-
Notifications
You must be signed in to change notification settings - Fork 796
/
timeseries.go
309 lines (283 loc) · 7.97 KB
/
timeseries.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
package cortexpb
import (
"flag"
"fmt"
"io"
"strings"
"sync"
"unsafe"
"github.com/prometheus/prometheus/pkg/labels"
)
var (
expectedTimeseries = 100
expectedLabels = 20
expectedSamplesPerSeries = 10
expectedExemplarsPerSeries = 1
/*
We cannot pool these as pointer-to-slice because the place we use them is in WriteRequest which is generated from Protobuf
and we don't have an option to make it a pointer. There is overhead here 24 bytes of garbage every time a PreallocTimeseries
is re-used. But since the slices are far far larger, we come out ahead.
*/
slicePool = sync.Pool{
New: func() interface{} {
return make([]PreallocTimeseries, 0, expectedTimeseries)
},
}
timeSeriesPool = sync.Pool{
New: func() interface{} {
return &TimeSeries{
Labels: make([]LabelAdapter, 0, expectedLabels),
Samples: make([]Sample, 0, expectedSamplesPerSeries),
Exemplars: make([]Exemplar, 0, expectedExemplarsPerSeries),
}
},
}
)
// PreallocConfig configures how structures will be preallocated to optimise
// proto unmarshalling.
type PreallocConfig struct{}
// RegisterFlags registers configuration settings.
func (PreallocConfig) RegisterFlags(f *flag.FlagSet) {
f.IntVar(&expectedTimeseries, "ingester-client.expected-timeseries", expectedTimeseries, "Expected number of timeseries per request, used for preallocations.")
f.IntVar(&expectedLabels, "ingester-client.expected-labels", expectedLabels, "Expected number of labels per timeseries, used for preallocations.")
f.IntVar(&expectedSamplesPerSeries, "ingester-client.expected-samples-per-series", expectedSamplesPerSeries, "Expected number of samples per timeseries, used for preallocations.")
}
// PreallocWriteRequest is a WriteRequest which preallocs slices on Unmarshal.
type PreallocWriteRequest struct {
WriteRequest
}
// Unmarshal implements proto.Message.
func (p *PreallocWriteRequest) Unmarshal(dAtA []byte) error {
p.Timeseries = PreallocTimeseriesSliceFromPool()
return p.WriteRequest.Unmarshal(dAtA)
}
// PreallocTimeseries is a TimeSeries which preallocs slices on Unmarshal.
type PreallocTimeseries struct {
*TimeSeries
}
// Unmarshal implements proto.Message.
func (p *PreallocTimeseries) Unmarshal(dAtA []byte) error {
p.TimeSeries = TimeseriesFromPool()
return p.TimeSeries.Unmarshal(dAtA)
}
// LabelAdapter is a labels.Label that can be marshalled to/from protos.
type LabelAdapter labels.Label
// Marshal implements proto.Marshaller.
func (bs *LabelAdapter) Marshal() ([]byte, error) {
size := bs.Size()
buf := make([]byte, size)
n, err := bs.MarshalToSizedBuffer(buf[:size])
if err != nil {
return nil, err
}
return buf[:n], err
}
func (bs *LabelAdapter) MarshalTo(dAtA []byte) (int, error) {
size := bs.Size()
return bs.MarshalToSizedBuffer(dAtA[:size])
}
// MarshalTo implements proto.Marshaller.
func (bs *LabelAdapter) MarshalToSizedBuffer(buf []byte) (n int, err error) {
ls := (*labels.Label)(bs)
i := len(buf)
if len(ls.Value) > 0 {
i -= len(ls.Value)
copy(buf[i:], ls.Value)
i = encodeVarintCortex(buf, i, uint64(len(ls.Value)))
i--
buf[i] = 0x12
}
if len(ls.Name) > 0 {
i -= len(ls.Name)
copy(buf[i:], ls.Name)
i = encodeVarintCortex(buf, i, uint64(len(ls.Name)))
i--
buf[i] = 0xa
}
return len(buf) - i, nil
}
// Unmarshal a LabelAdapter, implements proto.Unmarshaller.
// NB this is a copy of the autogenerated code to unmarshal a LabelPair,
// with the byte copying replaced with a yoloString.
func (bs *LabelAdapter) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowCortex
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= uint64(b&0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: LabelPair: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: LabelPair: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Name", wireType)
}
var byteLen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowCortex
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
byteLen |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
if byteLen < 0 {
return ErrInvalidLengthCortex
}
postIndex := iNdEx + byteLen
if postIndex < 0 {
return ErrInvalidLengthCortex
}
if postIndex > l {
return io.ErrUnexpectedEOF
}
bs.Name = yoloString(dAtA[iNdEx:postIndex])
iNdEx = postIndex
case 2:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Value", wireType)
}
var byteLen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowCortex
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
byteLen |= int(b&0x7F) << shift
if b < 0x80 {
break
}
}
if byteLen < 0 {
return ErrInvalidLengthCortex
}
postIndex := iNdEx + byteLen
if postIndex < 0 {
return ErrInvalidLengthCortex
}
if postIndex > l {
return io.ErrUnexpectedEOF
}
bs.Value = yoloString(dAtA[iNdEx:postIndex])
iNdEx = postIndex
default:
iNdEx = preIndex
skippy, err := skipCortex(dAtA[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthCortex
}
if (iNdEx + skippy) < 0 {
return ErrInvalidLengthCortex
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func yoloString(buf []byte) string {
return *((*string)(unsafe.Pointer(&buf)))
}
// Size implements proto.Sizer.
func (bs *LabelAdapter) Size() (n int) {
ls := (*labels.Label)(bs)
if bs == nil {
return 0
}
var l int
_ = l
l = len(ls.Name)
if l > 0 {
n += 1 + l + sovCortex(uint64(l))
}
l = len(ls.Value)
if l > 0 {
n += 1 + l + sovCortex(uint64(l))
}
return n
}
// Equal implements proto.Equaler.
func (bs *LabelAdapter) Equal(other LabelAdapter) bool {
return bs.Name == other.Name && bs.Value == other.Value
}
// Compare implements proto.Comparer.
func (bs *LabelAdapter) Compare(other LabelAdapter) int {
if c := strings.Compare(bs.Name, other.Name); c != 0 {
return c
}
return strings.Compare(bs.Value, other.Value)
}
// PreallocTimeseriesSliceFromPool retrieves a slice of PreallocTimeseries from a sync.Pool.
// ReuseSlice should be called once done.
func PreallocTimeseriesSliceFromPool() []PreallocTimeseries {
return slicePool.Get().([]PreallocTimeseries)
}
// ReuseSlice puts the slice back into a sync.Pool for reuse.
func ReuseSlice(ts []PreallocTimeseries) {
for i := range ts {
ReuseTimeseries(ts[i].TimeSeries)
}
slicePool.Put(ts[:0]) //nolint:staticcheck //see comment on slicePool for more details
}
// TimeseriesFromPool retrieves a pointer to a TimeSeries from a sync.Pool.
// ReuseTimeseries should be called once done, unless ReuseSlice was called on the slice that contains this TimeSeries.
func TimeseriesFromPool() *TimeSeries {
return timeSeriesPool.Get().(*TimeSeries)
}
// ReuseTimeseries puts the timeseries back into a sync.Pool for reuse.
func ReuseTimeseries(ts *TimeSeries) {
// Name and Value may point into a large gRPC buffer, so clear the reference to allow GC
for i := 0; i < len(ts.Labels); i++ {
ts.Labels[i].Name = ""
ts.Labels[i].Value = ""
}
ts.Labels = ts.Labels[:0]
ts.Samples = ts.Samples[:0]
// Name and Value may point into a large gRPC buffer, so clear the reference in each exemplar to allow GC
for i := range ts.Exemplars {
for j := range ts.Exemplars[i].Labels {
ts.Exemplars[i].Labels[j].Name = ""
ts.Exemplars[i].Labels[j].Value = ""
}
}
ts.Exemplars = ts.Exemplars[:0]
timeSeriesPool.Put(ts)
}