-
Notifications
You must be signed in to change notification settings - Fork 0
/
s5_test.py
382 lines (292 loc) · 12.9 KB
/
s5_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python
# coding: utf-8
'''
Test action recognition on
(1) a video, (2) a folder of images, (3) or web camera.
Input:
model: model/trained_classifier.pickle
Output:
result video: output/${video_name}/video.avi
result skeleton: output/${video_name}/skeleton_res/XXXXX.txt
visualization by cv2.imshow() in img_displayer
'''
'''
Example of usage:
(1) Test on video file:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type video \
--data_path data_test/exercise.avi \
--output_folder output
(2) Test on a folder of images:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type folder \
--data_path data_test/apple/ \
--output_folder output
(3) Test on web camera:
python src/s5_test.py \
--model_path model/trained_classifier.pickle \
--data_type webcam \
--data_path 0 \
--output_folder output
'''
import numpy as np
import cv2
import argparse
if True: # Include project path
import sys
import os
ROOT = os.path.dirname(os.path.abspath(__file__))+"/../"
CURR_PATH = os.path.dirname(os.path.abspath(__file__))+"/"
sys.path.append(ROOT)
import utils.lib_images_io as lib_images_io
import utils.lib_plot as lib_plot
import utils.lib_commons as lib_commons
from utils.lib_openpose import SkeletonDetector
from utils.lib_tracker import Tracker
from utils.lib_tracker import Tracker
from utils.lib_classifier import ClassifierOnlineTest
from utils.lib_classifier import * # Import all sklearn related libraries
def par(path): # Pre-Append ROOT to the path if it's not absolute
return ROOT + path if (path and path[0] != "/") else path
# -- Command-line input
def get_command_line_arguments():
def parse_args():
parser = argparse.ArgumentParser(
description="Test action recognition on \n"
"(1) a video, (2) a folder of images, (3) or web camera.")
parser.add_argument("-m", "--model_path", required=False,
default='model/trained_classifier.pickle')
parser.add_argument("-t", "--data_type", required=False, default='webcam',
choices=["video", "folder", "webcam"])
parser.add_argument("-p", "--data_path", required=False, default="",
help="path to a video file, or images folder, or webcam. \n"
"For video and folder, the path should be "
"absolute or relative to this project's root. "
"For webcam, either input an index or device name. ")
parser.add_argument("-o", "--output_folder", required=False, default='output/',
help="Which folder to save result to.")
args = parser.parse_args()
return args
args = parse_args()
if args.data_type != "webcam" and args.data_path and args.data_path[0] != "/":
# If the path is not absolute, then its relative to the ROOT.
args.data_path = ROOT + args.data_path
return args
def get_dst_folder_name(src_data_type, src_data_path):
''' Compute a output folder name based on data_type and data_path.
The final output of this script looks like this:
DST_FOLDER/folder_name/vidoe.avi
DST_FOLDER/folder_name/skeletons/XXXXX.txt
'''
assert(src_data_type in ["video", "folder", "webcam"])
if src_data_type == "video": # /root/data/video.avi --> video
folder_name = os.path.basename(src_data_path).split(".")[-2]
elif src_data_type == "folder": # /root/data/video/ --> video
folder_name = src_data_path.rstrip("/").split("/")[-1]
elif src_data_type == "webcam":
# month-day-hour-minute-seconds, e.g.: 02-26-15-51-12
folder_name = lib_commons.get_time_string()
return folder_name
args = get_command_line_arguments()
SRC_DATA_TYPE = args.data_type
SRC_DATA_PATH = args.data_path
SRC_MODEL_PATH = args.model_path
DST_FOLDER_NAME = get_dst_folder_name(SRC_DATA_TYPE, SRC_DATA_PATH)
# -- Settings
cfg_all = lib_commons.read_yaml(ROOT + "config/config.yaml")
cfg = cfg_all["s5_test.py"]
CLASSES = np.array(cfg_all["classes"])
SKELETON_FILENAME_FORMAT = cfg_all["skeleton_filename_format"]
# Action recognition: number of frames used to extract features.
WINDOW_SIZE = int(cfg_all["features"]["window_size"])
# Output folder
DST_FOLDER = args.output_folder + "/" + DST_FOLDER_NAME + "/"
DST_SKELETON_FOLDER_NAME = cfg["output"]["skeleton_folder_name"]
DST_VIDEO_NAME = cfg["output"]["video_name"]
# framerate of output video.avi
DST_VIDEO_FPS = float(cfg["output"]["video_fps"])
# Video setttings
# If data_type is webcam, set the max frame rate.
SRC_WEBCAM_MAX_FPS = float(cfg["settings"]["source"]
["webcam_max_framerate"])
# If data_type is video, set the sampling interval.
# For example, if it's 3, then the video will be read 3 times faster.
SRC_VIDEO_SAMPLE_INTERVAL = int(cfg["settings"]["source"]
["video_sample_interval"])
# Openpose settings
OPENPOSE_MODEL = cfg["settings"]["openpose"]["model"]
OPENPOSE_IMG_SIZE = cfg["settings"]["openpose"]["img_size"]
# Display settings
img_disp_desired_rows = int(cfg["settings"]["display"]["desired_rows"])
# -- Function
def select_images_loader(src_data_type, src_data_path):
if src_data_type == "video":
images_loader = lib_images_io.ReadFromVideo(
src_data_path,
sample_interval=SRC_VIDEO_SAMPLE_INTERVAL)
elif src_data_type == "folder":
images_loader = lib_images_io.ReadFromFolder(
folder_path=src_data_path)
elif src_data_type == "webcam":
if src_data_path == "":
webcam_idx = 0
elif src_data_path.isdigit():
webcam_idx = int(src_data_path)
else:
webcam_idx = src_data_path
images_loader = lib_images_io.ReadFromWebcam(
SRC_WEBCAM_MAX_FPS, webcam_idx)
return images_loader
class MultiPersonClassifier(object):
''' This is a wrapper around ClassifierOnlineTest
for recognizing actions of multiple people.
'''
def __init__(self, model_path, classes):
self.dict_id2clf = {} # human id -> classifier of this person
# Define a function for creating classifier for new people.
self._create_classifier = lambda human_id: ClassifierOnlineTest(
model_path, classes, WINDOW_SIZE, human_id)
def classify(self, dict_id2skeleton):
''' Classify the action type of each skeleton in dict_id2skeleton '''
# Clear people not in view
old_ids = set(self.dict_id2clf)
cur_ids = set(dict_id2skeleton)
humans_not_in_view = list(old_ids - cur_ids)
for human in humans_not_in_view:
del self.dict_id2clf[human]
# Predict each person's action
id2label = {}
for id, skeleton in dict_id2skeleton.items():
if id not in self.dict_id2clf: # add this new person
self.dict_id2clf[id] = self._create_classifier(id)
classifier = self.dict_id2clf[id]
id2label[id] = classifier.predict(skeleton) # predict label
# print("\n\nPredicting label for human{}".format(id))
# print(" skeleton: {}".format(skeleton))
# print(" label: {}".format(id2label[id]))
return id2label
def get_classifier(self, id):
''' Get the classifier based on the person id.
Arguments:
id {int or "min"}
'''
if len(self.dict_id2clf) == 0:
return None
if id == 'min':
id = min(self.dict_id2clf.keys())
return self.dict_id2clf[id]
def remove_skeletons_with_few_joints(skeletons):
''' Remove bad skeletons before sending to the tracker '''
good_skeletons = []
for skeleton in skeletons:
px = skeleton[2:2+13*2:2]
py = skeleton[3:2+13*2:2]
num_valid_joints = len([x for x in px if x != 0])
num_leg_joints = len([x for x in px[-6:] if x != 0])
total_size = max(py) - min(py)
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# IF JOINTS ARE MISSING, TRY CHANGING THESE VALUES:
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if num_valid_joints >= 5 and total_size >= 0.1 and num_leg_joints >= 0:
# add this skeleton only when all requirements are satisfied
good_skeletons.append(skeleton)
return good_skeletons
def draw_result_img(img_disp, ith_img, humans, dict_id2skeleton,
skeleton_detector, multiperson_classifier):
''' Draw skeletons, labels, and prediction scores onto image for display '''
# Resize to a proper size for display
r, c = img_disp.shape[0:2]
desired_cols = int(1.0 * c * (img_disp_desired_rows / r))
img_disp = cv2.resize(img_disp,
dsize=(desired_cols, img_disp_desired_rows))
# Draw all people's skeleton
skeleton_detector.draw(img_disp, humans)
# Draw bounding box and label of each person
if len(dict_id2skeleton):
for id, label in dict_id2label.items():
skeleton = dict_id2skeleton[id]
# scale the y data back to original
skeleton[1::2] = skeleton[1::2] / scale_h
# print("Drawing skeleton: ", dict_id2skeleton[id], "with label:", label, ".")
lib_plot.draw_action_result(img_disp, id, skeleton, label)
# Add blank to the left for displaying prediction scores of each class
img_disp = lib_plot.add_white_region_to_left_of_image(img_disp)
cv2.putText(img_disp, "Frame:" + str(ith_img),
(20, 20), fontScale=1.5, fontFace=cv2.FONT_HERSHEY_PLAIN,
color=(0, 0, 0), thickness=2)
# Draw predicting score for only 1 person
if len(dict_id2skeleton):
classifier_of_a_person = multiperson_classifier.get_classifier(
id='min')
classifier_of_a_person.draw_scores_onto_image(img_disp)
return img_disp
def get_the_skeleton_data_to_save_to_disk(dict_id2skeleton):
'''
In each image, for each skeleton, save the:
human_id, label, and the skeleton positions of length 18*2.
So the total length per row is 2+36=38
'''
skels_to_save = []
for human_id in dict_id2skeleton.keys():
label = dict_id2label[human_id]
skeleton = dict_id2skeleton[human_id]
skels_to_save.append([[human_id, label] + skeleton.tolist()])
return skels_to_save
# -- Main
if __name__ == "__main__":
# -- Detector, tracker, classifier
skeleton_detector = SkeletonDetector(OPENPOSE_MODEL, OPENPOSE_IMG_SIZE)
multiperson_tracker = Tracker()
multiperson_classifier = MultiPersonClassifier(SRC_MODEL_PATH, CLASSES)
# -- Image reader and displayer
images_loader = select_images_loader(SRC_DATA_TYPE, SRC_DATA_PATH)
img_displayer = lib_images_io.ImageDisplayer()
# -- Init output
# output folder
os.makedirs(DST_FOLDER, exist_ok=True)
os.makedirs(DST_FOLDER + DST_SKELETON_FOLDER_NAME, exist_ok=True)
# video writer
video_writer = lib_images_io.VideoWriter(
DST_FOLDER + DST_VIDEO_NAME, DST_VIDEO_FPS)
# -- Read images and process
try:
ith_img = -1
while images_loader.has_image():
# -- Read image
img = images_loader.read_image()
ith_img += 1
img_disp = img.copy()
print(f"\nProcessing {ith_img}th image ...")
# -- Detect skeletons
humans = skeleton_detector.detect(img)
skeletons, scale_h = skeleton_detector.humans_to_skels_list(humans)
skeletons = remove_skeletons_with_few_joints(skeletons)
# -- Track people
dict_id2skeleton = multiperson_tracker.track(
skeletons) # int id -> np.array() skeleton
# -- Recognize action of each person
if len(dict_id2skeleton):
dict_id2label = multiperson_classifier.classify(
dict_id2skeleton)
# -- Draw
img_disp = draw_result_img(img_disp, ith_img, humans, dict_id2skeleton,
skeleton_detector, multiperson_classifier)
# Print label of a person
if len(dict_id2skeleton):
min_id = min(dict_id2skeleton.keys())
print("prediced label is :", dict_id2label[min_id])
# -- Display image, and write to video.avi
img_displayer.display(img_disp, wait_key_ms=1)
video_writer.write(img_disp)
# -- Get skeleton data and save to file
skels_to_save = get_the_skeleton_data_to_save_to_disk(
dict_id2skeleton)
lib_commons.save_listlist(
DST_FOLDER + DST_SKELETON_FOLDER_NAME +
SKELETON_FILENAME_FORMAT.format(ith_img),
skels_to_save)
finally:
video_writer.stop()
print("Program ends")