-
Notifications
You must be signed in to change notification settings - Fork 162
/
fft.go
294 lines (258 loc) · 8.39 KB
/
fft.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright 2020 Consensys Software Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by consensys/gnark-crypto DO NOT EDIT
package fft
import (
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark-crypto/internal/parallel"
"math/bits"
"github.com/consensys/gnark-crypto/ecc/bw6-756/fr"
)
// Decimation is used in the FFT call to select decimation in time or in frequency
type Decimation uint8
const (
DIT Decimation = iota
DIF
)
// parallelize threshold for a single butterfly op, if the fft stage is not parallelized already
const butterflyThreshold = 16
// FFT computes (recursively) the discrete Fourier transform of a and stores the result in a
// if decimation == DIT (decimation in time), the input must be in bit-reversed order
// if decimation == DIF (decimation in frequency), the output will be in bit-reversed order
func (domain *Domain) FFT(a []fr.Element, decimation Decimation, opts ...Option) {
opt := options(opts...)
// if coset != 0, scale by coset table
if opt.coset {
if decimation == DIT {
// scale by coset table (in bit reversed order)
parallel.Execute(len(a), func(start, end int) {
n := uint64(len(a))
nn := uint64(64 - bits.TrailingZeros64(n))
for i := start; i < end; i++ {
irev := int(bits.Reverse64(uint64(i)) >> nn)
a[i].Mul(&a[i], &domain.CosetTable[irev])
}
}, opt.nbTasks)
} else {
parallel.Execute(len(a), func(start, end int) {
for i := start; i < end; i++ {
a[i].Mul(&a[i], &domain.CosetTable[i])
}
}, opt.nbTasks)
}
}
// find the stage where we should stop spawning go routines in our recursive calls
// (ie when we have as many go routines running as we have available CPUs)
maxSplits := bits.TrailingZeros64(ecc.NextPowerOfTwo(uint64(opt.nbTasks)))
if opt.nbTasks == 1 {
maxSplits = -1
}
switch decimation {
case DIF:
difFFT(a, domain.Twiddles, 0, maxSplits, nil, opt.nbTasks)
case DIT:
ditFFT(a, domain.Twiddles, 0, maxSplits, nil, opt.nbTasks)
default:
panic("not implemented")
}
}
// FFTInverse computes (recursively) the inverse discrete Fourier transform of a and stores the result in a
// if decimation == DIT (decimation in time), the input must be in bit-reversed order
// if decimation == DIF (decimation in frequency), the output will be in bit-reversed order
// coset sets the shift of the fft (0 = no shift, standard fft)
// len(a) must be a power of 2, and w must be a len(a)th root of unity in field F.
func (domain *Domain) FFTInverse(a []fr.Element, decimation Decimation, opts ...Option) {
opt := options(opts...)
// find the stage where we should stop spawning go routines in our recursive calls
// (ie when we have as many go routines running as we have available CPUs)
maxSplits := bits.TrailingZeros64(ecc.NextPowerOfTwo(uint64(opt.nbTasks)))
if opt.nbTasks == 1 {
maxSplits = -1
}
switch decimation {
case DIF:
difFFT(a, domain.TwiddlesInv, 0, maxSplits, nil, opt.nbTasks)
case DIT:
ditFFT(a, domain.TwiddlesInv, 0, maxSplits, nil, opt.nbTasks)
default:
panic("not implemented")
}
// scale by CardinalityInv
if !opt.coset {
parallel.Execute(len(a), func(start, end int) {
for i := start; i < end; i++ {
a[i].Mul(&a[i], &domain.CardinalityInv)
}
}, opt.nbTasks)
return
}
if decimation == DIT {
parallel.Execute(len(a), func(start, end int) {
for i := start; i < end; i++ {
a[i].Mul(&a[i], &domain.CosetTableInv[i]).
Mul(&a[i], &domain.CardinalityInv)
}
}, opt.nbTasks)
return
}
// decimation == DIF, need to access coset table in bit reversed order.
parallel.Execute(len(a), func(start, end int) {
n := uint64(len(a))
nn := uint64(64 - bits.TrailingZeros64(n))
for i := start; i < end; i++ {
irev := int(bits.Reverse64(uint64(i)) >> nn)
a[i].Mul(&a[i], &domain.CosetTableInv[irev]).
Mul(&a[i], &domain.CardinalityInv)
}
}, opt.nbTasks)
}
func difFFT(a []fr.Element, twiddles [][]fr.Element, stage, maxSplits int, chDone chan struct{}, nbTasks int) {
if chDone != nil {
defer close(chDone)
}
n := len(a)
if n == 1 {
return
} else if n == 8 {
kerDIF8(a, twiddles, stage)
return
}
m := n >> 1
// if stage < maxSplits, we parallelize this butterfly
// but we have only numCPU / stage cpus available
if (m > butterflyThreshold) && (stage < maxSplits) {
// 1 << stage == estimated used CPUs
numCPU := nbTasks / (1 << (stage))
parallel.Execute(m, func(start, end int) {
for i := start; i < end; i++ {
fr.Butterfly(&a[i], &a[i+m])
a[i+m].Mul(&a[i+m], &twiddles[stage][i])
}
}, numCPU)
} else {
// i == 0
fr.Butterfly(&a[0], &a[m])
for i := 1; i < m; i++ {
fr.Butterfly(&a[i], &a[i+m])
a[i+m].Mul(&a[i+m], &twiddles[stage][i])
}
}
if m == 1 {
return
}
nextStage := stage + 1
if stage < maxSplits {
chDone := make(chan struct{}, 1)
go difFFT(a[m:n], twiddles, nextStage, maxSplits, chDone, nbTasks)
difFFT(a[0:m], twiddles, nextStage, maxSplits, nil, nbTasks)
<-chDone
} else {
difFFT(a[0:m], twiddles, nextStage, maxSplits, nil, nbTasks)
difFFT(a[m:n], twiddles, nextStage, maxSplits, nil, nbTasks)
}
}
func ditFFT(a []fr.Element, twiddles [][]fr.Element, stage, maxSplits int, chDone chan struct{}, nbTasks int) {
if chDone != nil {
defer close(chDone)
}
n := len(a)
if n == 1 {
return
} else if n == 8 {
kerDIT8(a, twiddles, stage)
return
}
m := n >> 1
nextStage := stage + 1
if stage < maxSplits {
// that's the only time we fire go routines
chDone := make(chan struct{}, 1)
go ditFFT(a[m:], twiddles, nextStage, maxSplits, chDone, nbTasks)
ditFFT(a[0:m], twiddles, nextStage, maxSplits, nil, nbTasks)
<-chDone
} else {
ditFFT(a[0:m], twiddles, nextStage, maxSplits, nil, nbTasks)
ditFFT(a[m:n], twiddles, nextStage, maxSplits, nil, nbTasks)
}
// if stage < maxSplits, we parallelize this butterfly
// but we have only numCPU / stage cpus available
if (m > butterflyThreshold) && (stage < maxSplits) {
// 1 << stage == estimated used CPUs
numCPU := nbTasks / (1 << (stage))
parallel.Execute(m, func(start, end int) {
for k := start; k < end; k++ {
a[k+m].Mul(&a[k+m], &twiddles[stage][k])
fr.Butterfly(&a[k], &a[k+m])
}
}, numCPU)
} else {
fr.Butterfly(&a[0], &a[m])
for k := 1; k < m; k++ {
a[k+m].Mul(&a[k+m], &twiddles[stage][k])
fr.Butterfly(&a[k], &a[k+m])
}
}
}
// BitReverse applies the bit-reversal permutation to a.
// len(a) must be a power of 2 (as in every single function in this file)
func BitReverse(a []fr.Element) {
n := uint64(len(a))
nn := uint64(64 - bits.TrailingZeros64(n))
for i := uint64(0); i < n; i++ {
irev := bits.Reverse64(i) >> nn
if irev > i {
a[i], a[irev] = a[irev], a[i]
}
}
}
// kerDIT8 is a kernel that process a FFT of size 8
func kerDIT8(a []fr.Element, twiddles [][]fr.Element, stage int) {
fr.Butterfly(&a[0], &a[1])
fr.Butterfly(&a[2], &a[3])
fr.Butterfly(&a[4], &a[5])
fr.Butterfly(&a[6], &a[7])
fr.Butterfly(&a[0], &a[2])
a[3].Mul(&a[3], &twiddles[stage+1][1])
fr.Butterfly(&a[1], &a[3])
fr.Butterfly(&a[4], &a[6])
a[7].Mul(&a[7], &twiddles[stage+1][1])
fr.Butterfly(&a[5], &a[7])
fr.Butterfly(&a[0], &a[4])
a[5].Mul(&a[5], &twiddles[stage+0][1])
fr.Butterfly(&a[1], &a[5])
a[6].Mul(&a[6], &twiddles[stage+0][2])
fr.Butterfly(&a[2], &a[6])
a[7].Mul(&a[7], &twiddles[stage+0][3])
fr.Butterfly(&a[3], &a[7])
}
// kerDIF8 is a kernel that process a FFT of size 8
func kerDIF8(a []fr.Element, twiddles [][]fr.Element, stage int) {
fr.Butterfly(&a[0], &a[4])
fr.Butterfly(&a[1], &a[5])
fr.Butterfly(&a[2], &a[6])
fr.Butterfly(&a[3], &a[7])
a[5].Mul(&a[5], &twiddles[stage+0][1])
a[6].Mul(&a[6], &twiddles[stage+0][2])
a[7].Mul(&a[7], &twiddles[stage+0][3])
fr.Butterfly(&a[0], &a[2])
fr.Butterfly(&a[1], &a[3])
fr.Butterfly(&a[4], &a[6])
fr.Butterfly(&a[5], &a[7])
a[3].Mul(&a[3], &twiddles[stage+1][1])
a[7].Mul(&a[7], &twiddles[stage+1][1])
fr.Butterfly(&a[0], &a[1])
fr.Butterfly(&a[2], &a[3])
fr.Butterfly(&a[4], &a[5])
fr.Butterfly(&a[6], &a[7])
}