forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convnet.py
204 lines (171 loc) · 7.41 KB
/
convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""Convolutional neural net on MNIST, modeled on 'LeNet-5',
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf"""
from __future__ import absolute_import
from __future__ import print_function
import autograd.numpy as np
import autograd.numpy.random as npr
import autograd.scipy.signal
from autograd import grad
from autograd.util import quick_grad_check
from builtins import range
convolve = autograd.scipy.signal.convolve
class WeightsParser(object):
"""A helper class to index into a parameter vector."""
def __init__(self):
self.idxs_and_shapes = {}
self.N = 0
def add_weights(self, name, shape):
start = self.N
self.N += np.prod(shape)
self.idxs_and_shapes[name] = (slice(start, self.N), shape)
def get(self, vect, name):
idxs, shape = self.idxs_and_shapes[name]
return np.reshape(vect[idxs], shape)
def make_batches(N_total, N_batch):
start = 0
batches = []
while start < N_total:
batches.append(slice(start, start + N_batch))
start += N_batch
return batches
def logsumexp(X, axis, keepdims=False):
max_X = np.max(X)
return max_X + np.log(np.sum(np.exp(X - max_X), axis=axis, keepdims=keepdims))
def make_nn_funs(input_shape, layer_specs, L2_reg):
parser = WeightsParser()
cur_shape = input_shape
for layer in layer_specs:
N_weights, cur_shape = layer.build_weights_dict(cur_shape)
parser.add_weights(layer, (N_weights,))
def predictions(W_vect, inputs):
"""Outputs normalized log-probabilities.
shape of inputs : [data, color, y, x]"""
cur_units = inputs
for layer in layer_specs:
cur_weights = parser.get(W_vect, layer)
cur_units = layer.forward_pass(cur_units, cur_weights)
return cur_units
def loss(W_vect, X, T):
log_prior = -L2_reg * np.dot(W_vect, W_vect)
log_lik = np.sum(predictions(W_vect, X) * T)
return - log_prior - log_lik
def frac_err(W_vect, X, T):
return np.mean(np.argmax(T, axis=1) != np.argmax(pred_fun(W_vect, X), axis=1))
return parser.N, predictions, loss, frac_err
class conv_layer(object):
def __init__(self, kernel_shape, num_filters):
self.kernel_shape = kernel_shape
self.num_filters = num_filters
def forward_pass(self, inputs, param_vector):
# Input dimensions: [data, color_in, y, x]
# Params dimensions: [color_in, color_out, y, x]
# Output dimensions: [data, color_out, y, x]
params = self.parser.get(param_vector, 'params')
biases = self.parser.get(param_vector, 'biases')
conv = convolve(inputs, params, axes=([2, 3], [2, 3]), dot_axes = ([1], [0]), mode='valid')
return conv + biases
def build_weights_dict(self, input_shape):
# Input shape : [color, y, x] (don't need to know number of data yet)
self.parser = WeightsParser()
self.parser.add_weights('params', (input_shape[0], self.num_filters)
+ self.kernel_shape)
self.parser.add_weights('biases', (1, self.num_filters, 1, 1))
output_shape = (self.num_filters,) + \
self.conv_output_shape(input_shape[1:], self.kernel_shape)
return self.parser.N, output_shape
def conv_output_shape(self, A, B):
return (A[0] - B[0] + 1, A[1] - B[1] + 1)
class maxpool_layer(object):
def __init__(self, pool_shape):
self.pool_shape = pool_shape
def build_weights_dict(self, input_shape):
# input_shape dimensions: [color, y, x]
output_shape = list(input_shape)
for i in [0, 1]:
assert input_shape[i + 1] % self.pool_shape[i] == 0, \
"maxpool shape should tile input exactly"
output_shape[i + 1] = input_shape[i + 1] / self.pool_shape[i]
return 0, output_shape
def forward_pass(self, inputs, param_vector):
new_shape = inputs.shape[:2]
for i in [0, 1]:
pool_width = self.pool_shape[i]
img_width = inputs.shape[i + 2]
new_shape += (pool_width, img_width / pool_width)
result = inputs.reshape(new_shape)
return np.max(np.max(result, axis=2), axis=3)
class full_layer(object):
def __init__(self, size):
self.size = size
def build_weights_dict(self, input_shape):
# Input shape is anything (all flattened)
input_size = np.prod(input_shape, dtype=int)
self.parser = WeightsParser()
self.parser.add_weights('params', (input_size, self.size))
self.parser.add_weights('biases', (self.size,))
return self.parser.N, (self.size,)
def forward_pass(self, inputs, param_vector):
params = self.parser.get(param_vector, 'params')
biases = self.parser.get(param_vector, 'biases')
if inputs.ndim > 2:
inputs = inputs.reshape((inputs.shape[0], np.prod(inputs.shape[1:])))
return self.nonlinearity(np.dot(inputs[:, :], params) + biases)
class tanh_layer(full_layer):
def nonlinearity(self, x):
return np.tanh(x)
class softmax_layer(full_layer):
def nonlinearity(self, x):
return x - logsumexp(x, axis=1, keepdims=True)
if __name__ == '__main__':
# Network parameters
L2_reg = 1.0
input_shape = (1, 28, 28)
layer_specs = [conv_layer((5, 5), 6),
maxpool_layer((2, 2)),
conv_layer((5, 5), 16),
maxpool_layer((2, 2)),
tanh_layer(120),
tanh_layer(84),
softmax_layer(10)]
# Training parameters
param_scale = 0.1
learning_rate = 1e-3
momentum = 0.9
batch_size = 256
num_epochs = 50
# Load and process MNIST data (borrowing from Kayak)
print("Loading training data...")
import imp, urllib
add_color_channel = lambda x : x.reshape((x.shape[0], 1, x.shape[1], x.shape[2]))
one_hot = lambda x, K : np.array(x[:,None] == np.arange(K)[None, :], dtype=int)
source, _ = urllib.urlretrieve(
'https://raw.githubusercontent.com/HIPS/Kayak/master/examples/data.py')
data = imp.load_source('data', source).mnist()
train_images, train_labels, test_images, test_labels = data
train_images = add_color_channel(train_images) / 255.0
test_images = add_color_channel(test_images) / 255.0
train_labels = one_hot(train_labels, 10)
test_labels = one_hot(test_labels, 10)
N_data = train_images.shape[0]
# Make neural net functions
N_weights, pred_fun, loss_fun, frac_err = make_nn_funs(input_shape, layer_specs, L2_reg)
loss_grad = grad(loss_fun)
# Initialize weights
rs = npr.RandomState()
W = rs.randn(N_weights) * param_scale
# Check the gradients numerically, just to be safe
# quick_grad_check(loss_fun, W, (train_images[:50], train_labels[:50]))
print(" Epoch | Train err | Test error ")
def print_perf(epoch, W):
test_perf = frac_err(W, test_images, test_labels)
train_perf = frac_err(W, train_images, train_labels)
print("{0:15}|{1:15}|{2:15}".format(epoch, train_perf, test_perf))
# Train with sgd
batch_idxs = make_batches(N_data, batch_size)
cur_dir = np.zeros(N_weights)
for epoch in range(num_epochs):
print_perf(epoch, W)
for idxs in batch_idxs:
grad_W = loss_grad(W, train_images[idxs], train_labels[idxs])
cur_dir = momentum * cur_dir + (1.0 - momentum) * grad_W
W -= learning_rate * cur_dir