ALWAYS_INLINE bool isConstructor() const;
MOZ_ALWAYS_INLINE JSNative callHook() const;
MOZ_ALWAYS_INLINE JSNative constructHook() const;
MOZ_ALWAYS_INLINE void finalize(JSFreeOp* fop);
public:
static bool nonNativeSetProperty(JSContext* cx, js::HandleObject obj,
js::HandleId id, js::HandleValue v,
js::HandleValue receiver,
JS::ObjectOpResult& result);
static bool nonNativeSetElement(JSContext* cx, js::HandleObject obj,
uint32_t index, js::HandleValue v,
js::HandleValue receiver,
JS::ObjectOpResult& result);
static void swap(JSContext* cx, JS::HandleObject a, JS::HandleObject b);
private:
void fixDictionaryShapeAfterSwap();
public:
/*
* In addition to the generic object interface provided by JSObject,
* specific types of objects may provide additional operations. To access,
* these addition operations, callers should use the pattern:
*
* if (obj.is<XObject>()) {
* XObject& x = obj.as<XObject>();
* x.foo();
* }
*
* These XObject classes form a hierarchy. For example, for a cloned block
* object, the following predicates are true: is<ClonedBlockObject>,
* is<NestedScopeObject> and is<ScopeObject>. Each of these has a
* respective class that derives and adds operations.
*
* A class XObject is defined in a vm/XObject{.h, .cpp, -inl.h} file
* triplet (along with any class YObject that derives XObject).
*
* Note that X represents a low-level representation and does not query the
* [[Class]] property of object defined by the spec (for this, see
* js::GetBuiltinClass).
*/
template <class T>
inline bool is() const {
return getClass() == &T::class_;
}
template <class T>
T& as() {
MOZ_ASSERT(this->is<T>());
return *static_cast<T*>(this);
}
template <class T>
const T& as() const {
MOZ_ASSERT(this->is<T>());
return *static_cast<const T*>(this);
}
/*
* True if either this or CheckedUnwrap(this) is an object of class T.
* (Only two objects are checked, regardless of how many wrappers there
* are.)
*
* /!\ Note: This can be true at one point, but false later for the same
* object, thanks to js::NukeCrossCompartmentWrapper and friends.
*/
template <class T>
bool canUnwrapAs();
/*
* Unwrap and downcast to class T.
*
* Precondition: `this->canUnwrapAs<T>()`. Note that it's not enough to
* have checked this at some point in the past; if there's any doubt as to
* whether js::Nuke* could have been called in the meantime, check again.
*/
template <class T>
T& unwrapAs();
/*
* Tries to unwrap and downcast to class T. Returns nullptr if (and only if) a
* wrapper with a security policy is involved. Crashes in all builds if the
* (possibly unwrapped) object is not of class T (for example because it's a
* dead wrapper).
*/
template <class T>
T* maybeUnwrapAs();
/*
* Tries to unwrap and downcast to class T. Returns nullptr if a wrapper with
* a security policy is involved or if the object does not have class T.
*/
template <class T>
T* maybeUnwrapIf();
#if defined(DEBUG) || defined(JS_JITSPEW)
void dump(js::GenericPrinter& fp) const;
void dump() const;
#endif
// Maximum size in bytes of a JSObject.
static const size_t MAX_BYTE_SIZE =
4 * sizeof(void*) + 16 * sizeof(JS::Value);
protected:
// Used for GC tracing and Shape::listp
MOZ_ALWAYS_INLINE js::GCPtrShape* shapePtr() { return &(this->shape_); }
// JIT Accessors.
//
// To help avoid writing Spectre-unsafe code, we only allow MacroAssembler
// to call the method below.
friend class js::jit::MacroAssembler;
friend class js::jit::CacheIRCompiler;
static constexpr size_t offsetOfGroup() { return offsetof(JSObject, group_); }
static constexpr size_t offsetOfShape() { return offsetof(JSObject, shape_); }
private:
JSObject() = delete;
JSObject(const JSObject& other) = delete;
void operator=(const JSObject& other) = delete;
};
template <>
inline bool JSObject::is<JSObject>() const {
return true;
}
template <typename Wrapper>
template <typename U>
MOZ_ALWAYS_INLINE JS::Handle<U*> js::RootedBase<JSObject*, Wrapper>::as()
const {
const Wrapper& self = *static_cast<const Wrapper*>(this);
MOZ_ASSERT(self->template is<U>());
return Handle<U*>::fromMarkedLocation(
reinterpret_cast<U* const*>(self.address()));
}
template <typename Wrapper>
template <class U>
MOZ_ALWAYS_INLINE JS::Handle<U*> js::HandleBase<JSObject*, Wrapper>::as()
const {
const JS::Handle<JSObject*>& self =
*static_cast<const JS::Handle<JSObject*>*>(this);
MOZ_ASSERT(self->template is<U>());
return Handle<U*>::fromMarkedLocation(
reinterpret_cast<U* const*>(self.address()));
}
template <class T>
bool JSObject::canUnwrapAs() {
static_assert(!std::is_convertible<T*, js::Wrapper*>::value,
"T can't be a Wrapper type; this function discards wrappers");
if (is<T>()) {
return true;
}
JSObject* obj = js::CheckedUnwrapStatic(this);
return obj && obj->is<T>();
}
template <class T>
T& JSObject::unwrapAs() {
static_assert(!std::is_convertible<T*, js::Wrapper*>::value,
"T can't be a Wrapper type; this function discards wrappers");
if (is<T>()) {
return as<T>();
}
// Since the caller just called canUnwrapAs<T>(), which does a
// CheckedUnwrap, this does not need to repeat the security check.
JSObject* unwrapped = js::UncheckedUnwrap(this);
MOZ_ASSERT(js::CheckedUnwrapStatic(this) == unwrapped,
"check that the security check we skipped really is redundant");
return unwrapped->as<T>();
}
template <class T>
T* JSObject::maybeUnwrapAs() {
static_assert(!std::is_convertible<T*, js::Wrapper*>::value,
"T can't be a Wrapper type; this function discards wrappers");
if (is<T>()) {
return &as<T>();
}
JSObject* unwrapped = js::CheckedUnwrapStatic(this);
if (!unwrapped) {
return nullptr;
}
if (MOZ_LIKELY(unwrapped->is<T>())) {
return &unwrapped->as<T>();
}
MOZ_CRASH("Invalid object. Dead wrapper?");
}
template <class T>
T* JSObject::maybeUnwrapIf() {
static_assert(!std::is_convertible<T*, js::Wrapper*>::value,
"T can't be a Wrapper type; this function discards wrappers");
if (is<T>()) {
return &as<T>();
}
JSObject* unwrapped = js::CheckedUnwrapStatic(this);
return (unwrapped && unwrapped->is<T>()) ? &unwrapped->as<T>() : nullptr;
}
/*
* The only sensible way to compare JSObject with == is by identity. We use
* const& instead of * as a syntactic way to assert non-null. This leads to an
* abundance of address-of operators to identity. Hence this overload.
*/
static MOZ_ALWAYS_INLINE bool operator==(const JSObject& lhs,
const JSObject& rhs) {
return &lhs == &rhs;
}
static MOZ_ALWAYS_INLINE bool operator!=(const JSObject& lhs,
const JSObject& rhs) {
return &lhs != &rhs;
}
// Size of the various GC thing allocation sizes used for objects.
struct JSObject_Slots0 : JSObject {
void* data[2];
};
struct JSObject_Slots2 : JSObject {
void* data[2];
js::Value fslots[2];
};
struct JSObject_Slots4 : JSObject {
void* data[2];
js::Value fslots[4];
};
struct JSObject_Slots8 : JSObject {
void* data[2];
js::Value fslots[8];
};
struct JSObject_Slots12 : JSObject {
void* data[2];
js::Value fslots[12];
};
struct JSObject_Slots16 : JSObject {
void* data[2];
js::Value fslots[16];
};
/* static */ MOZ_ALWAYS_INLINE void JSObject::readBarrier(JSObject* obj) {
if (obj && obj->isTenured()) {
obj->asTenured().readBarrier(&obj->asTenured());
}
}
/* static */ MOZ_ALWAYS_INLINE void JSObject::writeBarrierPre(JSObject* obj) {
if (obj && obj->isTenured()) {
obj->asTenured().writeBarrierPre(&obj->asTenured());
}
}
/* static */ MOZ_ALWAYS_INLINE void JSObject::writeBarrierPost(void* cellp,
JSObject* prev,
JSObject* next) {
MOZ_ASSERT(cellp);
// If the target needs an entry, add it.
js::gc::StoreBuffer* buffer;
if (next && (buffer = next->storeBuffer())) {
// If we know that the prev has already inserted an entry, we can skip
// doing the lookup to add the new entry. Note that we cannot safely
// assert the presence of the entry because it may have been added
// via a different store buffer.
if (prev && prev->storeBuffer()) {
return;
}
buffer->putCell(static_cast<JSObject**>(cellp));
return;
}
// Remove the prev entry if the new value does not need it. There will only
// be a prev entry if the prev value was in the nursery.
if (prev && (buffer = prev->storeBuffer())) {
buffer->unputCell(static_cast<JSObject**>(cellp));
}
}
namespace js {
// Returns true if object may possibly use JSObject::swap. The JITs may better
// optimize objects that can never swap (and thus change their type).
//
// If ObjectMayBeSwapped is false, it is safe to guard on pointer identity to
// test immutable features of the object. For example, the target of a
// JSFunction will not change. Note: the object can still be moved by GC.
extern bool ObjectMayBeSwapped(const JSObject* obj);
/**
* This enum is used to select whether the defined functions should be marked as
* builtin native instrinsics for self-hosted code.
*/
enum DefineAsIntrinsic { NotIntrinsic, AsIntrinsic };
extern bool DefineFunctions(JSContext* cx, HandleObject obj,
const JSFunctionSpec* fs,
DefineAsIntrinsic intrinsic);
/* ES6 draft rev 36 (2015 March 17) 7.1.1 ToPrimitive(vp[, preferredType]) */
extern bool ToPrimitiveSlow(JSContext* cx, JSType hint, MutableHandleValue vp);
inline bool ToPrimitive(JSContext* cx, MutableHandleValue vp) {
if (vp.isPrimitive()) {
return true;
}
return ToPrimitiveSlow(cx, JSTYPE_UNDEFINED, vp);
}
inline bool ToPrimitive(JSContext* cx, JSType preferredType,
MutableHandleValue vp) {
if (vp.isPrimitive()) {
return true;
}
return ToPrimitiveSlow(cx, preferredType, vp);
}
/*
* toString support. (This isn't called GetClassName because there's a macro in
* <windows.h> with that name.)
*/
MOZ_ALWAYS_INLINE const char* GetObjectClassName(JSContext* cx,
HandleObject obj);
/*
* Prepare a |this| value to be returned to script. This includes replacing
* Windows with their corresponding WindowProxy.
*
* Helpers are also provided to first extract the |this| from specific
* types of environment.
*/
Value GetThisValue(JSObject* obj);
Value GetThisValueOfLexical(JSObject* env);
Value GetThisValueOfWith(JSObject* env);
} /* namespace js */
namespace js {
bool NewObjectWithTaggedProtoIsCachable(JSContext* cx,
Handle<TaggedProto> proto,
NewObjectKind newKind,
const JSClass* clasp);
// ES6 9.1.15 GetPrototypeFromConstructor.
extern bool GetPrototypeFromConstructor(JSContext* cx,
js::HandleObject newTarget,
JSProtoKey intrinsicDefaultProto,
js::MutableHandleObject proto);
// https://tc39.github.io/ecma262/#sec-getprototypefromconstructor
//
// Determine which [[Prototype]] to use when creating a new object using a
// builtin constructor.
//
// This sets `proto` to `nullptr` to mean "the builtin prototype object for
// this type in the current realm", the common case.
//
// We could set it to `cx->global()->getOrCreatePrototype(protoKey)`, but
// nullptr gets a fast path in e.g. js::NewObjectWithClassProtoCommon.
//
// intrinsicDefaultProto can be JSProto_Null if there's no appropriate
// JSProtoKey enum; but we then select the wrong prototype object in a
// multi-realm corner case (see bug 1515167).
MOZ_ALWAYS_INLINE bool GetPrototypeFromBuiltinConstructor(
JSContext* cx, const CallArgs& args, JSProtoKey intrinsicDefaultProto,
js::MutableHandleObject proto) {
// We can skip the "prototype" lookup in the two common cases:
// 1. Builtin constructor called without `new`, as in `obj = Object();`.
// 2. Builtin constructor called with `new`, as in `obj = new Object();`.
//
// Cases that can't take the fast path include `new MySubclassOfObject()`,
// `new otherGlobal.Object()`, and `Reflect.construct(Object, [], Date)`.
if (!args.isConstructing() ||
&args.newTarget().toObject() == &args.callee()) {
MOZ_ASSERT(args.callee().hasSameRealmAs(cx));
proto.set(nullptr);
return true;
}
// We're calling this constructor from a derived class, retrieve the
// actual prototype from newTarget.
RootedObject newTarget(cx, &args.newTarget().toObject());
return GetPrototypeFromConstructor(cx, newTarget, intrinsicDefaultProto,
proto);
}
// Specialized call for constructing |this| with a known function callee,
// and a known prototype.
extern JSObject* CreateThisForFunctionWithProto(
JSContext* cx, js::HandleFunction callee, HandleObject newTarget,
HandleObject proto, NewObjectKind newKind = GenericObject);
// Specialized call for constructing |this| with a known function callee.
extern JSObject* CreateThisForFunction(JSContext* cx, js::HandleFunction callee,
js::HandleObject newTarget,
NewObjectKind newKind);
// Generic call for constructing |this|.
extern JSObject* CreateThis(JSContext* cx, const JSClass* clasp,
js::HandleObject callee);
extern JSObject* CloneObject(JSContext* cx, HandleObject obj,
Handle<js::TaggedProto> proto);
extern JSObject* DeepCloneObjectLiteral(JSContext* cx, HandleObject obj,
NewObjectKind newKind = GenericObject);
/* ES6 draft rev 32 (2015 Feb 2) 6.2.4.5 ToPropertyDescriptor(Obj) */
bool ToPropertyDescriptor(JSContext* cx, HandleValue descval,
bool checkAccessors,
MutableHandle<JS::PropertyDescriptor> desc);
/*
* Throw a TypeError if desc.getterObject() or setterObject() is not
* callable. This performs exactly the checks omitted by ToPropertyDescriptor
* when checkAccessors is false.
*/
Result<> CheckPropertyDescriptorAccessors(JSContext* cx,
Handle<JS::PropertyDescriptor> desc);
void CompletePropertyDescriptor(MutableHandle<JS::PropertyDescriptor> desc);
/*
* Read property descriptors from props, as for Object.defineProperties. See
* ES5 15.2.3.7 steps 3-5.
*/
extern bool ReadPropertyDescriptors(
JSContext* cx, HandleObject props, bool checkAccessors,
MutableHandleIdVector ids, MutableHandle<PropertyDescriptorVector> descs);
/* Read the name using a dynamic lookup on the scopeChain. */
extern bool LookupName(JSContext* cx, HandlePropertyName name,
HandleObject scopeChain, MutableHandleObject objp,
MutableHandleObject pobjp,
MutableHandle<PropertyResult> propp);
extern bool LookupNameNoGC(JSContext* cx, PropertyName* name,
JSObject* scopeChain, JSObject** objp,
JSObject** pobjp, PropertyResult* propp);
/*
* Like LookupName except returns the global object if 'name' is not found in
* any preceding scope.
*
* Additionally, pobjp and propp are not needed by callers so they are not
* returned.
*/
extern bool LookupNameWithGlobalDefault(JSContext* cx, HandlePropertyName name,
HandleObject scopeChain,
MutableHandleObject objp);
/*
* Like LookupName except returns the unqualified var object if 'name' is not
* found in any preceding scope. Normally the unqualified var object is the
* global. If the value for the name in the looked-up scope is an
* uninitialized lexical, an UninitializedLexicalObject is returned.
*
* Additionally, pobjp is not needed by callers so it is not returned.
*/
extern bool LookupNameUnqualified(JSContext* cx, HandlePropertyName name,
HandleObject scopeChain,
MutableHandleObject objp);
} // namespace js
namespace js {
bool LookupPropertyPure(JSContext* cx, JSObject* obj, jsid id, JSObject** objp,
PropertyResult* propp);
bool LookupOwnPropertyPure(JSContext* cx, JSObject* obj, jsid id,
PropertyResult* propp,
bool* isTypedArrayOutOfRange = nullptr);
bool GetPropertyPure(JSContext* cx, JSObject* obj, jsid id, Value* vp);
bool GetOwnPropertyPure(JSContext* cx, JSObject* obj, jsid id, Value* vp,
bool* found);
bool GetGetterPure(JSContext* cx, JSObject* obj, jsid id, JSFunction** fp);
bool GetOwnGetterPure(JSContext* cx, JSObject* obj, jsid id, JSFunction** fp);
bool GetOwnNativeGetterPure(JSContext* cx, JSObject* obj, jsid id,
JSNative* native);
bool HasOwnDataPropertyPure(JSContext* cx, JSObject* obj, jsid id,
bool* result);
bool GetOwnPropertyDescriptor(JSContext* cx, HandleObject obj, HandleId id,
MutableHandle<JS::PropertyDescriptor> desc);
/*
* Like JS::FromPropertyDescriptor, but ignore desc.object() and always set vp
* to an object on success.
*
* Use JS::FromPropertyDescriptor for getOwnPropertyDescriptor, since
* desc.object() is used to indicate whether a result was found or not. Use
* this instead for defineProperty: it would be senseless to define a "missing"
* property.
*/
extern bool FromPropertyDescriptorToObject(JSContext* cx,
Handle<JS::PropertyDescriptor> desc,
MutableHandleValue vp);
// obj is a JSObject*, but we root it immediately up front. We do it
// that way because we need a Rooted temporary in this method anyway.
extern bool IsPrototypeOf(JSContext* cx, HandleObject protoObj, JSObject* obj,
bool* result);
/* Wrap boolean, number or string as Boolean, Number or String object. */
extern JSObject* PrimitiveToObject(JSContext* cx, const Value& v);
} /* namespace js */
namespace js {
JSObject* ToObjectSlowForPropertyAccess(JSContext* cx, JS::HandleValue val,
int valIndex, HandleId key);
JSObject* ToObjectSlowForPropertyAccess(JSContext* cx, JS::HandleValue val,
int valIndex, HandlePropertyName key);