-
Notifications
You must be signed in to change notification settings - Fork 40
/
relaxation_output.txt
153 lines (120 loc) · 2.2 KB
/
relaxation_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Original model
==============
Cost
----
x
Constraints
-----------
x <= x_max
x >= x_min
With constraints relaxed equally
================================
Cost
----
C
Constraints
-----------
"minimum relaxation":
C >= 1
"relaxed constraints":
x <= C·x_max
x_min <= C·x
Optimal Cost
------------
1.414
Free Variables
--------------
x : 1.414
| Relax
C : 1.414
Fixed Variables
---------------
x_max : 1
x_min : 2
Variable Sensitivities
----------------------
x_max : -0.5
x_min : +0.5
Most Sensitive Constraints
--------------------------
+0.5 : x <= C·x_max
+0.5 : x_min <= C·x
With constraints relaxed individually
=====================================
Cost
----
C[:].prod()·x^0.01
Constraints
-----------
"minimum relaxation":
C[:] >= 1
"relaxed constraints":
x <= C[0]·x_max
x_min <= C[1]·x
Optimal Cost
------------
2
Free Variables
--------------
x : 1
| Relax1
C : [ 1 2 ]
Fixed Variables
---------------
x_max : 1
x_min : 2
Variable Sensitivities
----------------------
x_min : +1
x_max : -0.99
Most Sensitive Constraints
--------------------------
+1 : x_min <= C[1]·x
+0.99 : x <= C[0]·x_max
+0.01 : C[0] >= 1
With constants relaxed individually
===================================
Cost
----
[Relax2.x_max, Relax2.x_min].prod()·x^0.01
Constraints
-----------
Relax2
"original constraints":
x <= x_max
x >= x_min
"relaxation constraints":
"x_max":
Relax2.x_max >= 1
x_max >= Relax2.OriginalValues.x_max/Relax2.x_max
x_max <= Relax2.OriginalValues.x_max·Relax2.x_max
"x_min":
Relax2.x_min >= 1
x_min >= Relax2.OriginalValues.x_min/Relax2.x_min
x_min <= Relax2.OriginalValues.x_min·Relax2.x_min
Optimal Cost
------------
2
Free Variables
--------------
x : 1
x_max : 1
x_min : 1
| Relax2
x_max : 1
x_min : 2
Fixed Variables
---------------
| Relax2.OriginalValues
x_max : 1
x_min : 2
Variable Sensitivities
----------------------
x_min : +1
x_max : -0.99
Most Sensitive Constraints
--------------------------
+1 : x >= x_min
+1 : x_min >= Relax2.OriginalValues.x_min/Relax2.x_min
+0.99 : x <= x_max
+0.99 : x_max <= Relax2.OriginalValues.x_max·Relax2.x_max