-
Notifications
You must be signed in to change notification settings - Fork 52
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
4.3. Evaluation on Real Rainy Images #4
Comments
Rain100H、Rain100L和Rain1400的训练集都用了,但是因为Rain1400的训练集图像数量远多于其他两个,所以在构建h5文件的时候,stride是其他两个训练集的3倍。另外,PReNet多个epoch之后会在训练集上过拟合,1个epoch就停止训练的模型在真实图的扩展能力反而更好。PReNet1.pth和PReNet2.pth都是在这3个训练集的1个epoch的模型,区别只是recursive loss 和 final loss的区别,视觉效果应该基本没有区别。 |
作者您好,请问是将三个训练集混合之后,进行训练吗? |
对。只用rain100H训练集应该也可以,不过不能训练太充分,过拟合之后对真实图效果就很差了。 |
Could you provide your deraining results on real-world rain images? |
您好作者,请问文件夹 ./PReNet/logs/real/中的两组参数PReNet1.pth和PReNet2.pth是在哪个数据集上训练出来的?
The text was updated successfully, but these errors were encountered: