-
Notifications
You must be signed in to change notification settings - Fork 1
/
replica_state.go
792 lines (715 loc) · 25 KB
/
replica_state.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package storage
import (
"github.com/coreos/etcd/raft/raftpb"
opentracing "github.com/opentracing/opentracing-go"
"github.com/pkg/errors"
"golang.org/x/net/context"
"github.com/cockroachdb/cockroach/pkg/internal/client"
"github.com/cockroachdb/cockroach/pkg/keys"
"github.com/cockroachdb/cockroach/pkg/roachpb"
"github.com/cockroachdb/cockroach/pkg/settings/cluster"
"github.com/cockroachdb/cockroach/pkg/storage/engine"
"github.com/cockroachdb/cockroach/pkg/storage/engine/enginepb"
"github.com/cockroachdb/cockroach/pkg/storage/storagebase"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
"github.com/cockroachdb/cockroach/pkg/util/log"
"github.com/cockroachdb/cockroach/pkg/util/protoutil"
)
// replicaStateLoader contains accessor methods to read or write the
// fields of storagebase.ReplicaState. It contains an internal buffer
// which is reused to avoid an allocation on frequently-accessed code
// paths.
//
// Because of this internal buffer, this struct is not safe for
// concurrent use, and the return values of methods that return keys
// are invalidated the next time any method is called.
//
// It is safe to have multiple replicaStateLoaders for the same
// Replica. Reusable replicaStateLoaders are typically found in a
// struct with a mutex, and temporary loaders may be created when
// locking is less desirable than an allocation.
type replicaStateLoader struct {
keys.RangeIDPrefixBuf
}
func makeReplicaStateLoader(rangeID roachpb.RangeID) replicaStateLoader {
return replicaStateLoader{
RangeIDPrefixBuf: keys.MakeRangeIDPrefixBuf(rangeID),
}
}
// loadState loads a ReplicaState from disk. The exception is the Desc field,
// which is updated transactionally, and is populated from the supplied
// RangeDescriptor under the convention that that is the latest committed
// version.
func (rsl replicaStateLoader) load(
ctx context.Context, reader engine.Reader, desc *roachpb.RangeDescriptor,
) (storagebase.ReplicaState, error) {
var s storagebase.ReplicaState
// TODO(tschottdorf): figure out whether this is always synchronous with
// on-disk state (likely iffy during Split/ChangeReplica triggers).
s.Desc = protoutil.Clone(desc).(*roachpb.RangeDescriptor)
// Read the range lease.
lease, err := rsl.loadLease(ctx, reader)
if err != nil {
return storagebase.ReplicaState{}, err
}
s.Lease = &lease
if s.GCThreshold, err = rsl.loadGCThreshold(ctx, reader); err != nil {
return storagebase.ReplicaState{}, err
}
if s.TxnSpanGCThreshold, err = rsl.loadTxnSpanGCThreshold(ctx, reader); err != nil {
return storagebase.ReplicaState{}, err
}
if s.RaftAppliedIndex, s.LeaseAppliedIndex, err = rsl.loadAppliedIndex(ctx, reader); err != nil {
return storagebase.ReplicaState{}, err
}
if s.Stats, err = rsl.loadMVCCStats(ctx, reader); err != nil {
return storagebase.ReplicaState{}, err
}
// The truncated state should not be optional (i.e. the pointer is
// pointless), but it is and the migration is not worth it.
truncState, err := rsl.loadTruncatedState(ctx, reader)
if err != nil {
return storagebase.ReplicaState{}, err
}
s.TruncatedState = &truncState
return s, nil
}
// save persists the given ReplicaState to disk. It assumes that the contained
// Stats are up-to-date and returns the stats which result from writing the
// updated State.
//
// As an exception to the rule, the Desc field (whose on-disk state is special
// in that it's a full MVCC value and updated transactionally) is only used for
// its RangeID.
//
// TODO(tschottdorf): test and assert that none of the optional values are
// missing whenever save is called. Optional values should be reserved
// strictly for use in EvalResult. Do before merge.
func (rsl replicaStateLoader) save(
ctx context.Context, eng engine.ReadWriter, state storagebase.ReplicaState,
) (enginepb.MVCCStats, error) {
ms := &state.Stats
if err := rsl.setLease(ctx, eng, ms, *state.Lease); err != nil {
return enginepb.MVCCStats{}, err
}
if err := rsl.setAppliedIndex(
ctx, eng, ms, state.RaftAppliedIndex, state.LeaseAppliedIndex,
); err != nil {
return enginepb.MVCCStats{}, err
}
if err := rsl.setGCThreshold(ctx, eng, ms, &state.GCThreshold); err != nil {
return enginepb.MVCCStats{}, err
}
if err := rsl.setTxnSpanGCThreshold(ctx, eng, ms, &state.TxnSpanGCThreshold); err != nil {
return enginepb.MVCCStats{}, err
}
if err := rsl.setTruncatedState(ctx, eng, ms, state.TruncatedState); err != nil {
return enginepb.MVCCStats{}, err
}
if err := rsl.setMVCCStats(ctx, eng, &state.Stats); err != nil {
return enginepb.MVCCStats{}, err
}
return state.Stats, nil
}
func (rsl replicaStateLoader) loadLease(
ctx context.Context, reader engine.Reader,
) (roachpb.Lease, error) {
var lease roachpb.Lease
_, err := engine.MVCCGetProto(ctx, reader, rsl.RangeLeaseKey(),
hlc.Timestamp{}, true, nil, &lease)
return lease, err
}
func (rsl replicaStateLoader) setLease(
ctx context.Context, eng engine.ReadWriter, ms *enginepb.MVCCStats, lease roachpb.Lease,
) error {
return engine.MVCCPutProto(ctx, eng, ms, rsl.RangeLeaseKey(),
hlc.Timestamp{}, nil, &lease)
}
func loadAppliedIndex(
ctx context.Context, reader engine.Reader, rangeID roachpb.RangeID,
) (uint64, uint64, error) {
rsl := makeReplicaStateLoader(rangeID)
return rsl.loadAppliedIndex(ctx, reader)
}
// loadAppliedIndex returns the Raft applied index and the lease applied index.
func (rsl replicaStateLoader) loadAppliedIndex(
ctx context.Context, reader engine.Reader,
) (uint64, uint64, error) {
var appliedIndex uint64
v, _, err := engine.MVCCGet(ctx, reader, rsl.RaftAppliedIndexKey(),
hlc.Timestamp{}, true, nil)
if err != nil {
return 0, 0, err
}
if v != nil {
int64AppliedIndex, err := v.GetInt()
if err != nil {
return 0, 0, err
}
appliedIndex = uint64(int64AppliedIndex)
}
// TODO(tschottdorf): code duplication.
var leaseAppliedIndex uint64
v, _, err = engine.MVCCGet(ctx, reader, rsl.LeaseAppliedIndexKey(),
hlc.Timestamp{}, true, nil)
if err != nil {
return 0, 0, err
}
if v != nil {
int64LeaseAppliedIndex, err := v.GetInt()
if err != nil {
return 0, 0, err
}
leaseAppliedIndex = uint64(int64LeaseAppliedIndex)
}
return appliedIndex, leaseAppliedIndex, nil
}
// setAppliedIndex sets the {raft,lease} applied index values, properly
// accounting for existing keys in the returned stats.
func (rsl replicaStateLoader) setAppliedIndex(
ctx context.Context,
eng engine.ReadWriter,
ms *enginepb.MVCCStats,
appliedIndex,
leaseAppliedIndex uint64,
) error {
var value roachpb.Value
value.SetInt(int64(appliedIndex))
if err := engine.MVCCPut(ctx, eng, ms,
rsl.RaftAppliedIndexKey(),
hlc.Timestamp{},
value,
nil /* txn */); err != nil {
return err
}
value.SetInt(int64(leaseAppliedIndex))
return engine.MVCCPut(ctx, eng, ms,
rsl.LeaseAppliedIndexKey(),
hlc.Timestamp{},
value,
nil /* txn */)
}
// setAppliedIndexBlind sets the {raft,lease} applied index values using a
// "blind" put which ignores any existing keys. This is identical to
// setAppliedIndex but is used to optimize the writing of the applied index
// values during write operations where we definitively know the size of the
// previous values.
func (rsl replicaStateLoader) setAppliedIndexBlind(
ctx context.Context,
eng engine.ReadWriter,
ms *enginepb.MVCCStats,
appliedIndex,
leaseAppliedIndex uint64,
) error {
var value roachpb.Value
value.SetInt(int64(appliedIndex))
if err := engine.MVCCBlindPut(ctx, eng, ms,
rsl.RaftAppliedIndexKey(),
hlc.Timestamp{},
value,
nil /* txn */); err != nil {
return err
}
value.SetInt(int64(leaseAppliedIndex))
return engine.MVCCBlindPut(ctx, eng, ms,
rsl.LeaseAppliedIndexKey(),
hlc.Timestamp{},
value,
nil /* txn */)
}
func inlineValueIntEncodedSize(v int64) int {
var value roachpb.Value
value.SetInt(v)
meta := enginepb.MVCCMetadata{RawBytes: value.RawBytes}
return meta.Size()
}
// Calculate the size (MVCCStats.SysBytes) of the {raft,lease} applied index
// keys/values.
func (rsl replicaStateLoader) calcAppliedIndexSysBytes(
appliedIndex, leaseAppliedIndex uint64,
) int64 {
return int64(engine.MakeMVCCMetadataKey(rsl.RaftAppliedIndexKey()).EncodedSize() +
engine.MakeMVCCMetadataKey(rsl.LeaseAppliedIndexKey()).EncodedSize() +
inlineValueIntEncodedSize(int64(appliedIndex)) +
inlineValueIntEncodedSize(int64(leaseAppliedIndex)))
}
func loadTruncatedState(
ctx context.Context, reader engine.Reader, rangeID roachpb.RangeID,
) (roachpb.RaftTruncatedState, error) {
rsl := makeReplicaStateLoader(rangeID)
return rsl.loadTruncatedState(ctx, reader)
}
func (rsl replicaStateLoader) loadTruncatedState(
ctx context.Context, reader engine.Reader,
) (roachpb.RaftTruncatedState, error) {
var truncState roachpb.RaftTruncatedState
if _, err := engine.MVCCGetProto(ctx, reader,
rsl.RaftTruncatedStateKey(), hlc.Timestamp{}, true,
nil, &truncState); err != nil {
return roachpb.RaftTruncatedState{}, err
}
return truncState, nil
}
func (rsl replicaStateLoader) setTruncatedState(
ctx context.Context,
eng engine.ReadWriter,
ms *enginepb.MVCCStats,
truncState *roachpb.RaftTruncatedState,
) error {
if (*truncState == roachpb.RaftTruncatedState{}) {
return errors.New("cannot persist empty RaftTruncatedState")
}
return engine.MVCCPutProto(ctx, eng, ms,
rsl.RaftTruncatedStateKey(), hlc.Timestamp{}, nil, truncState)
}
func (rsl replicaStateLoader) loadGCThreshold(
ctx context.Context, reader engine.Reader,
) (hlc.Timestamp, error) {
var t hlc.Timestamp
_, err := engine.MVCCGetProto(ctx, reader, rsl.RangeLastGCKey(),
hlc.Timestamp{}, true, nil, &t)
return t, err
}
func (rsl replicaStateLoader) setGCThreshold(
ctx context.Context, eng engine.ReadWriter, ms *enginepb.MVCCStats, threshold *hlc.Timestamp,
) error {
if threshold == nil {
return errors.New("cannot persist nil GCThreshold")
}
return engine.MVCCPutProto(ctx, eng, ms,
rsl.RangeLastGCKey(), hlc.Timestamp{}, nil, threshold)
}
func (rsl replicaStateLoader) loadTxnSpanGCThreshold(
ctx context.Context, reader engine.Reader,
) (hlc.Timestamp, error) {
var t hlc.Timestamp
_, err := engine.MVCCGetProto(ctx, reader, rsl.RangeTxnSpanGCThresholdKey(),
hlc.Timestamp{}, true, nil, &t)
return t, err
}
func (rsl replicaStateLoader) setTxnSpanGCThreshold(
ctx context.Context, eng engine.ReadWriter, ms *enginepb.MVCCStats, threshold *hlc.Timestamp,
) error {
if threshold == nil {
return errors.New("cannot persist nil TxnSpanGCThreshold")
}
return engine.MVCCPutProto(ctx, eng, ms,
rsl.RangeTxnSpanGCThresholdKey(), hlc.Timestamp{}, nil, threshold)
}
func (rsl replicaStateLoader) loadMVCCStats(
ctx context.Context, reader engine.Reader,
) (enginepb.MVCCStats, error) {
var ms enginepb.MVCCStats
_, err := engine.MVCCGetProto(ctx, reader, rsl.RangeStatsKey(), hlc.Timestamp{}, true, nil, &ms)
return ms, err
}
func (rsl replicaStateLoader) setMVCCStats(
ctx context.Context, eng engine.ReadWriter, newMS *enginepb.MVCCStats,
) error {
return engine.MVCCPutProto(ctx, eng, nil, rsl.RangeStatsKey(), hlc.Timestamp{}, nil, newMS)
}
// The rest is not technically part of ReplicaState.
// TODO(tschottdorf): more consolidation of ad-hoc structures: last index and
// hard state. These are closely coupled with ReplicaState (and in particular
// with its TruncatedState) but are different in that they are not consistently
// updated through Raft.
func loadLastIndex(
ctx context.Context, reader engine.Reader, rangeID roachpb.RangeID,
) (uint64, error) {
rsl := makeReplicaStateLoader(rangeID)
return rsl.loadLastIndex(ctx, reader)
}
func (rsl replicaStateLoader) loadLastIndex(
ctx context.Context, reader engine.Reader,
) (uint64, error) {
var lastIndex uint64
v, _, err := engine.MVCCGet(ctx, reader, rsl.RaftLastIndexKey(),
hlc.Timestamp{}, true /* consistent */, nil)
if err != nil {
return 0, err
}
if v != nil {
int64LastIndex, err := v.GetInt()
if err != nil {
return 0, err
}
lastIndex = uint64(int64LastIndex)
} else {
// The log is empty, which means we are either starting from scratch
// or the entire log has been truncated away.
lastEnt, err := rsl.loadTruncatedState(ctx, reader)
if err != nil {
return 0, err
}
lastIndex = lastEnt.Index
}
return lastIndex, nil
}
func (rsl replicaStateLoader) setLastIndex(
ctx context.Context, eng engine.ReadWriter, lastIndex uint64,
) error {
var value roachpb.Value
value.SetInt(int64(lastIndex))
return engine.MVCCPut(ctx, eng, nil, rsl.RaftLastIndexKey(),
hlc.Timestamp{}, value, nil /* txn */)
}
// loadReplicaDestroyedError loads the replica destroyed error for the specified
// range. If there is no error, nil is returned.
func (rsl replicaStateLoader) loadReplicaDestroyedError(
ctx context.Context, reader engine.Reader,
) (*roachpb.Error, error) {
var v roachpb.Error
found, err := engine.MVCCGetProto(ctx, reader,
rsl.RangeReplicaDestroyedErrorKey(),
hlc.Timestamp{}, true /* consistent */, nil, &v)
if err != nil {
return nil, err
}
if !found {
return nil, nil
}
return &v, nil
}
// setReplicaDestroyedError sets an error indicating that the replica has been
// destroyed.
func (rsl replicaStateLoader) setReplicaDestroyedError(
ctx context.Context, eng engine.ReadWriter, err *roachpb.Error,
) error {
return engine.MVCCPutProto(ctx, eng, nil,
rsl.RangeReplicaDestroyedErrorKey(), hlc.Timestamp{}, nil /* txn */, err)
}
func loadHardState(
ctx context.Context, reader engine.Reader, rangeID roachpb.RangeID,
) (raftpb.HardState, error) {
rsl := makeReplicaStateLoader(rangeID)
return rsl.loadHardState(ctx, reader)
}
func (rsl replicaStateLoader) loadHardState(
ctx context.Context, reader engine.Reader,
) (raftpb.HardState, error) {
var hs raftpb.HardState
found, err := engine.MVCCGetProto(ctx, reader,
rsl.RaftHardStateKey(),
hlc.Timestamp{}, true, nil, &hs)
if !found || err != nil {
return raftpb.HardState{}, err
}
return hs, nil
}
func (rsl replicaStateLoader) setHardState(
ctx context.Context, batch engine.ReadWriter, st raftpb.HardState,
) error {
return engine.MVCCPutProto(ctx, batch, nil,
rsl.RaftHardStateKey(), hlc.Timestamp{}, nil, &st)
}
// synthesizeRaftState creates a Raft state which synthesizes both a HardState
// and a lastIndex from pre-seeded data in the engine (typically created via
// writeInitialReplicaState and, on a split, perhaps the activity of an
// uninitialized Raft group)
func (rsl replicaStateLoader) synthesizeRaftState(
ctx context.Context, eng engine.ReadWriter,
) error {
hs, err := rsl.loadHardState(ctx, eng)
if err != nil {
return err
}
truncState, err := rsl.loadTruncatedState(ctx, eng)
if err != nil {
return err
}
raftAppliedIndex, _, err := rsl.loadAppliedIndex(ctx, eng)
if err != nil {
return err
}
if err := rsl.synthesizeHardState(ctx, eng, hs, truncState, raftAppliedIndex); err != nil {
return err
}
return rsl.setLastIndex(ctx, eng, truncState.Index)
}
// synthesizeHardState synthesizes an on-disk HardState from the given input,
// taking care that a HardState compatible with the existing data is written.
func (rsl replicaStateLoader) synthesizeHardState(
ctx context.Context,
eng engine.ReadWriter,
oldHS raftpb.HardState,
truncState roachpb.RaftTruncatedState,
raftAppliedIndex uint64,
) error {
newHS := raftpb.HardState{
Term: truncState.Term,
// Note that when applying a Raft snapshot, the applied index is
// equal to the Commit index represented by the snapshot.
Commit: raftAppliedIndex,
}
if oldHS.Commit > newHS.Commit {
return errors.Errorf("can't decrease HardState.Commit from %d to %d",
oldHS.Commit, newHS.Commit)
}
if oldHS.Term > newHS.Term {
// The existing HardState is allowed to be ahead of us, which is
// relevant in practice for the split trigger. We already checked above
// that we're not rewinding the acknowledged index, and we haven't
// updated votes yet.
newHS.Term = oldHS.Term
}
// If the existing HardState voted in this term, remember that.
if oldHS.Term == newHS.Term {
newHS.Vote = oldHS.Vote
}
err := rsl.setHardState(ctx, eng, newHS)
return errors.Wrapf(err, "writing HardState %+v", &newHS)
}
// writeInitialReplicaState sets up a new Range, but without writing an
// associated Raft state (which must be written separately via
// synthesizeRaftState before instantiating a Replica). The main task is to
// persist a ReplicaState which does not start from zero but presupposes a few
// entries already having applied. The supplied MVCCStats are used for the Stats
// field after adjusting for persisting the state itself, and the updated stats
// are returned.
func writeInitialReplicaState(
ctx context.Context,
eng engine.ReadWriter,
ms enginepb.MVCCStats,
desc roachpb.RangeDescriptor,
lease roachpb.Lease,
gcThreshold hlc.Timestamp,
txnSpanGCThreshold hlc.Timestamp,
) (enginepb.MVCCStats, error) {
rsl := makeReplicaStateLoader(desc.RangeID)
var s storagebase.ReplicaState
s.TruncatedState = &roachpb.RaftTruncatedState{
Term: raftInitialLogTerm,
Index: raftInitialLogIndex,
}
s.RaftAppliedIndex = s.TruncatedState.Index
s.Desc = &roachpb.RangeDescriptor{
RangeID: desc.RangeID,
}
s.Stats = ms
s.Lease = &lease
s.GCThreshold = gcThreshold
s.TxnSpanGCThreshold = txnSpanGCThreshold
if existingLease, err := rsl.loadLease(ctx, eng); err != nil {
return enginepb.MVCCStats{}, errors.Wrap(err, "error reading lease")
} else if (existingLease != roachpb.Lease{}) {
log.Fatalf(ctx, "expected trivial lease, but found %+v", existingLease)
}
if existingGCThreshold, err := rsl.loadGCThreshold(ctx, eng); err != nil {
return enginepb.MVCCStats{}, errors.Wrap(err, "error reading GCThreshold")
} else if (existingGCThreshold != hlc.Timestamp{}) {
log.Fatalf(ctx, "expected trivial GChreshold, but found %+v", existingGCThreshold)
}
if existingTxnSpanGCThreshold, err := rsl.loadTxnSpanGCThreshold(ctx, eng); err != nil {
return enginepb.MVCCStats{}, errors.Wrap(err, "error reading TxnSpanGCThreshold")
} else if (existingTxnSpanGCThreshold != hlc.Timestamp{}) {
log.Fatalf(ctx, "expected trivial TxnSpanGCThreshold, but found %+v", existingTxnSpanGCThreshold)
}
newMS, err := rsl.save(ctx, eng, s)
if err != nil {
return enginepb.MVCCStats{}, err
}
return newMS, nil
}
// writeInitialState calls writeInitialReplicaState followed by
// synthesizeRaftState. It is typically called during bootstrap. The supplied
// MVCCStats are used for the Stats field after adjusting for persisting the
// state itself, and the updated stats are returned.
func writeInitialState(
ctx context.Context,
eng engine.ReadWriter,
ms enginepb.MVCCStats,
desc roachpb.RangeDescriptor,
lease roachpb.Lease,
gcThreshold hlc.Timestamp,
txnSpanGCThreshold hlc.Timestamp,
) (enginepb.MVCCStats, error) {
newMS, err := writeInitialReplicaState(ctx, eng, ms, desc, lease, gcThreshold, txnSpanGCThreshold)
if err != nil {
return enginepb.MVCCStats{}, err
}
if err := makeReplicaStateLoader(desc.RangeID).synthesizeRaftState(ctx, eng); err != nil {
return enginepb.MVCCStats{}, err
}
return newMS, nil
}
// ReplicaEvalContext is the interface through which command
// evaluation accesses the in-memory state of a Replica. Any state
// that corresponds to (mutable) on-disk data must be registered in
// the SpanSet if one is given.
type ReplicaEvalContext struct {
repl *Replica
ss *SpanSet
}
// ClusterSettings returns the node's ClusterSettings.
func (rec ReplicaEvalContext) ClusterSettings() *cluster.Settings {
return rec.repl.store.cfg.Settings
}
// In-memory state, immutable fields, and debugging methods are accessed directly.
// NodeID returns the Replica's NodeID.
func (rec ReplicaEvalContext) NodeID() roachpb.NodeID {
return rec.repl.NodeID()
}
// StoreID returns the Replica's StoreID.
func (rec ReplicaEvalContext) StoreID() roachpb.StoreID {
return rec.repl.store.StoreID()
}
// RangeID returns the Replica's RangeID.
func (rec ReplicaEvalContext) RangeID() roachpb.RangeID {
return rec.repl.RangeID
}
// IsFirstRange returns true if this replica is the first range in the
// system.
func (rec ReplicaEvalContext) IsFirstRange() bool {
return rec.repl.IsFirstRange()
}
// String returns a string representation of the Replica.
func (rec ReplicaEvalContext) String() string {
return rec.repl.String()
}
// StoreTestingKnobs returns the Replica's StoreTestingKnobs.
func (rec ReplicaEvalContext) StoreTestingKnobs() StoreTestingKnobs {
return rec.repl.store.cfg.TestingKnobs
}
// Tracer returns the Replica's Tracer.
func (rec ReplicaEvalContext) Tracer() opentracing.Tracer {
return rec.repl.store.Tracer()
}
// DB returns the Replica's client DB.
func (rec ReplicaEvalContext) DB() *client.DB {
return rec.repl.store.DB()
}
// Engine returns the Replica's underlying Engine. In most cases the
// evaluation Batch should be used instead.
func (rec ReplicaEvalContext) Engine() engine.Engine {
return rec.repl.store.Engine()
}
// AbortCache returns the Replica's AbortCache.
func (rec ReplicaEvalContext) AbortCache() *AbortCache {
// Despite its name, the abort cache doesn't hold on-disk data in
// memory. It just provides methods that take a Batch, so SpanSet
// declarations are enforced there.
return rec.repl.abortCache
}
// pushTxnQueue returns the Replica's pushTxnQueue.
func (rec ReplicaEvalContext) pushTxnQueue() *pushTxnQueue {
return rec.repl.pushTxnQueue
}
// FirstIndex returns the oldest index in the raft log.
func (rec ReplicaEvalContext) FirstIndex() (uint64, error) {
return rec.repl.GetFirstIndex()
}
// Term returns the term of the given entry in the raft log.
func (rec ReplicaEvalContext) Term(i uint64) (uint64, error) {
rec.repl.mu.RLock()
defer rec.repl.mu.RUnlock()
return rec.repl.raftTermRLocked(i)
}
// Fields backed by on-disk data must be registered in the SpanSet.
// Desc returns the Replica's RangeDescriptor.
func (rec ReplicaEvalContext) Desc() (*roachpb.RangeDescriptor, error) {
rec.repl.mu.RLock()
defer rec.repl.mu.RUnlock()
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeDescriptorKey(rec.repl.mu.state.Desc.StartKey)},
); err != nil {
return nil, err
}
}
return rec.repl.mu.state.Desc, nil
}
// ContainsKey returns true if the given key is within the Replica's range.
//
// TODO(bdarnell): Replace this method with one on Desc(). See comment
// on Replica.ContainsKey.
func (rec ReplicaEvalContext) ContainsKey(key roachpb.Key) (bool, error) {
rec.repl.mu.RLock()
defer rec.repl.mu.RUnlock()
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeDescriptorKey(rec.repl.mu.state.Desc.StartKey)},
); err != nil {
return false, err
}
}
return containsKey(*rec.repl.mu.state.Desc, key), nil
}
// GetMVCCStats returns the Replica's MVCCStats.
func (rec ReplicaEvalContext) GetMVCCStats() (enginepb.MVCCStats, error) {
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeStatsKey(rec.RangeID())},
); err != nil {
return enginepb.MVCCStats{}, err
}
}
return rec.repl.GetMVCCStats(), nil
}
// GCThreshold returns the GC threshold of the Range, typically updated when
// keys are garbage collected. Reads and writes at timestamps <= this time will
// not be served.
func (rec ReplicaEvalContext) GCThreshold() (hlc.Timestamp, error) {
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeLastGCKey(rec.RangeID())},
); err != nil {
return hlc.Timestamp{}, err
}
}
rec.repl.mu.RLock()
defer rec.repl.mu.RUnlock()
return rec.repl.mu.state.GCThreshold, nil
}
// TxnSpanGCThreshold returns the time of the Replica's last
// transaction span GC.
func (rec ReplicaEvalContext) TxnSpanGCThreshold() (hlc.Timestamp, error) {
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeTxnSpanGCThresholdKey(rec.RangeID())},
); err != nil {
return hlc.Timestamp{}, err
}
}
rec.repl.mu.RLock()
defer rec.repl.mu.RUnlock()
return rec.repl.mu.state.TxnSpanGCThreshold, nil
}
// GetLastReplicaGCTimestamp returns the last time the Replica was
// considered for GC.
func (rec ReplicaEvalContext) GetLastReplicaGCTimestamp(
ctx context.Context,
) (hlc.Timestamp, error) {
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeLastReplicaGCTimestampKey(rec.RangeID())},
); err != nil {
return hlc.Timestamp{}, err
}
}
return rec.repl.getLastReplicaGCTimestamp(ctx)
}
// GetLease returns the Replica's current and next lease (if any).
func (rec ReplicaEvalContext) GetLease() (roachpb.Lease, *roachpb.Lease, error) {
if rec.ss != nil {
if err := rec.ss.checkAllowed(SpanReadOnly,
roachpb.Span{Key: keys.RangeLeaseKey(rec.RangeID())},
); err != nil {
return roachpb.Lease{}, nil, err
}
}
lease, nextLease := rec.repl.getLease()
return lease, nextLease, nil
}