-
Notifications
You must be signed in to change notification settings - Fork 684
/
analysis.go
169 lines (140 loc) · 5.18 KB
/
analysis.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright (c) 2015 Couchbase, Inc.
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
// except in compliance with the License. You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software distributed under the
// License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific language governing permissions
// and limitations under the License.
package firestorm
import (
"math"
"github.com/blevesearch/bleve/analysis"
"github.com/blevesearch/bleve/document"
"github.com/blevesearch/bleve/index"
)
func (f *Firestorm) Analyze(d *document.Document) *index.AnalysisResult {
rv := &index.AnalysisResult{
DocID: d.ID,
Rows: make([]index.IndexRow, 0, 100),
}
docIDBytes := []byte(d.ID)
// add the _id row
rv.Rows = append(rv.Rows, NewTermFreqRow(0, nil, docIDBytes, d.Number, 0, 0, nil))
// information we collate as we merge fields with same name
fieldTermFreqs := make(map[uint16]analysis.TokenFrequencies)
fieldLengths := make(map[uint16]int)
fieldIncludeTermVectors := make(map[uint16]bool)
fieldNames := make(map[uint16]string)
analyzeField := func(field document.Field, storable bool) {
fieldIndex, newFieldRow := f.fieldIndexOrNewRow(field.Name())
if newFieldRow != nil {
rv.Rows = append(rv.Rows, newFieldRow)
}
fieldNames[fieldIndex] = field.Name()
if field.Options().IsIndexed() {
fieldLength, tokenFreqs := field.Analyze()
existingFreqs := fieldTermFreqs[fieldIndex]
if existingFreqs == nil {
fieldTermFreqs[fieldIndex] = tokenFreqs
} else {
existingFreqs.MergeAll(field.Name(), tokenFreqs)
fieldTermFreqs[fieldIndex] = existingFreqs
}
fieldLengths[fieldIndex] += fieldLength
fieldIncludeTermVectors[fieldIndex] = field.Options().IncludeTermVectors()
}
if storable && field.Options().IsStored() {
storeRow := f.storeField(docIDBytes, d.Number, field, fieldIndex)
rv.Rows = append(rv.Rows, storeRow)
}
}
for _, field := range d.Fields {
analyzeField(field, true)
}
if len(d.CompositeFields) > 0 {
for fieldIndex, tokenFreqs := range fieldTermFreqs {
// see if any of the composite fields need this
for _, compositeField := range d.CompositeFields {
compositeField.Compose(fieldNames[fieldIndex], fieldLengths[fieldIndex], tokenFreqs)
}
}
for _, compositeField := range d.CompositeFields {
analyzeField(compositeField, false)
}
}
rowsCapNeeded := len(rv.Rows)
for _, tokenFreqs := range fieldTermFreqs {
rowsCapNeeded += len(tokenFreqs)
}
rows := make([]index.IndexRow, 0, rowsCapNeeded)
rv.Rows = append(rows, rv.Rows...)
// walk through the collated information and process
// once for each indexed field (unique name)
for fieldIndex, tokenFreqs := range fieldTermFreqs {
fieldLength := fieldLengths[fieldIndex]
includeTermVectors := fieldIncludeTermVectors[fieldIndex]
rv.Rows = f.indexField(docIDBytes, d.Number, includeTermVectors, fieldIndex, fieldLength, tokenFreqs, rv.Rows)
}
return rv
}
func (f *Firestorm) indexField(docID []byte, docNum uint64, includeTermVectors bool, fieldIndex uint16, fieldLength int, tokenFreqs analysis.TokenFrequencies, rows []index.IndexRow) []index.IndexRow {
tfrs := make([]TermFreqRow, len(tokenFreqs))
fieldNorm := float32(1.0 / math.Sqrt(float64(fieldLength)))
if !includeTermVectors {
i := 0
for _, tf := range tokenFreqs {
rows = append(rows, InitTermFreqRow(&tfrs[i], fieldIndex, tf.Term, docID, docNum, uint64(tf.Frequency()), fieldNorm, nil))
i++
}
return rows
}
i := 0
for _, tf := range tokenFreqs {
var tv []*TermVector
tv, rows = f.termVectorsFromTokenFreq(fieldIndex, tf, rows)
rows = append(rows, InitTermFreqRow(&tfrs[i], fieldIndex, tf.Term, docID, docNum, uint64(tf.Frequency()), fieldNorm, tv))
i++
}
return rows
}
func (f *Firestorm) termVectorsFromTokenFreq(field uint16, tf *analysis.TokenFreq, rows []index.IndexRow) ([]*TermVector, []index.IndexRow) {
rv := make([]*TermVector, len(tf.Locations))
for i, l := range tf.Locations {
var newFieldRow *FieldRow
fieldIndex := field
if l.Field != "" {
// lookup correct field
fieldIndex, newFieldRow = f.fieldIndexOrNewRow(l.Field)
if newFieldRow != nil {
rows = append(rows, newFieldRow)
}
}
tv := NewTermVector(fieldIndex, uint64(l.Position), uint64(l.Start), uint64(l.End), l.ArrayPositions)
rv[i] = tv
}
return rv, rows
}
func (f *Firestorm) storeField(docID []byte, docNum uint64, field document.Field, fieldIndex uint16) index.IndexRow {
fieldValue := make([]byte, 1+len(field.Value()))
fieldValue[0] = encodeFieldType(field)
copy(fieldValue[1:], field.Value())
storedRow := NewStoredRow(docID, docNum, fieldIndex, field.ArrayPositions(), fieldValue)
return storedRow
}
func encodeFieldType(f document.Field) byte {
fieldType := byte('x')
switch f.(type) {
case *document.TextField:
fieldType = 't'
case *document.NumericField:
fieldType = 'n'
case *document.DateTimeField:
fieldType = 'd'
case *document.BooleanField:
fieldType = 'b'
case *document.CompositeField:
fieldType = 'c'
}
return fieldType
}